Choisir le raccordement électrique [cogen]

Câble de puissance et protections classiques

Comme toute installation électrique, le dimensionnement complet des câbles et des protections se calcule selon le R.G.I.E. (Règlement général sur les installations électriques).

En particulier, l’ajout d’une nouvelle source d’énergie influence le dimensionnement des équipements de protection contre les courts-circuits et des sections de câbles.

Toute source d’énergie électrique est caractérisée par un courant (ou une puissance) de court-circuit (Icc ou Pcc), c’est-à-dire le courant qui circulerait dans l’installation si elle était en court-circuit. Si une nouvelle source d’électricité est ajoutée à l’installation, son courant de court-circuit s’en trouve modifié.

Les disjoncteurs protègent les charges contre les défauts du réseau. De même que les circuits de puissance, ils sont dimensionnés à partir, notamment, du courant de court-circuit (Icc). Si une nouvelle source de courant est ajoutée, il est nécessaire de vérifier la capacité des disjoncteurs à protéger efficacement les charges contre le nouveau Icc et la tenue des circuits aux nouveaux défauts potentiels.

De plus, les câbles entre le point de raccordement et l’alternateur doivent être protégés de part et d’autre (réseau et cogénération) contre un court-circuit. Ce qui implique la nécessité de disposer de la Pcc au point de raccordement de la cogénération.


Protection spécifique à la production d’énergie électrique en parallèle sur le réseau

En tous cas, le système de protection sera à prévoir en concertation avec le distributeur local et fera l’objet d’un accord préalable. De plus, avant toute mise en œuvre du système de protection, celui-ci devra être accepté par un organisme agréé pour le contrôle des installations électriques qui le vérifiera à la mise en service (aux frais de l’autoproducteur). Ceci signifie également que les équipements de protection utilisés doivent être agréés.

Protection de découplage ou production décentralisée

Lorsqu’un client désire raccorder une unité de production décentralisée au réseau de distribution, le distributeur local doit évaluer si le client peut (ou pas) injecter du courant sur le réseau MT ou directement sur le poste source.

Cette limitation est à fixer conjointement :

  • par le service commercial du distributeur pour des raisons contractuelles (contrat de fourniture);
  • par l’exploitant du réseau au regard des charges et de la capacité du réseau.

Si le client peut injecter son énergie électrique sur le réseau, cette puissance sera limitée par la protection générale BT ou MT du client et une protection de découplage est obligatoire.

La protection de découplage utilise souvent le saut de vecteur. Le saut de vecteur est une protection qui identifie un saut de déphasage dans le champ électrique tournant, supérieur à une consigne.

Cette protection protège non seulement le réseau, mais également l’alternateur. Dans environ 1 % des cas cependant, elle peut être mise en défaut. Si toute la charge de l’utilisateur est alimentée par la cogénération, il n’y a quasiment pas de puissance qui transite par la cabine HT. Dans ce cas, lors d’un déclenchement, deux cas sont possibles. Si des charges existent sur la même portion de réseau, lors du déclenchement, l’impédance va varier brusquement, c’est-à-dire que le groupe va soudainement essayer d’alimenter ces charges et le saut de vecteur va déclencher. Si les charges sont trop faibles, l’impédance vue par le groupe ne variera presque pas lors du déclenchement, et le saut de vecteur ne se déclenchera pas.

En cas de saut de vecteur, le dispositif ouvre le disjoncteur au niveau du groupe.

S’il s’agit d’une micro-coupure, lorsque le réseau revient, la tension revient (la bobine du disjoncteur principal est alimentée par la tension réseau) et une reprise de parallèle permet le recouplage.

Si le réseau ne revient pas, le verrouillage du disjoncteur principal permet le fonctionnement en groupe de secours (pour les machines synchrones uniquement).

Lorsque le réseau revient après un fonctionnement en groupe secours, deux options sont possibles. Dans la première solution, le dispositif détecte la tension du réseau, ouvre le disjoncteur du groupe secours, ferme le disjoncteur principal et, comme pour une micro-coupure, reprend la parallèle, le tout en un temps très court, de l’ordre de 0,2 seconde.

L’alternative est une synchronisation arrière, c’est-à-dire une modulation de la puissance du moteur pour atteindre le synchronisme avec le réseau, tout en continuant à alimenter les charges électriques. Elle est cependant plus difficile, car il existe des charges très variables comme les ascenseurs qui font varier plus ou moins brusquement tension et fréquence.

L’ensemble des protections revient à environ 2 250 – 2 500 €. Les coûts d’une bascule et d’une parallèle réseau sont comparables l’un à l’autre et tournent autour de 7 500 €.

Protection directionnelle ou autoproduction

Si on sait que la consommation est supérieure à la production de la cogénération, on place une protection directionnelle.

La protection à prévoir est un relais directionnel de courant ou d’énergie active qui déconnecte le moteur du réseau si de l’énergie est envoyée vers le réseau par exemple, lorsque le réseau tombe en panne.

Cette protection est plus simple et donc moins chère que la protection de découplage.


Synchronisation de la génératrice synchrone

Les synchroniseurs sont très rapides et les modulations de fréquence et de tension sont minimes. Dans la majorité des cas, les modulations de fréquence et de tension respectent les limites des appareils, le recouplage peut donc se faire sans coupure. Le prescripteur vérifiera cependant l’existence ou non d’appareils particulièrement sensibles parmi les équipements du client et imposera le cas échéant une coupure de l’alimentation pour synchroniser.

Lorsque le groupe tourne, il est important d’éviter toute modification de la position des disjoncteurs de la cabine HT (avant ou après le transfo). En effet, si le groupe est en parallèle sur le réseau, il y a un risque de déclencher un saut de vecteur; si le groupe tourne en secours, il y a un risque d’une prise de parallèle non synchronisée. Il est vivement conseillé d’installer un boîtier à destination du distributeur dans la cabine HT, avec une lampe témoin allumée si le groupe est en parallèle et un interrupteur pour couper le groupe ou empêcher la prise de parallèle.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le raccordement hydraulique [cogen]


Préambule

L’insertion d’une unité de cogénération de petite taille dans un système de chauffage centralisé est une question complexe. Chaque système de chauffage a ses spécificités et rend le raccordement hydraulique d’une cogénération unique. En outre, il n’existe pas de prescriptions techniques spécifiques auxquelles un installateur doit ou peut se conformer.

Voici repris une série de critères de dimensionnement et de caractéristiques relatifs aux différentes possibilités de raccordement de la cogénération.

  • Étude de l’installation de chauffage existante
  • Critères généraux
  • Exigences côté cogénération
  • Raccordement en série
  • Raccordement en parallèle
  • Aéro-réfrigérant

Étude de l’installation de chauffage existante

La connaissance et l’optimalisation de l’installation de chauffage existante sont un préalable important au bon fonctionnement futur de l’installation combinée. Un schéma hydraulique à jour de l’installation existante est donc indispensable.

Il faut principalement être attentif à l’adéquation des débits. Si ceux-ci sont surdimensionnés, les températures de retour de l’installation seront plus élevées que la normale. La diminution de la vitesse des pompes ou le placement de pompes à vitesse variable s’imposent donc parfois en préalable à la cogénération.

Cette étude est relativement simple pour les installations de taille modeste.

Par contre, pour les grosses centrales de chauffe, desservant plusieurs utilisateurs (sous-stations), une simulation des flux d’eau dans l’installation peut être nécessaire, pour en connaître le plus précisément possible le comportement : que se passe-t-il lorsque telle vanne s’ouvre, lorsque telle chaudière s’enclenche …


Critères de sélection

  • Ne pas créer de pertes de charge dans le circuit du client.
  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge.
  • Ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Le risque majeur à éviter dans la combinaison chauffage-cogénération est une température d’eau de retour trop élevée vers le moteur. Comme expliqué dans le chapitre relatif à la régulation, une température trop élevée peut entraîner une instabilité de l’enclenchement / déclenchement du moteur.

Concrètement, il faut que la température de l’eau à l’entrée du moteur soit inférieure à 85 °C si on récupère la chaleur uniquement sur l’eau de refroidissement et sur les fumées, à 75 °C si on récupère de la chaleur également sur le circuit d’huile et à 40 °C si on récupère sur le refroidissement du mélange air-gaz après turbocompression (pour les gros moteurs).

Côté refroidissement du moteur, des problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement peuvent engendrer des problèmes aux joints des pompes à eau par exemple. La séparation des circuits de refroidissement du moteur (water jacket) du reste de l’installation hydraulique confine le problème. La solution est alors d’analyser la qualité de l’eau et de définir les additifs qui neutralisent les polluants. L’isolation des échangeurs de refroidissement du moteur et du circuit de lubrification permet de n’ajouter les additifs que dans un circuit local, au contraire d’un circuit unique, qui impose l’ajout des additifs en question au niveau des circuits de chaleur dans leur ensemble. La séparation des circuits de refroidissement du moteur offre en outre l’avantage de minimiser les pertes de charge dans le circuit client.


