Choisir le raccordement électrique [cogen]

Câble de puissance et protections classiques

Comme toute installation électrique, le dimensionnement complet des câbles et des protections se calcule selon le R.G.I.E. (Règlement général sur les installations électriques).

En particulier, l’ajout d’une nouvelle source d’énergie influence le dimensionnement des équipements de protection contre les courts-circuits et des sections de câbles.

Toute source d’énergie électrique est caractérisée par un courant (ou une puissance) de court-circuit (Icc ou Pcc), c’est-à-dire le courant qui circulerait dans l’installation si elle était en court-circuit. Si une nouvelle source d’électricité est ajoutée à l’installation, son courant de court-circuit s’en trouve modifié.

Les disjoncteurs protègent les charges contre les défauts du réseau. De même que les circuits de puissance, ils sont dimensionnés à partir, notamment, du courant de court-circuit (Icc). Si une nouvelle source de courant est ajoutée, il est nécessaire de vérifier la capacité des disjoncteurs à protéger efficacement les charges contre le nouveau Icc et la tenue des circuits aux nouveaux défauts potentiels.

De plus, les câbles entre le point de raccordement et l’alternateur doivent être protégés de part et d’autre (réseau et cogénération) contre un court-circuit. Ce qui implique la nécessité de disposer de la Pcc au point de raccordement de la cogénération.


Protection spécifique à la production d’énergie électrique en parallèle sur le réseau

En tous cas, le système de protection sera à prévoir en concertation avec le distributeur local et fera l’objet d’un accord préalable. De plus, avant toute mise en œuvre du système de protection, celui-ci devra être accepté par un organisme agréé pour le contrôle des installations électriques qui le vérifiera à la mise en service (aux frais de l’autoproducteur). Ceci signifie également que les équipements de protection utilisés doivent être agréés.

Protection de découplage ou production décentralisée

Lorsqu’un client désire raccorder une unité de production décentralisée au réseau de distribution, le distributeur local doit évaluer si le client peut (ou pas) injecter du courant sur le réseau MT ou directement sur le poste source.

Cette limitation est à fixer conjointement :

  • par le service commercial du distributeur pour des raisons contractuelles (contrat de fourniture);
  • par l’exploitant du réseau au regard des charges et de la capacité du réseau.

Si le client peut injecter son énergie électrique sur le réseau, cette puissance sera limitée par la protection générale BT ou MT du client et une protection de découplage est obligatoire.

La protection de découplage utilise souvent le saut de vecteur. Le saut de vecteur est une protection qui identifie un saut de déphasage dans le champ électrique tournant, supérieur à une consigne.

Cette protection protège non seulement le réseau, mais également l’alternateur. Dans environ 1 % des cas cependant, elle peut être mise en défaut. Si toute la charge de l’utilisateur est alimentée par la cogénération, il n’y a quasiment pas de puissance qui transite par la cabine HT. Dans ce cas, lors d’un déclenchement, deux cas sont possibles. Si des charges existent sur la même portion de réseau, lors du déclenchement, l’impédance va varier brusquement, c’est-à-dire que le groupe va soudainement essayer d’alimenter ces charges et le saut de vecteur va déclencher. Si les charges sont trop faibles, l’impédance vue par le groupe ne variera presque pas lors du déclenchement, et le saut de vecteur ne se déclenchera pas.

En cas de saut de vecteur, le dispositif ouvre le disjoncteur au niveau du groupe.

S’il s’agit d’une micro-coupure, lorsque le réseau revient, la tension revient (la bobine du disjoncteur principal est alimentée par la tension réseau) et une reprise de parallèle permet le recouplage.

Si le réseau ne revient pas, le verrouillage du disjoncteur principal permet le fonctionnement en groupe de secours (pour les machines synchrones uniquement).

Lorsque le réseau revient après un fonctionnement en groupe secours, deux options sont possibles. Dans la première solution, le dispositif détecte la tension du réseau, ouvre le disjoncteur du groupe secours, ferme le disjoncteur principal et, comme pour une micro-coupure, reprend la parallèle, le tout en un temps très court, de l’ordre de 0,2 seconde.

L’alternative est une synchronisation arrière, c’est-à-dire une modulation de la puissance du moteur pour atteindre le synchronisme avec le réseau, tout en continuant à alimenter les charges électriques. Elle est cependant plus difficile, car il existe des charges très variables comme les ascenseurs qui font varier plus ou moins brusquement tension et fréquence.