Raccordement en série

Configuration série sans ballon de stockage

Raccordement série (dérivation sur retour principal) sans bouteille de mélange :

  • Éviter le recyclage dans le circuit du retour du groupe.
  • Sélectionner une puissance du groupe inférieure à la puissance de la chaudière prioritaire pour garantir un débit suffisant.
  • La priorité est donnée naturellement à la cogénération.
  • Pas de conséquence négative lors de l’arrêt du groupe.
  • Maintien d’une régulation classique des chaudières.

Raccordement en série.

Le raccordement en série est la solution la plus simple. C’est elle qui présentera le moins de difficultés au niveau de la compatibilité hydraulique avec l’installation de chauffage existante. Elle est donc à conseiller pour les petites installations pour lesquelles une simulation du comportement hydraulique de l’ensemble serait trop coûteuse par rapport à l’investissement total.

Dans ce type de raccordement, une partie de l’eau est préchauffée par le cogénérateur. Si celui-ci ne développe pas une puissance thermique suffisante par rapport aux besoins instantanés, l’eau sera postchauffée par les chaudières.

L’inconvénient du raccordement en série provient du fait qu’une des chaudières est en permanence parcourue par de l’eau chaude même lorsqu’elle est à l’arrêt. On subit donc ses pertes à l’arrêt (y compris en été si le cogénérateur est dimensionné pour produire de l’eau chaude sanitaire). Elles peuvent être importantes sur des anciennes chaudières mal isolées et dont le brûleur est en permanence ouvert vers la cheminée (brûleurs sans clapets, chaudières atmosphériques).

Par contre, l’avantage est de pouvoir profiter du volume de la chaudière pour réaliser un stockage lorsque la demande instantanée de chaleur est fluctuante et inférieure à la production du cogénérateur. Ce volume de stockage est cependant limité par rapport à un ballon tampon séparé.

Le by-pass du cogénérateur sera dimensionné pour qu’un débit suffisant traverse le cogénérateur.

Une attention particulière devra être portée à ce problème si le circuit primaire est conçu pour fonctionner à débit variable (circuit avec une pompe d’alimentation par chaudière, circuit primaire ouvert sans pompe primaire et circuits secondaires avec vannes mélangeuses, …). Par exemple, si chaque chaudière possède sa propre pompe, le débit d’une chaudière doit être plus élevé que le débit du cogénérateur, faute de quoi celui-ci sera insuffisamment refroidi.

Configuration série sans ballon avec by-pass

Une autre configuration qui évite les pertes à l’arrêt dans les chaudières est le placement avantageux d’un by-pass. Attention toutefois au coût des vannes 3 voies par rapport à l’avantage que l’on retire de ne pas générer des pertes à l’arrêt dans une des chaudières.

Schéma de configuration série sans ballon avec by-pass.

Configuration série avec ballon

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en termes de courts cycles du cogénérateur.

Schéma de raccordement série avec bouteille de mélange.

Raccordement série (dérivation sur retour principal) avec bouteille de mélange

Il est impératif de :

  • Placer la bouteille verticalement pour garantir l’indépendance hydraulique des circuits.
  • Placer la pompe en série avec le circuit hydraulique de refroidissement du moteur pour garantir le débit.
  • La priorité est donnée naturellement à la cogénération.
  • Pas de conséquence négative lors de l’arrêt du groupe.
  • Maintien d’une régulation classique des chaudières.

Le raccordement du cogénérateur en amont de la bouteille (B) est préférable au raccordement en aval (A) étant donné la possibilité de retour d’eau chaude vers les chaudières au travers de la bouteille, ce qui réduirait le refroidissement du moteur.

Schéma de raccordement série avec bouteille de mélange.

Cogénérateur raccordé en série sur les chaudières dans un circuit avec bouteille casse-pression
(principe applicable à un raccordement en parallèle)


Raccordement en parallèle

  • Pas de perte par irrigation des chaudières lorsque la cogénération suffit.
  • La priorité n’est pas donnée naturellement à la cogénération.
  • Gestion spécifique de séquence des chaudières.
  • Un dimensionnement précis de la pompe dont le calcul est délicat est nécessaire (alternative : un variateur de vitesse).

Schéma de raccordement en parallèle.

Raccordement en parallèle

L’intégration hydraulique en parallèle dans une chaufferie existante demande plus de modifications de la « tuyauterie » qu’une intégration en série et une régulation plus fine. Cependant, on peut pointer plusieurs avantages importants de la mise en parallèle d’une cogénération : à l’inverse de la configuration série classique (sans by-pass des chaudières), il n’y a pas de passage de l’eau chaude dans les chaudières lorsque la cogénération seule fonctionne. On n’a donc pas de pertes à l’arrêt au niveau des chaudières si elles ne sont pas irriguées. Mais cela nécessite naturellement de dimensionner les conduites de raccordement du ballon de stockage de manière à laisser passer le débit total.

De plus, dans des chaufferies modernes équipées de chaudières à condensation, pour autant que la température de retour au circuit primaire soit bien maîtrisée, la configuration parallèle permet de valoriser la chaleur de condensation lorsque les chaudières viennent :

  • En support de la cogénération en période froide.
  • En remplacement de la cogénération en période chaude lorsque les besoins de chaleur deviennent trop faibles, et ce pour éviter les courts

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir la génératrice [Cogen]

Puissance électrique

La puissance électrique de la génératrice est déterminée lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

La puissance active de la génératrice doit par ailleurs correspondre à la puissance mécanique fournie par le moteur, avec une marge au-dessus de la puissance nominale du moteur.
Le régime de tension est déterminé par la tension de l’installation électrique sur laquelle la génératrice sera connectée.

Le cogénérateur est souvent raccordé au réseau basse tension du consommateur. On peut aussi le raccorder sur un réseau de secours propre du bâtiment qui reprendrait les éléments vitaux à maintenir en fonctionnement en cas de panne du réseau de distribution. Cela doit évidemment être prévu lors de la conception du réseau électrique interne.


Génératrice synchrone ou asynchrone ?

Le choix entre une génératrice synchrone ou asynchrone dépend essentiellement de la volonté de fonctionner en groupe secours (version synchrone) ou non (version asynchrone).

La version asynchrone est de conception plus simple et est donc moins chère. Par exemple, un fournisseur présent sur le marché propose le cogénérateur de 30 kWé asynchrone 3 000 euros (HTVA) moins chers que la même machine couplée à un alternateur synchrone (pour un investissement total de l’ordre de 50 000 €).

Deux inconvénients apparaissent cependant :

  • La puissance électrique de la machine asynchrone ne pourra être trop importante par rapport à la puissance totale appelée par l’établissement (on parle de maximum 30 % de la puissance appelée) de manière à ne pas perturber le cos phi de l’établissement. Il sera peut-être nécessaire d’installer une batterie de condensateurs afin de compenser le mauvais cos phi de l’installation.

 

  • La génératrice asynchrone ne peut fonctionner sans alimentation du réseau. Dans ce cas, il lui est impossible de fonctionner comme secours lorsque celui-ci est coupé. Seul un alternateur synchrone est alors envisageable.

Certains fournisseurs proposent un même moteur raccordé soit à une génératrice asynchrone, soit un alternateur synchrone. Selon la gamme de puissance, le standard sera la version synchrone ou asynchrone. Pour les puissances inférieures à 500 kW, malgré son coût, le standard est la machine synchrone, livrée avec l’ensemble des équipements de synchronisation.

Attention finalement au sens du flux d’air autour de la cogénération. Les génératrices fonctionnent à 40 °C maximum. Si l’air passe d’abord autour du moteur, il risque d’être à plus de 40 °C et de ne plus refroidir correctement la génératrice.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le moteur [Cogen]

Critères de sélection

Les critères mentionnés au niveau du cogénérateur s’appliquent en réalité aux moteurs et sont donc d’application pour la sélection du moteur.

Attention à la qualité ! Des moteurs de bonne qualité peuvent donner une disponibilité de 95 % sur les 24 h de fonctionnement quotidiennes ! De nombreux problèmes sont dus au choix de machines trop justes, que l’on fait travailler à leurs limites. Dans le même ordre d’idée, l’état des machines (bougie, filtres, huile, échangeurs, soupapes, réglages divers comme les culbuteurs…) et leurs performances évoluent avec le temps, il faut en tenir compte dès le dimensionnement.

D’autre part, le prescripteur doit déclasser le moteur pour garantir son bon fonctionnement selon le nombre d’heures de fonctionnement et le niveau de puissance. Dans le cas contraire, le moteur risque de s’épuiser prématurément ce qui se traduirait par des chutes de rendements, voire de casser avant la fin de son amortissement.

Pour chaque moteur, le constructeur garantit des performances selon l’usage qui en est fait. Le fonctionnement en stand-by, comme son nom l’indique signifie que le moteur reste la majorité du temps à l’arrêt et ne démarre que pour des occasions particulières comme une panne de courant. Le fonctionnement, en prime, est un fonctionnement plus fréquent avec des arrêts et éventuellement des modulations de charges réguliers. Le fonctionnement en base est un fonctionnement quasi continu du moteur.

La nécessité de placer un pot catalytique résultera de la comparaison des données des constructeurs concernant le moteur sélectionné aux normes en vigueur, c’est-à-dire au permis d’environnement. Il en est de même pour le bruit, avec les limitations supplémentaires que le client peut éventuellement ajouter, comme dans le cas d’un hôtel par exemple.

Lorsque l’installation thermique ne permet pas de garantir une température de refroidissement du moteur suffisamment constante et basse, il est nécessaire d’adjoindre un aéro-réfrigérant de secours qui ne sert qu’exceptionnellement ou de réduire la charge du moteur. Ces dispositions évitent l’échauffement et l’explosion du moteur en cas de refroidissement insuffisant par l’installation thermique censée consommer la chaleur.

Sur les groupes au fuel, une sonde de contre pression permet de détecter un encrassement. Cet encrassement indique la nécessité ou non de nettoyer l’échangeur placé sur l’échappement afin de protéger le moteur. Si l’encrassement devient trop important, le moteur ne se trouve plus dans les conditions de pression optimale, le rendement chute et le moteur risque même une explosion si la perte de charge sur l’échappement devient trop importante. C’est pour cette raison que certains motoristes ne garantissent plus leurs moteurs si des échangeurs de chaleur sont placés sur les échappements.

Certains motoristes fournissent un équipement complet optimisé. Il appartient au prescripteur d’étudier la bonne adéquation entre une solution standard et les besoins spécifiques du client.


Moteur gaz ou diesel ?

D’un point de vue énergétique et environnemental

Tout dépend du combustible disponible à proximité immédiate. Au niveau des énergies fossiles, le gaz est « environnementalement » parlant mieux côté que le diesel, le coefficient du gaz naturel est inférieur à celui du diesel, raison pour laquelle les cogénérateurs gaz reçoivent plus de certificats verts que les moteurs diesels.

Les cogénérateurs à condensation de petite puissance sont de plus en plus présents sur le marché. La condensation de la fraction de vapeur d’eau contenue dans les gaz de combustion (théoriquement de 10 % pour le gaz) permet d’améliorer le rendement global du cogénérateur. La condensation des gaz de combustion issue des moteurs à gaz est moins problématique que celle issue des moteurs diesel sachant que le diesel contient du soufre qui se retrouve dans les gaz de combustion. À la condensation, le soufre se mélange à l’eau et forme un mélange acide corrosif pour les échangeurs et les conduits d’évacuation de gaz. Pour les  puissances importantes, il y a lieu de traiter les condensats. À l’inverse, les condensats des cogénérateurs gaz à condensation peuvent être rejetés directement à l’égout.

D’un point de vue mécanique

Comme caractéristique principale, un moteur gaz est nettement moins réactif au démarrage qu’un moteur diesel. Ce manque de réactivité, justifierait que le moteur gaz, et c’est d’actualité, ne soit pas utilisé comme groupe de secours en cas de « black-out ». Cependant, un cogénérateur au gaz, moyennant la présence d’un système intelligent de gestion de charge sur site, pourrait, suite à une coupure de réseau, redémarrer en groupe secours. Par exemple, la charge électrique du cogénérateur pourrait « monter en puissance » de 10  à 100 % dans un délai préprogrammé au niveau des circuits secours d’un hôpital.

La figure ci-dessous permet de rendre compte que le temps de synchronisation d’un moteur gaz sur le réseau est relativement long en comparaison au moteur diesel.

Schéma sur temps de synchronisation d’un moteur gaz / moteur diesel.

Temps de synchronisation d’un moteur gaz et diesel.

De plus, les moteurs gaz rencontrent également certaines difficultés face aux variations de charge. En effet, un des problèmes majeur des moteurs gaz est la gestion de la marche en régime transitoire. La réponse transitoire d’un moteur gaz, défini comme étant la réponse d’un système face à une variation de charges, est dès lors plus longue que pour un moteur diesel comme le montre la figure suivante :

Représentation d’une variation de charge autour de l’équilibre de base.

Dans un moteur diesel, l’injection se fait directement au niveau de la chambre de combustion tandis que pour un moteur gaz, le mélange gaz/air a lieu en amont de la chambre de combustion. C’est dès lors une des raisons pour laquelle un moteur gaz est caractérisé par une moindre robustesse.

Pour pallier le manque de réactivité rencontré dans un moteur gaz, les fabricants travaillent actuellement sur un projet visant à augmenter cette réactivité. Comme illustré à la figure suivante, le gaz est directement injecté dans la chambre de combustion, notamment grâce au système en développement HPDI (High Pressure Direct Injection).

Projet visant à l’injection directe de gaz à haute pression dans la chambre de combustion (Caterpilar).

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le stockage de chaleur [cogen]

Critères de sélection

Le volume du stockage est calculé lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

Comme dans toutes les applications de stockage, il faudra tenir compte des pertes (pertes en stand-by pour les chaudières, pertes dans les tuyauteries,…). Dès lors, le raccordement et la régulation d’un stockage de chaleur seront plus complexes que l’installation standard d’une cogénération.

D’ordinaire, le ballon de stockage est installé en parallèle avec le cogénérateur. Cela permet de fonctionner de la même façon quelle que soit la source de chaleur : la cogénération ou le ballon.

Les critères de dimensionnement relatifs à la connexion aux débits et températures mentionnés dans le chapitre sur le raccordement hydraulique sont d’applications, notamment :

  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge et le maintenir constant.
  • Maintenir la température d’entrée du groupe inférieure à une valeur de consigne définie par le constructeur.
  • Éviter toute fluctuation brusque de la température d’entrée.
  • Éviter le recyclage dans le circuit de retour du groupe afin de ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Gérer la puissance de déstockage de façon à toujours garantir un débit de refroidissement du moteur suffisant.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Raccordement d’un ballon de stockage

Stockage pour configuration en parallèle

Une des méthodes de stockage appropriées est celle décrite ci-dessous. Cependant, sur le terrain, elle reste relativement peu courante. Peut-être pour une question financière ?

Schéma stockage pour configuration en parallèle.

Dans son principe, le fonctionnement du cogénérateur est relativement indépendant de celui des chaudières. En effet, le cogénérateur peut charger le ballon à une température de consigne fixe. C’est la vanne 3 voies qui fait le gros du boulot et qui peut mitiger la température de sortie de l’ensemble cogénérateur/ballon de stockage en fonction de la température de départ primaire.

La séquence des schémas suivants donne une idée des phases de stockage/déstockage. À remarquer, qu’en termes de dimensionnement des conduites, il faut prévoir que le débit d’entrée/sortie de l’ensemble cogénérateur/stockage sera de l’ordre de 1.5 à 2 fois celui du cogénérateur s’il était prévu dans stockage.

Stockage pur

Schéma stockage pur.

  • Pas de besoin, mais le ballon n’est pas à température.
  • Le cogénérateur fonctionne à régime nominal et charge le ballon (stockage).

Déstockage et boost de la cogénération

Schéma déstockage et boost de la cogénération.

  • Besoins importants.
  • Le cogénérateur fonctionne à régime nominal.
  • Le ballon déstocke.

Déstockage pur

Schéma déstockage pur.

  • Besoins moyens.
  • Seul le ballon déstocke.

Stockage pour configuration en série

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en terme de court cycle du cogénérateur.

Schéma stockage pour configuration en série.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir la régulation [Cogen]

Modulation de puissance

Une modulation de charge du cogénérateur entre 100 et 50 % est techniquement possible, mais le coût de l’entretien du groupe dépend principalement de son temps de fonctionnement et ce coût d’entretien entraîne une augmentation relative du prix du kWh lorsque la charge diminue. Combinée à une légère chute du rendement à charge réduite, il est généralement préconisé d’éviter de fonctionner à moins de 70 % de charge, sauf pour un nombre de cas très limités.

Il est encore très important de veiller à une parfaite coordination des régulations des différents éléments de chauffage, avec un intérêt certain pour l’exploitant de la cogénération de gérer toutes les installations thermiques et électriques, afin d’éviter des interfaces parfois délicates.


Contraintes thermiques sur la régulation

Intégration dans la cascade de chaudières

Une régulation de cascade doit être mise en place sachant qu’il faut pouvoir gérer la « libération » des différents équipements de production de chaleur en fonction des besoins, et ce au bon moment. On tiendra à l’esprit que c’est la cogénération qui doit être en tête de cascade de manière à couvrir le maximum des besoins de chaleur. La monotone de chaleur représentée ci-dessous est très didactique pour montrer l’importance de la programmation d’une cascade séquentielle pour l’ensemble des équipements de production de chaleur.

On rappelle qu’une monotone de chaleur exprime surtout une représentation des besoins de chaleur au cours de l’année. On voit tout de suite que pour rentabiliser une cogénération d’un point de vue « énergético-environnemento-financier », on a intérêt à programmer une cascade des chaudières et du cogénérateur pour que ce dernier couvre la plage 2 de la monotone de chaleur.

Monotone de chaleur.

Monotone de chaleur.

  1. Libération d’une des chaudières à faible régime. Pour les anciennes chaudières, leur fonctionnement à faible charge entraine une dégradation du rendement non négligeable. Pour les chaudières à condensation modulantes, elles travaillent dans des bonnes conditions de rendement (optimum autour des 30 % de taux de charge).
  2. Libération du cogénérateur seul avec une modulation de puissance entre 100 et 70 %.
  3. Libération simultanée du cogénérateur et d’une des chaudières.