L’ensemble des protections revient à environ 2 250 – 2 500 €. Les coûts d’une bascule et d’une parallèle réseau sont comparables l’un à l’autre et tournent autour de 7 500 €.

Protection directionnelle ou autoproduction

Si on sait que la consommation est supérieure à la production de la cogénération, on place une protection directionnelle.

La protection à prévoir est un relais directionnel de courant ou d’énergie active qui déconnecte le moteur du réseau si de l’énergie est envoyée vers le réseau par exemple, lorsque le réseau tombe en panne.

Cette protection est plus simple et donc moins chère que la protection de découplage.


Synchronisation de la génératrice synchrone

Les synchroniseurs sont très rapides et les modulations de fréquence et de tension sont minimes. Dans la majorité des cas, les modulations de fréquence et de tension respectent les limites des appareils, le recouplage peut donc se faire sans coupure. Le prescripteur vérifiera cependant l’existence ou non d’appareils particulièrement sensibles parmi les équipements du client et imposera le cas échéant une coupure de l’alimentation pour synchroniser.

Lorsque le groupe tourne, il est important d’éviter toute modification de la position des disjoncteurs de la cabine HT (avant ou après le transfo). En effet, si le groupe est en parallèle sur le réseau, il y a un risque de déclencher un saut de vecteur; si le groupe tourne en secours, il y a un risque d’une prise de parallèle non synchronisée. Il est vivement conseillé d’installer un boîtier à destination du distributeur dans la cabine HT, avec une lampe témoin allumée si le groupe est en parallèle et un interrupteur pour couper le groupe ou empêcher la prise de parallèle.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le raccordement hydraulique [cogen]


Préambule

L’insertion d’une unité de cogénération de petite taille dans un système de chauffage centralisé est une question complexe. Chaque système de chauffage a ses spécificités et rend le raccordement hydraulique d’une cogénération unique. En outre, il n’existe pas de prescriptions techniques spécifiques auxquelles un installateur doit ou peut se conformer.

Voici repris une série de critères de dimensionnement et de caractéristiques relatifs aux différentes possibilités de raccordement de la cogénération.

  • Étude de l’installation de chauffage existante
  • Critères généraux
  • Exigences côté cogénération
  • Raccordement en série
  • Raccordement en parallèle
  • Aéro-réfrigérant

Étude de l’installation de chauffage existante

La connaissance et l’optimalisation de l’installation de chauffage existante sont un préalable important au bon fonctionnement futur de l’installation combinée. Un schéma hydraulique à jour de l’installation existante est donc indispensable.

Il faut principalement être attentif à l’adéquation des débits. Si ceux-ci sont surdimensionnés, les températures de retour de l’installation seront plus élevées que la normale. La diminution de la vitesse des pompes ou le placement de pompes à vitesse variable s’imposent donc parfois en préalable à la cogénération.

Cette étude est relativement simple pour les installations de taille modeste.

Par contre, pour les grosses centrales de chauffe, desservant plusieurs utilisateurs (sous-stations), une simulation des flux d’eau dans l’installation peut être nécessaire, pour en connaître le plus précisément possible le comportement : que se passe-t-il lorsque telle vanne s’ouvre, lorsque telle chaudière s’enclenche …


Critères de sélection

  • Ne pas créer de pertes de charge dans le circuit du client.
  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge.
  • Ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Le risque majeur à éviter dans la combinaison chauffage-cogénération est une température d’eau de retour trop élevée vers le moteur. Comme expliqué dans le chapitre relatif à la régulation, une température trop élevée peut entraîner une instabilité de l’enclenchement / déclenchement du moteur.

Concrètement, il faut que la température de l’eau à l’entrée du moteur soit inférieure à 85 °C si on récupère la chaleur uniquement sur l’eau de refroidissement et sur les fumées, à 75 °C si on récupère de la chaleur également sur le circuit d’huile et à 40 °C si on récupère sur le refroidissement du mélange air-gaz après turbocompression (pour les gros moteurs).

Côté refroidissement du moteur, des problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement peuvent engendrer des problèmes aux joints des pompes à eau par exemple. La séparation des circuits de refroidissement du moteur (water jacket) du reste de l’installation hydraulique confine le problème. La solution est alors d’analyser la qualité de l’eau et de définir les additifs qui neutralisent les polluants. L’isolation des échangeurs de refroidissement du moteur et du circuit de lubrification permet de n’ajouter les additifs que dans un circuit local, au contraire d’un circuit unique, qui impose l’ajout des additifs en question au niveau des circuits de chaleur dans leur ensemble. La séparation des circuits de refroidissement du moteur offre en outre l’avantage de minimiser les pertes de charge dans le circuit client.


Raccordement en série

Configuration série sans ballon de stockage

Raccordement série (dérivation sur retour principal) sans bouteille de mélange :

  • Éviter le recyclage dans le circuit du retour du groupe.
  • Sélectionner une puissance du groupe inférieure à la puissance de la chaudière prioritaire pour garantir un débit suffisant.
  • La priorité est donnée naturellement à la cogénération.
  • Pas de conséquence négative lors de l’arrêt du groupe.
  • Maintien d’une régulation classique des chaudières.

Raccordement en série.

Le raccordement en série est la solution la plus simple. C’est elle qui présentera le moins de difficultés au niveau de la compatibilité hydraulique avec l’installation de chauffage existante. Elle est donc à conseiller pour les petites installations pour lesquelles une simulation du comportement hydraulique de l’ensemble serait trop coûteuse par rapport à l’investissement total.

Dans ce type de raccordement, une partie de l’eau est préchauffée par le cogénérateur. Si celui-ci ne développe pas une puissance thermique suffisante par rapport aux besoins instantanés, l’eau sera postchauffée par les chaudières.

L’inconvénient du raccordement en série provient du fait qu’une des chaudières est en permanence parcourue par de l’eau chaude même lorsqu’elle est à l’arrêt. On subit donc ses pertes à l’arrêt (y compris en été si le cogénérateur est dimensionné pour produire de l’eau chaude sanitaire). Elles peuvent être importantes sur des anciennes chaudières mal isolées et dont le brûleur est en permanence ouvert vers la cheminée (brûleurs sans clapets, chaudières atmosphériques).

Par contre, l’avantage est de pouvoir profiter du volume de la chaudière pour réaliser un stockage lorsque la demande instantanée de chaleur est fluctuante et inférieure à la production du cogénérateur. Ce volume de stockage est cependant limité par rapport à un ballon tampon séparé.

Le by-pass du cogénérateur sera dimensionné pour qu’un débit suffisant traverse le cogénérateur.

Une attention particulière devra être portée à ce problème si le circuit primaire est conçu pour fonctionner à débit variable (circuit avec une pompe d’alimentation par chaudière, circuit primaire ouvert sans pompe primaire et circuits secondaires avec vannes mélangeuses, …). Par exemple, si chaque chaudière possède sa propre pompe, le débit d’une chaudière doit être plus élevé que le débit du cogénérateur, faute de quoi celui-ci sera insuffisamment refroidi.

Configuration série sans ballon avec by-pass

Une autre configuration qui évite les pertes à l’arrêt dans les chaudières est le placement avantageux d’un by-pass. Attention toutefois au coût des vannes 3 voies par rapport à l’avantage que l’on retire de ne pas générer des pertes à l’arrêt dans une des chaudières.

Schéma de configuration série sans ballon avec by-pass.

Configuration série avec ballon

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en termes de courts cycles du cogénérateur.

Schéma de raccordement série avec bouteille de mélange.

Raccordement série (dérivation sur retour principal) avec bouteille de mélange

Il est impératif de :

  • Placer la bouteille verticalement pour garantir l’indépendance hydraulique des circuits.
  • Placer la pompe en série avec le circuit hydraulique de refroidissement du moteur pour garantir le débit.
  • La priorité est donnée naturellement à la cogénération.
  • Pas de conséquence négative lors de l’arrêt du groupe.
  • Maintien d’une régulation classique des chaudières.

Le raccordement du cogénérateur en amont de la bouteille (B) est préférable au raccordement en aval (A) étant donné la possibilité de retour d’eau chaude vers les chaudières au travers de la bouteille, ce qui réduirait le refroidissement du moteur.

Schéma de raccordement série avec bouteille de mélange.

Cogénérateur raccordé en série sur les chaudières dans un circuit avec bouteille casse-pression
(principe applicable à un raccordement en parallèle)


Raccordement en parallèle

  • Pas de perte par irrigation des chaudières lorsque la cogénération suffit.
  • La priorité n’est pas donnée naturellement à la cogénération.
  • Gestion spécifique de séquence des chaudières.
  • Un dimensionnement précis de la pompe dont le calcul est délicat est nécessaire (alternative : un variateur de vitesse).