La plupart du temps, un besoin de chaleur au niveau secondaire se traduit par une diminution de température au niveau de la sonde de départ du primaire. Tenant compte du fait que le régulateur adapte souvent la température de consigne de départ en fonction de la température externe (fonctionnement en température glissante), la comparaison entre la température du départ et sa consigne glissante doit permettre de libérer les différents équipements de production suivant une séquence dans la cascade bien définie comme le représente la figure suivante :

Séquence de cascade.

Interactions hydrauliques avec les chaudières

Compte tenu de notre climat, la régulation en mi-saison est la plus complexe. Le besoin en chaleur oscille pendant ces périodes à des valeurs qui ne sont ni hautes pour permettre un fonctionnement à 100 % de charge, ni basses et qui imposeraient un arrêt. Ces besoins imposent une modulation plus fréquente qu’en été ou en hiver. Notons que cela ne s’applique pas à des cogénérations qui produisent de la chaleur en continu pour un processus industriel.

Dans ce cas, de nombreux arrêts peuvent être dus à des arrêts de process du client. Le prescripteur doit alors aborder le process dans son ensemble pour définir le cahier des charges de la conduite.

Il existe des petites installations plus ou moins « sous-dimensionnées » par rapport à la monotone de chaleur. Ils garantissent un fonctionnement 24 h/24 et sans stockage.

Dans le cas du secteur tertiaire, la production thermique du cogénérateur sera raccordée à l’installation de chauffage (et/ou de production d’eau chaude sanitaire). Comme la demande de chaleur du bâtiment, dépendante de la température extérieure, est variable dans le temps, une régulation adaptée est alors exigée.

Le réglage de l’installation consiste à définir le point de commutation entre les chaudières et la cogénération et à régler les temporisations sur les variations de puissance en fonction de l’inertie thermique de tout le système, qui n’est pas bien connue à priori. Idéalement c’est le profil de demande de chaleur qui permet d’affiner le réglage du cogénérateur.

Le risque majeur à éviter dans la combinaison chauffage-cogénération est une température d’eau de retour trop élevée vers le moteur. Une température trop élevée peut entraîner une instabilité de l’enclenchement / déclenchement du moteur. On peut résumer le problème de la façon suivante :

Le cogénérateur fournit assez de puissance pour couvrir la demande de chaleur. Mais la température de départ primaire chute. Le régulateur de chaufferie libère la chaudière (démarrage).

La chaudière se met en fonctionnement. Elle délivre très rapidement suffisamment de chaleur pour que les vannes 3 voies des circuits secondaires se ferment. La température de retour monte et réchauffe le ballon tampon.

Le cogénérateur et la chaudière s’arrêtent.

Après refroidissement du ballon tampon, le moteur redémarre. La cogénération ne parvient pas suffisamment vite à répondre à la demande de chaleur et la chaudière redémarre.
Ainsi de suite …

En pratique, on peut travailler par essais/erreurs pour ajuster le point de commutation et les temporisations. On peut également adapter le réglage en fonction des performances mesurées du moteur par comptage de sa consommation et de sa production et essayer de maintenir un rendement optimum.

Un suivi des performances du moteur permettra de se rendre compte qu’il ne faut sûrement pas essayer de faire fonctionner le moteur le plus longtemps possible. Il est plus intéressant d’adapter son fonctionnement à la demande de chaleur plutôt que de suivre à tout prix la demande électrique.

Pratiquement la permutation entre le fonctionnement du cogénérateur et celui des chaudières peut se faire en fonction de la température extérieure.

Interaction  avec les courbes de chauffe des chaudières

Sauf si vous avez hérité d’une installation « d’un autre âge », en général, quel que soit le type de chaudière, une régulation de chaudière classique comprend au minimum un mode de régulation « en température glissante » par rapport à la température externe. Sans rentrer dans les détails, la température de l’eau chaude de chauffage est adaptée aux conditions climatiques externes. Ce mode de régulation est très intéressant surtout pour les chaudières à condensation, car il permet de valoriser la chaleur de condensation en faisant travailler les chaudières à basse température. Pour les autres types de chaudière, cette régulation permet de limiter les pertes thermiques qui sont générées lorsque les températures d’eau chaude sont élevées.

L’intégration d’une installation de cogénération dans une chaufferie constitue une modification assez importante de la régulation pour les raisons évidentes suivantes :

  • Avec une seule chaudière existante, pour pouvoir placer le cogénérateur en tête de séquence, une régulation en cascade doit être programmée. Le régulateur de la chaudière est-il suffisamment évolué pour pouvoir intégrer cette cascade ? De manière générale, pour les chaudières d’une dizaine d’années, c’est faisable. Pour les chaudières de génération précédente, c’est du cas par cas.
  • Avec plusieurs chaudières, la cascade existante doit inclure le cogénérateur au même titre qu’une chaudière supplémentaire. Les régulateurs d’un ensemble de chaudières sont généralement prévus pour ajouter un équipement supplémentaire.

Donc, le régulateur d’une chaufferie (une ou plusieurs chaudières) doit au minimum « chapeauter » le régulateur de l’installation de cogénération, ne fusse que dans la séquence de cascade de libération du cogénérateur ET des chaudières. En effet, quelle que soit la configuration hydraulique, la difficulté d’intégration du cogénérateur est de concilier la ou les chaudières régulées par des courbes de chauffe, et donc des températures de consigne variables, avec un équipement de cogénération qui travaille avec une température de consigne constante. On constate dans certaines chaufferies les phénomènes suivants :

  • En période froide, la consigne de température de départ appliquée par le régulateur aux chaudières est élevée (par exemple 80 °C par -10 °C de température externe). Les consignes de température de démarrage des chaudières sont, par exemple, respectivement de 75 et 70 °C pour les chaudières « maître » et « esclave ». Par contre, la température de consigne de démarrage du cogénérateur est de l’ordre de 60 °C en fixe. Cette valeur de 60°C pour le démarrage est conditionnée par les caractéristiques intrinsèques du cogénérateur. En effet, elle pourrait être plus élevée, mais sachant que la température de retour au cogénérateur est maximum de l’ordre de 70 – 75 °C, une valeur de consigne de démarrage du cogénérateur de 70 °C entrainerait des cycles très courts marche/arrêt du cogénérateur et ne permettrait de toute façon pas un passage en tête de séquence de cascade (la consigne de démarrage en tête de séquence dans ce cas-ci est de 75 °C).
  • En mi-saison, lorsque les courbes de chauffe de régulation des chaudières définissent une consigne de température de départ primaire sous la consigne de température fixe du cogénérateur, soit dans l’exemple de 60 °C, la cogénération va naturellement se placer en tête de cascade et démarrera avant les chaudières. C’est une bonne nouvelle, mais qui arrive un peu tard, comme les « carabiniers d’Offenbach », vu que les besoins de chaleur deviennent faibles. Il en résulte que le cogénérateur risque d’avoir des cycles marche/arrêt courts, ce qui n’est pas idéal.

Régulation des chaudières et du cogénérateur.

Régulation des chaudières et du cogénérateur.


Contraintes mécaniques sur la régulation

Des démarrages et des modulations de puissance trop fréquents et trop forts, comme c’est souvent le cas en mi-saison par exemple, entraînent une fatigue mécanique importante du moteur, ce qui augmente considérablement les risques de panne. Il est donc conseillé de réaliser des montées en puissance « douces » et des démarrages en nombre relativement réduit, typiquement limités à 2 ou 3 par jour. La priorité est à la cogénération, la modulation reste à la chaudière.

Dans le même ordre d’idée, puisqu’une cogénération ne peut pas moduler comme une chaudière (fréquence et intensité des modulations), il est essentiel de bien connaître son profil de consommation de chaleur pour ne démarrer la cogénération que pour des périodes suffisamment longues.

Le fonctionnement correct du moteur demande encore un préchauffage constant pendant les heures de démarrage potentiel, afin d’éviter un démarrage à froid et les contraintes thermiques très nocives que cela entraîne.

Comme pour tout moteur, il est également conseillé de le faire tourner fréquemment afin d’en garantir le bon fonctionnement au moment voulu.


Contraintes électriques sur la régulation

Lorsque le groupe de cogénération est prévu pour fonctionner en groupe secours (ce qui n’est pas idéal), il est nécessaire de gérer la charge électrique du client pour ne pas imposer de variation de charge trop importante au moteur qui risquerait de s’étouffer.

Par exemple, en cas de coupure du réseau, il peut être nécessaire de délester les charges électriques, connecter la cogénération comme approvisionnement en électricité puis relester progressivement les charges en commençant par les plus importantes. Le groupe ne saurait effectivement pas alimenter instantanément l’ensemble des charges.

Pour un fonctionnement en groupe de secours toujours, la législation impose dans certains cas comme les hôpitaux, des délais pour l’apport du courant par les groupes secours. Le groupe de cogénération doit être capable de répondre à ces exigences.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Intégrer la cogénération à l’hydraulique et à la régulation


Les pièges d’intégration

Les principaux constats des projets « piégés » sont les suivants :

  • Le manque d’heures de production du cogénérateur par rapport aux prévisions. Les conséquences sont immédiates : un manque de rentabilité du projet aux niveaux énergétique, environnemental et financier.
  • Un nombre de cycles de démarrage et d’arrêt important qui implique une réduction de la durée de vie de l’installation de cogénération et une augmentation des frais d’entretien, car les cogénérateurs, comme tout moteur, aiment les régimes stables.