Schéma de raccordement en parallèle.

Raccordement en parallèle

L’intégration hydraulique en parallèle dans une chaufferie existante demande plus de modifications de la « tuyauterie » qu’une intégration en série et une régulation plus fine. Cependant, on peut pointer plusieurs avantages importants de la mise en parallèle d’une cogénération : à l’inverse de la configuration série classique (sans by-pass des chaudières), il n’y a pas de passage de l’eau chaude dans les chaudières lorsque la cogénération seule fonctionne. On n’a donc pas de pertes à l’arrêt au niveau des chaudières si elles ne sont pas irriguées. Mais cela nécessite naturellement de dimensionner les conduites de raccordement du ballon de stockage de manière à laisser passer le débit total.

De plus, dans des chaufferies modernes équipées de chaudières à condensation, pour autant que la température de retour au circuit primaire soit bien maîtrisée, la configuration parallèle permet de valoriser la chaleur de condensation lorsque les chaudières viennent :

  • En support de la cogénération en période froide.
  • En remplacement de la cogénération en période chaude lorsque les besoins de chaleur deviennent trop faibles, et ce pour éviter les courts

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir la génératrice [Cogen]

Puissance électrique

La puissance électrique de la génératrice est déterminée lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

La puissance active de la génératrice doit par ailleurs correspondre à la puissance mécanique fournie par le moteur, avec une marge au-dessus de la puissance nominale du moteur.
Le régime de tension est déterminé par la tension de l’installation électrique sur laquelle la génératrice sera connectée.

Le cogénérateur est souvent raccordé au réseau basse tension du consommateur. On peut aussi le raccorder sur un réseau de secours propre du bâtiment qui reprendrait les éléments vitaux à maintenir en fonctionnement en cas de panne du réseau de distribution. Cela doit évidemment être prévu lors de la conception du réseau électrique interne.


Génératrice synchrone ou asynchrone ?

Le choix entre une génératrice synchrone ou asynchrone dépend essentiellement de la volonté de fonctionner en groupe secours (version synchrone) ou non (version asynchrone).

La version asynchrone est de conception plus simple et est donc moins chère. Par exemple, un fournisseur présent sur le marché propose le cogénérateur de 30 kWé asynchrone 3 000 euros (HTVA) moins chers que la même machine couplée à un alternateur synchrone (pour un investissement total de l’ordre de 50 000 €).

Deux inconvénients apparaissent cependant :

  • La puissance électrique de la machine asynchrone ne pourra être trop importante par rapport à la puissance totale appelée par l’établissement (on parle de maximum 30 % de la puissance appelée) de manière à ne pas perturber le cos phi de l’établissement. Il sera peut-être nécessaire d’installer une batterie de condensateurs afin de compenser le mauvais cos phi de l’installation.

 

  • La génératrice asynchrone ne peut fonctionner sans alimentation du réseau. Dans ce cas, il lui est impossible de fonctionner comme secours lorsque celui-ci est coupé. Seul un alternateur synchrone est alors envisageable.

Certains fournisseurs proposent un même moteur raccordé soit à une génératrice asynchrone, soit un alternateur synchrone. Selon la gamme de puissance, le standard sera la version synchrone ou asynchrone. Pour les puissances inférieures à 500 kW, malgré son coût, le standard est la machine synchrone, livrée avec l’ensemble des équipements de synchronisation.

Attention finalement au sens du flux d’air autour de la cogénération. Les génératrices fonctionnent à 40 °C maximum. Si l’air passe d’abord autour du moteur, il risque d’être à plus de 40 °C et de ne plus refroidir correctement la génératrice.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le moteur [Cogen]

Critères de sélection

Les critères mentionnés au niveau du cogénérateur s’appliquent en réalité aux moteurs et sont donc d’application pour la sélection du moteur.

Attention à la qualité ! Des moteurs de bonne qualité peuvent donner une disponibilité de 95 % sur les 24 h de fonctionnement quotidiennes ! De nombreux problèmes sont dus au choix de machines trop justes, que l’on fait travailler à leurs limites. Dans le même ordre d’idée, l’état des machines (bougie, filtres, huile, échangeurs, soupapes, réglages divers comme les culbuteurs…) et leurs performances évoluent avec le temps, il faut en tenir compte dès le dimensionnement.

D’autre part, le prescripteur doit déclasser le moteur pour garantir son bon fonctionnement selon le nombre d’heures de fonctionnement et le niveau de puissance. Dans le cas contraire, le moteur risque de s’épuiser prématurément ce qui se traduirait par des chutes de rendements, voire de casser avant la fin de son amortissement.

Pour chaque moteur, le constructeur garantit des performances selon l’usage qui en est fait. Le fonctionnement en stand-by, comme son nom l’indique signifie que le moteur reste la majorité du temps à l’arrêt et ne démarre que pour des occasions particulières comme une panne de courant. Le fonctionnement, en prime, est un fonctionnement plus fréquent avec des arrêts et éventuellement des modulations de charges réguliers. Le fonctionnement en base est un fonctionnement quasi continu du moteur.

La nécessité de placer un pot catalytique résultera de la comparaison des données des constructeurs concernant le moteur sélectionné aux normes en vigueur, c’est-à-dire au permis d’environnement. Il en est de même pour le bruit, avec les limitations supplémentaires que le client peut éventuellement ajouter, comme dans le cas d’un hôtel par exemple.

Lorsque l’installation thermique ne permet pas de garantir une température de refroidissement du moteur suffisamment constante et basse, il est nécessaire d’adjoindre un aéro-réfrigérant de secours qui ne sert qu’exceptionnellement ou de réduire la charge du moteur. Ces dispositions évitent l’échauffement et l’explosion du moteur en cas de refroidissement insuffisant par l’installation thermique censée consommer la chaleur.

Sur les groupes au fuel, une sonde de contre pression permet de détecter un encrassement. Cet encrassement indique la nécessité ou non de nettoyer l’échangeur placé sur l’échappement afin de protéger le moteur. Si l’encrassement devient trop important, le moteur ne se trouve plus dans les conditions de pression optimale, le rendement chute et le moteur risque même une explosion si la perte de charge sur l’échappement devient trop importante. C’est pour cette raison que certains motoristes ne garantissent plus leurs moteurs si des échangeurs de chaleur sont placés sur les échappements.

Certains motoristes fournissent un équipement complet optimisé. Il appartient au prescripteur d’étudier la bonne adéquation entre une solution standard et les besoins spécifiques du client.


Moteur gaz ou diesel ?

D’un point de vue énergétique et environnemental

Tout dépend du combustible disponible à proximité immédiate. Au niveau des énergies fossiles, le gaz est « environnementalement » parlant mieux côté que le diesel, le coefficient du gaz naturel est inférieur à celui du diesel, raison pour laquelle les cogénérateurs gaz reçoivent plus de certificats verts que les moteurs diesels.

Les cogénérateurs à condensation de petite puissance sont de plus en plus présents sur le marché. La condensation de la fraction de vapeur d’eau contenue dans les gaz de combustion (théoriquement de 10 % pour le gaz) permet d’améliorer le rendement global du cogénérateur. La condensation des gaz de combustion issue des moteurs à gaz est moins problématique que celle issue des moteurs diesel sachant que le diesel contient du soufre qui se retrouve dans les gaz de combustion. À la condensation, le soufre se mélange à l’eau et forme un mélange acide corrosif pour les échangeurs et les conduits d’évacuation de gaz. Pour les  puissances importantes, il y a lieu de traiter les condensats. À l’inverse, les condensats des cogénérateurs gaz à condensation peuvent être rejetés directement à l’égout.

D’un point de vue mécanique

Comme caractéristique principale, un moteur gaz est nettement moins réactif au démarrage qu’un moteur diesel. Ce manque de réactivité, justifierait que le moteur gaz, et c’est d’actualité, ne soit pas utilisé comme groupe de secours en cas de « black-out ». Cependant, un cogénérateur au gaz, moyennant la présence d’un système intelligent de gestion de charge sur site, pourrait, suite à une coupure de réseau, redémarrer en groupe secours. Par exemple, la charge électrique du cogénérateur pourrait « monter en puissance » de 10  à 100 % dans un délai préprogrammé au niveau des circuits secours d’un hôpital.

La figure ci-dessous permet de rendre compte que le temps de synchronisation d’un moteur gaz sur le réseau est relativement long en comparaison au moteur diesel.

Schéma sur temps de synchronisation d’un moteur gaz / moteur diesel.

Temps de synchronisation d’un moteur gaz et diesel.