Bien souvent, on pense que l’intégration d’un cogénérateur dans un projet de rénovation de chaufferie ou dans un nouveau projet peut se réaliser de manière indépendante par rapport aux chaudières. Dans la plupart des projets réalisés qui posent problème, c’est un peu réducteur et caricaturé, mais on a simplement demandé à l’installateur de fournir « deux conduites » sur lesquelles le constructeur ou le fournisseur de cogénérateur vient connecter son installation au moyen de flexible; c’est ce que l’on appellera un « plug&play » du cogénérateur. Croire que tout va fonctionner comme prévu peut s’avérer, dans certains cas, être une erreur d’appréciation fatale.


Vision globale d’intégration

Pour éviter le piège d’intégration « sauvage » du cogénérateur en chaufferie, les acteurs du projet doivent prendre un certain recul de manière à visionner les productions de chaleur et le cogénérateur comme un tout en chaufferie.

Pour les équipements de production de chaleur, il faut arriver à trouver un compromis entre les différents impératifs des chaudières.

En effet :

  • Dans une chaufferie existante, un retour suffisamment chaud pour les chaudières classiques afin d’éviter la condensation de la vapeur d’eau contenue dans les gaz de combustion (corrosion accélérée des échangeurs des conduits d’échappement, …).
  • Dans une nouvelle chaufferie, un retour suffisamment froid pour faire condenser les chaudières à condensation ou garantir de bonnes performances aux pompes à chaleur (PAC) par exemple.
  • Un débit minimum pour certains types de chaudières.

Et la cogénération dans tout cela ?

À première vue, la cogénération doit être considérée comme une chaudière supplémentaire qui vient se « greffer » sur le circuit primaire. Force est de constater que son intégration n’est pas évidente ! En effet :

  • Pour certaines configurations hydrauliques existantes, le rapport de puissance thermique entre les chaudières et le cogénérateur est déterminant pour le fonctionnement de ce dernier. Il n’est pas rare de constater qu’en hiver, lorsque les chaudières sont censées venir en appoint bivalent du cogénérateur, ce dernier se fasse « voler la vedette » par des chaudières surdimensionnées.
  • De même, la présence ou pas d’un ballon de stockage et sa position par rapport aux chaudières influencent le comportement du cogénérateur.
  • La configuration en série ou en parallèle convient à certaines installations de chaufferie et pas à d’autres. Il est important d’en tenir compte.

Impérativement, le cogénérateur doit s’intégrer de manière intelligente au niveau :

  • Hydraulique, en tenant compte de la configuration de l’installation de chaufferie, des caractéristiques des chaudières, du collecteur principal et des circuits secondaires.
  • De la régulation, en partant du principe qu’une communication minimale doit exister entre les régulateurs des chaudières et le régulateur de l’installation de cogénération.

Des solutions existent ! Elles sont simples, efficaces et ne nécessitent pas, la plupart du temps, de gros investissement.


D’un point de vue hydraulique

Intégration dans une chaufferie existante

La grande majorité des chaufferies existantes sont équipées de chaudières. Hydrauliquement parlant, l’analyse de la configuration existante des chaudières est primordiale pour intégrer un cogénérateur dans de bonnes conditions.
Quelques questions importantes à se poser. Les chaudières sont-elles :

  • À haute, basse température, très basse température ou à condensation ?
  • À faibles pertes de charge ?
  • À débit minimum ?

Dans tous les cas, si la conception a été bien réalisée, la configuration hydraulique du circuit primaire renseigne le type de chaudière. Par exemple, une ou plusieurs chaudières :

  • À haute température impliquent souvent un collecteur principal bouclé ou une bouteille casse-pression entre le collecteur principal et les chaudières ou encore un bouclage direct des chaudières.
  • À condensation sont pourvues de deux retours (un chaud un froid) ou sont connectées sur des circuits type chauffage par le sol par exemple.
  • À fortes pertes de charge sont équipées de circulateurs ou pompes de circulation.


Chaudière classique / collecteur  bouclé.


Chaudière classique / collecteur ouvert.


Chaudière classique faible volume d’eau /
bouteille casse-pression.


Chaudière à condensation deux retours.


Chaudière à condensation grand volume d’eau.

Les résultats de l’analyse doivent permettre de pouvoir répondre aux questions suivantes :

  • Où et comment placer hydrauliquement la cogénération en chaufferie pour éviter de perturber les équilibres hydrauliques initiaux ?
  • Comment modifier le circuit hydraulique existant pour permettre le fonctionnement conjoint de chaudières à haute température ou, à l’inverse, de chaudières à condensation avec un cogénérateur ayant ses propres régimes de température ?

Intégration dans un nouveau projet de chaufferie

D’emblée lors d’un nouveau projet de chaufferie intégrant un système de cogénération, les acteurs doivent considérer des systèmes de production de chaleur à basse température, voire très basse température (pompe à chaleur (PAC), chaudière à condensation, …). Hydrauliquement parlant, toute l’installation de la chaufferie, y compris le cogénérateur, doit être pensée pour ramener des retours d’eau chaude en chaufferie les plus froids possible.


D’un point de vue de la régulation

Comme pour l’hydraulique, le même exercice doit être mené au niveau de la régulation. Les acteurs du projet doivent avoir une vision globale de la régulation et non pas de l’installation de cogénération comme un « appendice » capable de travailler de manière autonome

Le régulateur de la chaufferie existante ou des chaudières d’un nouveau projet et le régulateur de l’installation de cogénération doivent communiquer entre eux de manière à inscrire au minimum la cogénération dans la séquence de cascade des chaudières.

Intégration de la cogénération dans la cascade des chaudières.

Pour en savoir plus voir le vadémécum : « Réussir l’intégration de l’hydraulique et de la régulation d’une cogénération dans une chaufferie » (PDF).

 

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir les éléments annexes [Cogénération]

Dispositif anti-vibrations.

Les éléments annexes sont repris avec leurs caractéristiques principales.


Localisation de l’installation

Le local de la cogénération peut être la chaufferie existante, un local dédié, ou elle peut être placée à l’extérieur des bâtiments, dans un caisson spécifique.

Les règlements habituels sur les chaufferies sont d’application.
La disposition spatiale est essentielle. La cogénération sera placée le plus près possible de l’endroit où la chaleur va être utilisée, pour réduire le coût des équipements de transport de la chaleur.

Les variables clés dans le dimensionnement du local et de ses abords sont :

  • la puissance des équipements;
  • le type et la position du local d’implantation;
  • la destination du bâtiment (public ou non);
  • les accès au local (non-accessibilité au public, accès direct extérieur, distance par rapport aux locaux occupés, nombre d’issues…);
  • la résistance au feu des parois;
  • la ventilation;
  • l’évacuation des gaz;
  • les équipements électriques…

Plan placement d'une cogénération.

Exemple d’implantation.


Sécurité de l’emplacement

La sécurité de l’emplacement doit être étudiée au minimum par rapport aux inondations et à l’incendie.

Il n’existe pas de réglementation relative à la détection gaz-incendie, mais des clauses particulières doivent être envisagées afin d’éviter d’interminables discussions le cas échéant.

La signalisation doit aussi faire l’objet d’une définition précise.


Raccordement combustible

Les principales caractéristiques d’une rampe à gaz sont :

  • sa pression d’alimentation;
  • le filtre;
  • les vannes de sécurité;
  • la détection gaz;
  • la détente.

Exemple : alimentation en gaz.

Raccordement gaz.


Génie civil

La dalle d’accueil de la cogénération s’étudie en tenant compte :

  • de la charge admissible;
  • du bac de rétention (éventuellement compris dans le châssis);
  • d’un dispositif anti-vibratoire (éventuellement compris dans le châssis).

Accessibilité

L’accessibilité doit être garantie pour :

  • l’installation;
  • la maintenance.

Ventilation

Les dispositions classiques pour les chaufferies sont d’application (ventilation permanente, air neuf par le bas, air usagé par le haut…).

Une attention particulière sera portée à l’apport en air comburant et à l’évacuation de la chaleur émise par rayonnement et des batteries.


Échappement

L’échappement se caractérise principalement par :

  • son implantation (hauteur, vitesse minimale d’éjection…);
  • la position de la cheminée;
  • les matériaux;
  • la conformité des fixations;
  • une pression d’évacuation suffisante pour le tracé de la cheminée;
  • la récupération des condensats;
  • l’isolation thermique;
  • le silencieux pour le traitement des émissions (voir le permis d’exploitation);
  • le pot catalytique intégré dans le silencieux;

Exemple : évacuation des gaz de combustion.

Évacuation gaz.


Acoustique et vibrations

Le permis d’environnement impose les limites en matière de bruit, qui viennent s’ajouter aux éventuelles contraintes imposées par le client comme dans le cas d’un hôtel par exemple.