De plus, les moteurs gaz rencontrent également certaines difficultés face aux variations de charge. En effet, un des problèmes majeur des moteurs gaz est la gestion de la marche en régime transitoire. La réponse transitoire d’un moteur gaz, défini comme étant la réponse d’un système face à une variation de charges, est dès lors plus longue que pour un moteur diesel comme le montre la figure suivante :

Représentation d’une variation de charge autour de l’équilibre de base.

Dans un moteur diesel, l’injection se fait directement au niveau de la chambre de combustion tandis que pour un moteur gaz, le mélange gaz/air a lieu en amont de la chambre de combustion. C’est dès lors une des raisons pour laquelle un moteur gaz est caractérisé par une moindre robustesse.

Pour pallier le manque de réactivité rencontré dans un moteur gaz, les fabricants travaillent actuellement sur un projet visant à augmenter cette réactivité. Comme illustré à la figure suivante, le gaz est directement injecté dans la chambre de combustion, notamment grâce au système en développement HPDI (High Pressure Direct Injection).

Projet visant à l’injection directe de gaz à haute pression dans la chambre de combustion (Caterpilar).

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le stockage de chaleur [cogen]

Critères de sélection

Le volume du stockage est calculé lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

Comme dans toutes les applications de stockage, il faudra tenir compte des pertes (pertes en stand-by pour les chaudières, pertes dans les tuyauteries,…). Dès lors, le raccordement et la régulation d’un stockage de chaleur seront plus complexes que l’installation standard d’une cogénération.

D’ordinaire, le ballon de stockage est installé en parallèle avec le cogénérateur. Cela permet de fonctionner de la même façon quelle que soit la source de chaleur : la cogénération ou le ballon.

Les critères de dimensionnement relatifs à la connexion aux débits et températures mentionnés dans le chapitre sur le raccordement hydraulique sont d’applications, notamment :

  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge et le maintenir constant.
  • Maintenir la température d’entrée du groupe inférieure à une valeur de consigne définie par le constructeur.
  • Éviter toute fluctuation brusque de la température d’entrée.
  • Éviter le recyclage dans le circuit de retour du groupe afin de ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Gérer la puissance de déstockage de façon à toujours garantir un débit de refroidissement du moteur suffisant.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Raccordement d’un ballon de stockage

Stockage pour configuration en parallèle

Une des méthodes de stockage appropriées est celle décrite ci-dessous. Cependant, sur le terrain, elle reste relativement peu courante. Peut-être pour une question financière ?

Schéma stockage pour configuration en parallèle.

Dans son principe, le fonctionnement du cogénérateur est relativement indépendant de celui des chaudières. En effet, le cogénérateur peut charger le ballon à une température de consigne fixe. C’est la vanne 3 voies qui fait le gros du boulot et qui peut mitiger la température de sortie de l’ensemble cogénérateur/ballon de stockage en fonction de la température de départ primaire.

La séquence des schémas suivants donne une idée des phases de stockage/déstockage. À remarquer, qu’en termes de dimensionnement des conduites, il faut prévoir que le débit d’entrée/sortie de l’ensemble cogénérateur/stockage sera de l’ordre de 1.5 à 2 fois celui du cogénérateur s’il était prévu dans stockage.

Stockage pur

Schéma stockage pur.

  • Pas de besoin, mais le ballon n’est pas à température.
  • Le cogénérateur fonctionne à régime nominal et charge le ballon (stockage).

Déstockage et boost de la cogénération

Schéma déstockage et boost de la cogénération.

  • Besoins importants.
  • Le cogénérateur fonctionne à régime nominal.
  • Le ballon déstocke.

Déstockage pur

Schéma déstockage pur.

  • Besoins moyens.
  • Seul le ballon déstocke.

Stockage pour configuration en série

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en terme de court cycle du cogénérateur.

Schéma stockage pour configuration en série.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir les éléments annexes [Cogénération]

Dispositif anti-vibrations.

Les éléments annexes sont repris avec leurs caractéristiques principales.


Localisation de l’installation

Le local de la cogénération peut être la chaufferie existante, un local dédié, ou elle peut être placée à l’extérieur des bâtiments, dans un caisson spécifique.

Les règlements habituels sur les chaufferies sont d’application.
La disposition spatiale est essentielle. La cogénération sera placée le plus près possible de l’endroit où la chaleur va être utilisée, pour réduire le coût des équipements de transport de la chaleur.