Un capotage avec double enveloppe est généralement nécessaire pour atteindre les limites sonores.

La transmission du bruit s’effectue :

  • en direct;
  • via la cheminée;
  • via la tuyauterie;
  • via le fluide.

Le client ne connaît pas ses exigences en valeurs chiffrées, mais il veut de bons résultats. Un cahier des charges en terme de résultats est à déterminer avec lui avant.

Le niveau sonore du moteur ou de la cogénération avec son spectre est à connaître en champ libre pour ensuite calculer son spectre en conditions réelles et isoler adéquatement.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir les échangeurs de chaleur [cogen]

Échangeur à plaques   échangeur tubulaire

Échangeur à plaques et échangeur tubulaire.


Critères de sélection

Lorsque le projet nécessite un choix d’échangeurs séparés, il est important de les différencier :

  • La chaleur du bloc moteur est récupérée par un échange à plaque eau-eau.
  • La chaleur du circuit de lubrification est récupérée par un échange huile-eau.
  • La chaleur contenue dans les échappements est récupérée par un échange air-eau dans un échangeur à tubes droits.

Les températures et débits côtés moteur, lubrification  et échappement sont des données « constructeur » dépendantes du moteur sélectionné.

Le calcul des températures et débits côté eau doit assurer la cohérence du débit et des températures d’un échangeur à l’autre et garantir le refroidissement de chacun des postes de récupération de chaleur, avec une sécurité maximale pour le refroidissement du bloc moteur.


Échangeur sur les gaz d’échappement

La puissance de cet échangeur est fonction de sa perte de charge, mais le rendement du moteur est aussi très sensible à la pression de sortie. Un équilibre est à trouver et surtout à maintenir à ce niveau, à l’aide par exemple d’un pressostat dont le calibrage est régulièrement contrôlé. S’il y a un encrassement de l’échangeur, les pertes de charge augmentent et peuvent causer des dégâts considérables au moteur. Ce problème a causé jusqu’à l’explosion de certains moteurs.

Échangeurs sur le bloc moteur et le circuit de lubrification

Côté refroidissement du moteur, des problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement peuvent engendrer des problèmes aux joints des pompes à eau par exemple. La séparation des circuits de refroidissement du moteur (water jacket) du reste de l’installation hydraulique confine le problème. La solution est alors d’analyser la qualité de l’eau et de définir les additifs qui neutralisent les polluants.

L’isolation des échangeurs de refroidissement du moteur et du circuit de lubrification permet de n’ajouter les additifs que dans un circuit local, au contraire d’un circuit unique, qui impose l’ajout des additifs en question dans tout le circuit de chaleur.

Il est encore conseillé de vérifier régulièrement la différence de température effective entre entrée et sortie des différents échangeurs, pour s’assurer du fonctionnement correct de l’installation. Rappelons qu’un mauvais refroidissement du moteur peut le détruire très rapidement.


Intercooler

Lorsque le cogénérateur est équipé d’un turbo-compresseur, l’intercooler, qui le refroidit, peut-être mis sur le même circuit que les échangeurs du bloc moteur et du circuit d’huile. Vu que son régime de température est assez bas (30 – 35 °C), l’intercooler est placé en amont des deux échangeurs précités pour bénéficier des retours froids du circuit de chauffage.

Échangeurs de secours

Un aéro-réfrigérant de secours reste souvent maintenu pour garantir le refroidissement du moteur dans des circonstances exceptionnelles. La chaleur évacuée par l’aéro-réfrigérant de secours ne peut cependant pas être comptabilisée pour l’attribution des certificats verts dans la mesure où elle ne contribue pas à la réduction de CO2.

Deux vannes 3 voies servent respectivement à by-passer l’échangeur eau-eau pour éviter un retour d’eau trop froide au moteur et à utiliser l’aéro-réfrigérant de secours (radiateur initial du moteur) pour garantir le refroidissement du moteur si le besoin en chaleur est réduit.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Dimensionner l’installation de cogénération

Dimensionner l'installation de cogénération


 Principe de dimensionnement

Schéma principe de dimensionnement.

Schéma simplifié d’une installation de cogénération.

Sur le plan technique, le pré-dimensionnement a permis de déterminer les puissances thermique et électrique ainsi que les plages de fonctionnement du cogénérateur.

Lors du dimensionnement, le prescripteur va opérer une série de choix techniques, calculer les variables clés et choisir les composants du groupe de cogénération.

Le dimensionnement peut être soit un dimensionnement complet suivi d’un appel d’offre; soit, et c’est le plus souvent le cas, un dimensionnement interactif avec les fabricants pour le choix des équipements, intégrant dès la conception les caractéristiques de moteurs et de composants disponibles sur le marché. De cette façon, le cahier des charges imposé au motoriste est très simple et c’est ce dernier qui propose des solutions sur base de quelques variables clés. Dans le cas contraire, des points spécifiques risquent de nécessiter des adaptations parfois coûteuses. L’offre du motoriste peut éventuellement comprendre un chapitre avec les besoins minimums qui ne sont pas respectés et les options possibles.

Selon le cas, le bureau d’étude sous-traitera ou réalisera lui-même le calcul complet des composants, calcul qui sort du cadre de cet outil.

Techniques

Présentation synthétique des principaux composants d’une unité de cogénération.


Puissances thermiques mises en jeu et interaction avec les chaudières

Rappelons brièvement que l’objectif de l’installation d’une cogénération en chaufferie est de couvrir au mieux le besoin énergétique en chaleur tout en produisant simultanément de l’électricité. Au vu de l’allure de la monotone de chaleur représentée ci-dessous, l’optimum énergétique pour intégrer une cogénération se situe régulièrement au tiers de la puissance maximale enregistrée. Ce n’est naturellement qu’un ordre de grandeur et sûrement pas une règle générale établie; tout dépend des profils des consommations de chaleur (liées à la performance de l’enveloppe du bâtiment) et d’électricité.
Rappelons ici que la « monotone » de chaleur est un classement par ordre décroissant des besoins en puissance du bâtiment à chauffer tout au long de l’année. Par exemple, une puissance de 200 kW doit être assurée en chaufferie pendant au moins 2 300 heures pour assurer le confort des occupants.
Ce nombre d’heures peut être plus important que celui de la période de chauffe, due à un besoin de chaleur pour l’eau chaude sanitaire (ECS). L’intérêt de parler de la monotone de chaleur ici, est que l’aire sous la courbe représente l’image des besoins thermiques du bâtiment en kWhth et d’ECS.

Monotone de chaleur

La cogénération, dans certains cas, est de très petite puissance par rapport à certaines chaudières qui généralement sont dimensionnées pour délivrer minimum 3 fois plus de puissance que le malheureux cogénérateur (c’est un ordre de grandeur). En théorie cela ne devrait pas poser trop de problèmes, mais en pratique, la cohabitation entre « Gulliver et les Lilliputiens » est parfois problématique surtout lorsque, dans les chaufferies courantes, le collecteur principal est bouclé ou une bouteille casse-pression réalise le découplage des circuits primaire et secondaire.

Le cogénérateur fournit assez de puissance pour couvrir la demande de chaleur. Mais la température de départ primaire chute. Le régulateur de chaufferie libère la chaudière (démarrage).

La chaudière se met en fonctionnement. Elle délivre très rapidement suffisamment de chaleur pour que les vannes 3 voies des circuits secondaires se ferment. La température de retour monte et réchauffe le ballon tampon.

Le cogénérateur et la chaudière s’arrêtent.

Après refroidissement du ballon tampon, le moteur redémarre. La cogénération ne parvient pas suffisamment vite à répondre à la demande de chaleur et la chaudière redémarre.
Ainsi de suite …

De plus, les facteurs aggravants sont souvent :

  • Des chaudières qui ne travaillent pas à puissance modulante ou qui ne démarrent pas en « petite flamme ». La puissance délivrée par une chaudière en relance d’appoint risque de délivrer un « boost » de chaleur capable d’imposer à la cogénération de s’arrêter.
  • Des circulateurs ou des pompes de circulation d’équipements de production de chaleur fonctionnant à débit fixe. Dans ce cas, le débit du primaire n’est que trop rarement en adéquation avec les débits des circuits secondaires, ce qui favorise un retour chaud au primaire capable de réduire fortement le temps de fonctionnement de la cogénération.

Le risque majeur à éviter dans le raccordement hydraulique est donc une température de retour trop élevée. Ce phénomène est influencé par la température de départ des chaudières et apparaît surtout dans le cas de forte demande de chaleur.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Visualiser les étapes d’un projet de cogénération

Visualiser les étapes d'un projet de cogénération


Vue d’ensemble

Si chaque projet présente des caractéristiques particulières, il est possible de définir les grandes étapes d’un projet de cogénération.

Le délai de réalisation d’un projet de cogénération, depuis l’étude jusqu’à la mise en service oscille autour de 8 mois ou plus, selon les spécificités qui peuvent influencer les délais.

Les démarches administratives doivent être entamées dès que la décision de réaliser le projet intervient. Ces démarches comprennent l’obtention des permis d’exploitation et d’urbanisme si nécessaire, la réservation des CV à l’administration, l’acceptation des plans des installations électriques et thermiques par les organismes de contrôle, le choix des assurances, le marquage CE, …

Une série d’acteurs vont se côtoyer au cours de ce projet, prendre dès le départ les coordonnées de toutes les personnes responsables facilite la communication et la coordination du projet.

  • le maître d’ouvrage ;
  • l’exploitant de la chaufferie actuelle ;
  • le bureau d’étude ;
  • le maître d’œuvre ;
  • le motoriste ;
  • l’installateur et les entreprises de travaux ;
  • la société de maintenance ;
  • les organismes de contrôle ;
  • les organismes délivrant les autorisations et permis ;
  • les organismes financiers ;
  • le fournisseur de combustible, …

Le planning

Voici une proposition de planning de réalisation d’une installation de cogénération comprenant étude, chantier, mise en service et essais, mais sans tenir compte de délais éventuels liés à l’obtention de permis ou d’autorisations liées à la réservation des CV, la certification, l’acceptation de primes éventuelles, …

Durée (jours) 1er mois 2ème mois 3ème mois 4ème mois 5ème mois 6ème mois 7ème mois

Études

Étude d’exécution des travaux électriques BT

10 X X

Étude d’exécution des travaux thermiques

10 X X

Approbations

Visa des études par les organismes de contrôle et le distributeur

5 X

Commande de matériel

Commande du groupe et équipements

2 X

Début du chantier

X

Génie Civil

Réalisation du socle

2 X

Tranchées pour circuit de récupération

5 X

Début chantier hors GC

X

Groupe de cogénération

Mise en place du groupe

5 X

Raccordement échappement (silencieux, pot catalytique, cheminée)

5  X

Circuit de refroidissement, y compris aéro-réfrigérant

10 X  X

Alimentation combustible, sécurité et essais

5  X

Travaux électriques

Pose et raccordements armoires BT

10 X  X

Circuit de puissance

5 X

Travaux de chauffage

Raccordement de la récupération de chaleur de la cogénération

10 X X

Travaux en chaufferie, coupure et raccordement

5 X

Electricité et Régulation

5 X

Mise en route et essais

10 X X

Les intervenants et leurs responsabilités

    MO – Maître d’ouvrage    

    AUD – Auditeur    

    FAC – Facilitateur    

    BE – Bureau d’études

    INST – Installateur    

    MAIN – Maintenance    

    EXPL – Exploitation    

Un projet d’implantation d’un système de cogénération dans une chaufferie existante ou dans une nouvelle chaufferie nécessite de bien définir l’intervention des différents acteurs et leurs limites.
Les responsabilités et les limites d’entreprise doivent donc être définies de la manière la plus claire possible à chaque étape du projet, à savoir au niveau :

  • D’un audit éventuel.
  • De l’avant-projet à travers les études de pertinence et de faisabilité.
  • Du projet par la réalisation de l’engineering et la rédaction des cahiers de charge.
  • De l’exécution par la réalisation correcte et critique de l’installation en collaboration étroite avec le bureau d’études ou/et le maître d’ouvrage.
  • De l’exploitation par le suivi des performances et optimalisation de l’installation.
  • De la maintenance par la réalisation des différentes tâches définies dans les cahiers de charge de maintenance (entretien à temps et à heure).

La bonne coordination du chantier implique la désignation d’un responsable et se trouve grandement facilitée par le recensement des coordonnées des responsables de tous les intervenants, à savoir :

  • l’auditeur éventuel;
  • le maître de l’ouvrage;
  • le coordinateur de l’opération;
  • le bureau d’étude;
  • le ou les bureaux de contrôle;
  • l’administration;
  • le fournisseur du groupe;
  • le maître d’œuvre des travaux;
  • la société de maintenance;
  • l’exploitant de la chaufferie actuelle;
  • les sous-traitants éventuels;
  • le distributeur d’électricité;
  • le distributeur de gaz.

L’audit

     MO       AUD       FAC   

Le maître d’ouvrage dans sa démarche d’amélioration de son installation existante a, à sa disposition, toute une série de services lui permettant de mieux appréhender « ce qui va lui tomber sur la tête » en termes de rénovation de chaufferie.

La première étape conseillée est souvent d’effectuer un audit de son installation. L’auditeur va pointer surtout les sources d’amélioration URE possibles de manière à réduire les consommations énergétiques. C’est à ce moment-là que l’auditeur peut évaluer le potentiel de réduction de la facture énergétique thermique. Cette analyse de potentiel influence fondamentalement le pré-dimensionnement et le dimensionnement d’un cogénérateur.


L’avant-projet

Pré-dimensionnement du cogénérateur

     MO       FAC       BE  

Dans tout projet d’installation de cogénération, des études de pertinence (« à la grosse louche ») et de faisabilité  (étude fine) doivent être réalisées de manière à savoir si ce projet est viable ou pas d’un point de vue :

  • Énergétique : comparaison en énergie primaire de la production de chaleur et d’électricité de la cogénération par rapport à une centrale électrique TGV (rendement de référence de 55 %) et une chaudière gaz (rendement de référence de 90 %) pour répondre au même besoin de chaleur et d’électricité du bâtiment considéré.
  • Environnemental : la réduction des émissions de gaz à effet de serre (CO2) doit être significative. En Wallonie, le taux d’économie sur les émissions de CO2 doit être supérieur à 10 % et à Bruxelles d’au moins 5 % pour avoir droit aux primes et aux certificats verts (CV). On parle de cogénération de qualité quand le dimensionnement du cogénérateur est basé sur les besoins de chaleur, génère une économie d’énergie primaire et une réduction des émissions de gaz à effet de serre comme indiqué ci-avant en fonction de la région.
  • Économique : le projet doit être rentable économiquement. Tous les indicateurs de rentabilité devront être au vert (temps de retour simple sur investissement TRS, valeur actualisée nette VAN, taux de rentabilité interne TRI).

Remarque : Le facilitateur cogénération est naturellement disponible pour ce genre d’accompagnement. Des outils sont mis à la disposition des responsables du projet : le guide de pertinence aide les auteurs de projet dans leurs premiers pas dans la technique de cogénération. L’outil de calcul CogenCalc, lui, permet, suivant des profils types de consommation de se faire une idée de la viabilité du projet avec une précision relative (de l’ordre de 20 à 30 %).
Tous les outils sont disponibles sur le site de la Région wallonne :

Intégration hydraulique et régulation du cogénérateur  

     BE       INST   

Cas d’une nouvelle chaufferie

Ce cas de figure est plus facile à aborder sachant que, de toute façon, un nouveau régulateur doit être prévu. La seule contrainte est de s’assurer que le module de régulation de l’installation de cogénération puisse communiquer avec le régulateur de chaufferie et s’intégrer dans la cascade

Cas d’une chaufferie existante

Hydraulique
Pour que l’intégration de la cogénération dans l’installation hydraulique d’une chaufferie existante soit une réussite, l’analyse de la situation par le bureau d’études en technique spéciale (ou par l’installateur pour les petits projets) doit être fine. Les contraintes d’intégration ne manquent pas. Celles qui sont à pointer sont généralement :

  • L’espace disponible dans la chaufferie pour les différents équipements comme le cogénérateur, le ou les ballons de stockage, l’armoire de régulation.
  • L’espace sur le circuit hydraulique pour placer les points d’injection de la chaleur du cogénérateur. Il doit bien être choisi par rapport aux chaudières existantes de manière à ne pas ou peu perturber l’équilibre hydraulique existant. L’intégration hydraulique doit tenir compte aussi des caractéristiques des chaudières.Par exemple :
    • Lorsque les chaudières existantes sont des chaudières à condensation, idéalement, le cogénérateur doit être placé en parallèle, et ce afin d’éviter de réchauffer le retour des chaudières. Lorsque les équilibres hydrauliques ne sont plus assurés par l’insertion d’un cogénérateur, il y aura lieu de redimensionner complètement le circuit primaire de manière à tenir compte de la redistribution des débits et des pertes de charge en fonction des caractéristiques hydrauliques des équipements en présence sur le circuit primaire.
    • Lorsque les chaudières existantes sont des chaudières à haute température, la configuration série est envisageable.

Il est toujours intéressant d’avoir un avis sans engagement d’un installateur sachant que, in fine, c’est lui qui aura les contraintes d’une bonne intégration de l’installation de cogénération en partenariat avec le bureau d’études.

Régulation
La régulation existante de la chaufferie doit pouvoir au minimum intégrer la cogénération dans la séquence de cascade des chaudières. Si ce n’est pas le cas, cette absence de communication des régulateurs des chaudières et de la cogénération risque de compromettre le bon fonctionnement du cogénérateur. En effet, on observe en pratique que l’installation de cogénération fonctionne moins d’heures que prévu et effectue des cycles de démarrage/arrêt importants.

C’est essentiellement dû au fait que les chaudières sont régulées sur base de courbes de chauffe à températures de consigne glissantes en fonction de la température externe, donc variables. La consigne de température pour réguler le fonctionnement de la cogénération est, quant à elle, fixe. Il en résulte que lorsque les deux systèmes ne communiquent pas :

  • En période froide, les consignes de démarrage des chaudières sont élevées par rapport à celles de la cogénération. Les chaudières sont donc mises en avant par rapport à la cogénération ; ce qui n’est pas le but recherché.
  • En mi-saison, les consignes des chaudières sont basses et en dessous de celles du cogénérateur et, par conséquent, le cogénérateur démarrera avant les chaudières. C’est bien, mais trop tard dans la saison de chauffe.