Les variables clés dans le dimensionnement du local et de ses abords sont :

  • la puissance des équipements;
  • le type et la position du local d’implantation;
  • la destination du bâtiment (public ou non);
  • les accès au local (non-accessibilité au public, accès direct extérieur, distance par rapport aux locaux occupés, nombre d’issues…);
  • la résistance au feu des parois;
  • la ventilation;
  • l’évacuation des gaz;
  • les équipements électriques…

Plan placement d'une cogénération.

Exemple d’implantation.


Sécurité de l’emplacement

La sécurité de l’emplacement doit être étudiée au minimum par rapport aux inondations et à l’incendie.

Il n’existe pas de réglementation relative à la détection gaz-incendie, mais des clauses particulières doivent être envisagées afin d’éviter d’interminables discussions le cas échéant.

La signalisation doit aussi faire l’objet d’une définition précise.


Raccordement combustible

Les principales caractéristiques d’une rampe à gaz sont :

  • sa pression d’alimentation;
  • le filtre;
  • les vannes de sécurité;
  • la détection gaz;
  • la détente.

Exemple : alimentation en gaz.

Raccordement gaz.


Génie civil

La dalle d’accueil de la cogénération s’étudie en tenant compte :

  • de la charge admissible;
  • du bac de rétention (éventuellement compris dans le châssis);
  • d’un dispositif anti-vibratoire (éventuellement compris dans le châssis).

Accessibilité

L’accessibilité doit être garantie pour :

  • l’installation;
  • la maintenance.

Ventilation

Les dispositions classiques pour les chaufferies sont d’application (ventilation permanente, air neuf par le bas, air usagé par le haut…).

Une attention particulière sera portée à l’apport en air comburant et à l’évacuation de la chaleur émise par rayonnement et des batteries.


Échappement

L’échappement se caractérise principalement par :

  • son implantation (hauteur, vitesse minimale d’éjection…);
  • la position de la cheminée;
  • les matériaux;
  • la conformité des fixations;
  • une pression d’évacuation suffisante pour le tracé de la cheminée;
  • la récupération des condensats;
  • l’isolation thermique;
  • le silencieux pour le traitement des émissions (voir le permis d’exploitation);
  • le pot catalytique intégré dans le silencieux;

Exemple : évacuation des gaz de combustion.

Évacuation gaz.


Acoustique et vibrations

Le permis d’environnement impose les limites en matière de bruit, qui viennent s’ajouter aux éventuelles contraintes imposées par le client comme dans le cas d’un hôtel par exemple.

Un capotage avec double enveloppe est généralement nécessaire pour atteindre les limites sonores.

La transmission du bruit s’effectue :

  • en direct;
  • via la cheminée;
  • via la tuyauterie;
  • via le fluide.

Le client ne connaît pas ses exigences en valeurs chiffrées, mais il veut de bons résultats. Un cahier des charges en terme de résultats est à déterminer avec lui avant.

Le niveau sonore du moteur ou de la cogénération avec son spectre est à connaître en champ libre pour ensuite calculer son spectre en conditions réelles et isoler adéquatement.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir les échangeurs de chaleur [cogen]

Échangeur à plaques   échangeur tubulaire

Échangeur à plaques et échangeur tubulaire.


Critères de sélection

Lorsque le projet nécessite un choix d’échangeurs séparés, il est important de les différencier :

  • La chaleur du bloc moteur est récupérée par un échange à plaque eau-eau.
  • La chaleur du circuit de lubrification est récupérée par un échange huile-eau.
  • La chaleur contenue dans les échappements est récupérée par un échange air-eau dans un échangeur à tubes droits.

Les températures et débits côtés moteur, lubrification  et échappement sont des données « constructeur » dépendantes du moteur sélectionné.

Le calcul des températures et débits côté eau doit assurer la cohérence du débit et des températures d’un échangeur à l’autre et garantir le refroidissement de chacun des postes de récupération de chaleur, avec une sécurité maximale pour le refroidissement du bloc moteur.


Échangeur sur les gaz d’échappement

La puissance de cet échangeur est fonction de sa perte de charge, mais le rendement du moteur est aussi très sensible à la pression de sortie. Un équilibre est à trouver et surtout à maintenir à ce niveau, à l’aide par exemple d’un pressostat dont le calibrage est régulièrement contrôlé. S’il y a un encrassement de l’échangeur, les pertes de charge augmentent et peuvent causer des dégâts considérables au moteur. Ce problème a causé jusqu’à l’explosion de certains moteurs.

Échangeurs sur le bloc moteur et le circuit de lubrification

Côté refroidissement du moteur, des problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement peuvent engendrer des problèmes aux joints des pompes à eau par exemple. La séparation des circuits de refroidissement du moteur (water jacket) du reste de l’installation hydraulique confine le problème. La solution est alors d’analyser la qualité de l’eau et de définir les additifs qui neutralisent les polluants.

L’isolation des échangeurs de refroidissement du moteur et du circuit de lubrification permet de n’ajouter les additifs que dans un circuit local, au contraire d’un circuit unique, qui impose l’ajout des additifs en question dans tout le circuit de chaleur.

Il est encore conseillé de vérifier régulièrement la différence de température effective entre entrée et sortie des différents échangeurs, pour s’assurer du fonctionnement correct de l’installation. Rappelons qu’un mauvais refroidissement du moteur peut le détruire très rapidement.


Intercooler

Lorsque le cogénérateur est équipé d’un turbo-compresseur, l’intercooler, qui le refroidit, peut-être mis sur le même circuit que les échangeurs du bloc moteur et du circuit d’huile. Vu que son régime de température est assez bas (30 – 35 °C), l’intercooler est placé en amont des deux échangeurs précités pour bénéficier des retours froids du circuit de chauffage.

Échangeurs de secours

Un aéro-réfrigérant de secours reste souvent maintenu pour garantir le refroidissement du moteur dans des circonstances exceptionnelles. La chaleur évacuée par l’aéro-réfrigérant de secours ne peut cependant pas être comptabilisée pour l’attribution des certificats verts dans la mesure où elle ne contribue pas à la réduction de CO2.

Deux vannes 3 voies servent respectivement à by-passer l’échangeur eau-eau pour éviter un retour d’eau trop froide au moteur et à utiliser l’aéro-réfrigérant de secours (radiateur initial du moteur) pour garantir le refroidissement du moteur si le besoin en chaleur est réduit.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le cogénérateur

Source : Cogengreen.

Puissances ?

Les puissances du cogénérateur sont déterminées lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la méthodologie présentée compléteront et valideront les résultats.

Combustible ?

Le gaz est très généralement préféré au fuel, lorsqu’il est disponible. Son premier avantage se situe au niveau des émissions moindres que dans le cas du mazout. Autre avantage, les rendements des moteurs à gaz sont généralement meilleurs, mais pour un coût d’investissement plus élevé.

Groupe de secours ?

Une cogénération peut être pensée pour fonctionner en groupe confort secours. Une telle solution doit cependant s’étudier avec beaucoup d’attention, notamment par rapport au délai lors de la mise en route. Parmi les éléments à étudier dans ce cas, citons encore le déclassement nécessaire du moteur  d’un groupe secours existant, si l’on souhaite le faire fonctionner en cogénération. En effet, le fonctionnement en cogénérateur présente des contraintes plus importantes qu’un fonctionnement en groupe secours du fait de la durée de fonctionnement plus importante.

Si le groupe fonctionne au gaz, le fonctionnement du groupe en secours ne sera garanti que si l’approvisionnement en gaz est garanti. Notons finalement à ce sujet qu’un groupe fonctionnant au gaz a une reprise de charge plus lente, de l’ordre de quelques minutes pour atteindre la pleine charge, ce qui est une contrainte de taille pour un groupe de secours dans un hôpital par exemple.

Dans ce dernier cas, la présence d’un groupe de cogénération peut être valorisé comme deuxième source autonome, sorte de groupe de confort.

Le fonctionnement de plusieurs petites machines en parallèle peut-être une alternative, quoique d’un coût sensiblement plus élevé, proportionnellement plus chères que les grosses unités. Cette solution limite les risques de pannes et permet un fonctionnement à charge réduite, notamment pendant l’entre-saison. Cette option présente encore des difficultés quant à la complexité de sa régulation et à son intégration dans le système de gestion des chaudières existantes.


Écrêtage ?

La cogénération présente une philosophie fondamentalement différente de l’écrêtage. Un moteur dédié exclusivement à l’écrêtage ne fonctionne en effet que pour les heures pleines de pointe, c’est à dire 4 heures par jour pendant 4 mois par an. Il s’agit le plus souvent d’un groupe au mazout. À l’opposé, une cogénération fonctionnera de la façon la plus continue possible. Il s’agit le plus souvent d’un groupe au gaz.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be