Dans le cas où la régulation existante des chaudières ne peut pas intégrer cette séquence de cascade et, pour autant qu’individuellement les régulateurs des différents équipements puissent accepter de l’être, il est donc impératif de prévoir un élément de régulation qui chapeaute les deux régulateurs.

Un autre moyen d’intégration est de prévoir un nouveau régulateur qui permette d’intégrer l’ensemble des équipements.


Le projet

Les étapes essentielles de tout projet, à partir du moment où la décision d’installer une unité de cogénération est prise, sont les suivantes :

  • étude des travaux électriques et thermiques ;
  • approbation des plans par le maître d’œuvre et les organismes de contrôle ;
  • commande des matériels (attention aux délais) ;
  • chantier pour le génie civil ;
  • installation du cogénérateur et raccordement (cheminée, combustible, chaleur et électricité) ;
  • travaux d’électricité (raccordement au réseau) ;
  • travaux thermiques (intégration hydraulique du cogénérateur en chaufferie) ;
  • système de régulation (intégration de la régulation du cogénérateur au système de régulation central de la chaufferie) ;
  • mise en route et essais ;
  • réception provisoire ;
  • « commissioning » (analyse et vérification des performances énergétique, environnementale et financière de l’installation) ;
  • réception définitive.

Dimensionnement

      BE   

En appui du cahier des charges pour la cogénération, le vadémécum se doit d’insister sur le dimensionnement de la cogénération surtout en tenant compte de la composante URE :

  • Un cogénérateur surdimensionné effectuera des cycles courts marche/arrêt ; ce qui réduira sa durée de vie. Le surdimensionnement d’une cogénération vient souvent du fait que l’on n’a pas de tenu compte à moyen terme de l’amélioration énergétique de l’enveloppe du bâtiment (changement des châssis vitrés, isolation des murs et des toitures, …) et des systèmes de production de chaleur et d’ECS.
  • Un sous-dimensionnement réduit la rentabilité du projet.

L’étude de faisabilité donne la méthodologie et les bonnes hypothèses aux auteurs de projet pour dimensionner et choisir une installation de cogénération dans les règles de l’art. Les outils de calcul CogenSim et CogenExtrapolation arrivent à un degré de précision suffisant (10 %) pour déterminer des points de vue  énergétique, environnemental et économique si un projet de cogénération est viable. Attention que ces outils se basent sur une mesure des besoins thermiques et électriques.

Cahier des charges

      BE   

Un cahier des charges pour la cogénération est disponible ici.

Ici, on voudrait juste pointer les petites inclusions à réaliser dans les cahiers des charges de manière à éviter les pièges de l’intégration hydraulique et de la régulation. Attention cependant que le cahier spécial des charges est à utiliser avec précaution sachant que chaque projet est un cas particulier. Le « copier/coller » pur et dur est à proscrire.

URE

Sensibilisation à l’URE

Si on veut rester cohérent par rapport à la notion de durabilité dans le bâtiment, l’URE doit être envisagée en premier lieu de manière à réduire les besoins de chaleur ET d’électricité.
Si des actions URE sont prévues dans le cadre du projet, il est impératif de le préciser dans le cahier des charges. En général, l’entreprise en techniques spéciales effectue un redimensionnement de contrôle ; c’est souvent demandé par le bureau d’études. Régulièrement, l’action URE ne s’arrête pas à l’amélioration énergétique de l’enveloppe, mais aussi au niveau des techniques spéciales :

  • On en profite pour remplacer une, voire toutes les chaudières de la chaufferie. La chaudière à condensation, dans ce cas-là, est souvent préconisée.
  • On enlève le bouclage de collecteur.
  • On prévoit une bouteille casse-pression pour mettre en place un découplage hydraulique des circuits primaire et secondaire.
  • Pour assurer un retour froid aux chaudières à condensation et au cogénérateur, on prévoit de réguler les débits primaires par des variateurs de vitesse, et ce sur base de la différence de température de part et d’autre de la bouteille casse-pression.

Au travers de son cahier des charges, le bureau d’étude devra sensibiliser par une remarque générale l’entreprise en technique spéciale de l’intention rapide, à court ou moyen terme, du maitre d’ouvrage d’entamer une action URE. Cette précision permet d’anticiper la configuration hydraulique adéquate en fonction de cette action URE.

Par exemple, le fait d’envisager à court ou moyen terme de remplacer une chaudière classique par une chaudière à condensation conditionne le positionnement hydraulique du cogénérateur vers une configuration parallèle.

Adaptation des débits primaires aux débits secondaires

Bien souvent, et à juste titre, les bureaux d’études en techniques spéciales aiment bien le concept de bouteille casse-pression, car elle permet d’éviter pas mal de problèmes de perturbation (ou « dérangement ») hydraulique et de régulation entre les circuits primaires et secondaires. Cependant, la faiblesse de ce découplage hydraulique qu’est la bouteille casse-pression réside dans le risque de ruiner tous les efforts réalisés pour mettre en place une politique URE. Comme on l’a vu précédemment, sans régulation des débits en amont et aval de la bouteille casse-pression, le retour primaire risque d’être chaud. La plupart des installations qui ont des problèmes de chaudières à condensation ne condensant pas et/ou des cogénérateurs fonctionnant peu d’heures sont équipées de bouteilles casse-pressions non régulées. Il y a donc lieu de prévoir dans le cahier des charges une clause énergétique qui décrit la régulation autour de la bouteille casse-pression.

Hydraulique

Les clauses du cahier des charges relatives à l’hydraulique devront être écrites différemment en fonction de différents paramètres :

  • La configuration hydraulique existante et future en fonction des actions URE envisagées.
  • Le type de chaudière maintenu ou nouveau envisagé. Par exemple, on préfèrera la configuration en parallèle lorsqu’on prévoit le placement en chaufferie de chaudières à condensation.

Régulation

Maintes fois soulignée dans ce vadémécum, l’importance de la communication entre les régulateurs des chaudières et du cogénérateur ne fait pas l’ombre d’un doute. Le bureau d’études devra la décrire dans son cahier des charges de manière détaillée.

Lorsque les circulateurs ou pompes de circulation à vitesse variable des chaudières et du ballon de stockage débitent dans le circuit primaire en amont d’une bouteille casse-pression, ils peuvent fonctionner à faible débit ou carrément être mis à l’arrêt quand les besoins de chaleur côté secondaire sont faibles. Lorsque ces derniers redeviennent importants, il est nécessaire de redémarrer les pompes ou les circulateurs. Cela ne peut se faire qu’en intégrant les variations de température au secondaire de la bouteille casse-pression. Il faudra donc décrire ce point de régulation dans le cahier des charges.

Gestion Technique Centralisée (GTC)

Normalement quand la cogénération est de qualité, des compteurs d’énergie thermique, électrique ainsi qu’un compteur combustible peuvent être « télégérés ». Ces compteurs sont indispensables dans toutes les installations de cogénération si le maître d’ouvrage veut valoriser son économie de CO2 sous forme de Certificat Vert CV (voir les prescriptions de la CWaPE et de Brugel).

Indépendamment de cela, une supervision (GTC) peut être envisagée pour affiner la gestion de la cogénération. Vu que la période de garantie permet d’analyser le comportement de l’installation de cogénération intégrée dans la chaufferie en situation réelle, on conseillera de décrire la télégestion du cogénérateur dans le cahier des charges. C’est vrai que c’est un coût complémentaire, mais il rendra immanquablement d’énormes services au maître d’ouvrage. En effet, moyennant la description d’un protocole précis d’analyse des paramètres du cogénérateur (« Commissioning »), d’emblée, pendant la période de garantie, l’enregistrement des valeurs de ces paramètres permettra de se faire une idée précise du bon fonctionnement de l’ensemble de l’installation. Voici une liste non exhaustive des paramètres que le bureau d’études pourrait décrire dans son cahier des charges :

  • Nombre d’heures de fonctionnement de la cogénération avec les dates et heures ;
  • en fonction du temps :
    • les températures du ballon, du retour du cogénérateur, … ;
    • l’état de fonctionnement de la cogénération ;
    • l’état des alarmes ;
    •  …

Lorsque la communication est possible entre les régulateurs de la chaufferie et de la cogénération, on conseille aussi de décrire dans le cahier des charges la télégestion du régulateur de chaufferie de manière à avoir une vue d’ensemble du fonctionnement de la chaufferie y compris le cogénérateur. Voici de nouveau une liste non exhaustive des paramètres que le BE pourrait intégrer dans son cahier des charges :

  • température externe ;
  • températures aux entrées et sorties de la bouteille casse-pression si présentes ;
  • températures des départs des circuits secondaires ;
  • températures de consigne de la cascade de chaudières ;
  • niveau d’ouverture des vannes des circuits secondaires ;
  • états des chaudières ;

L’exécution

     MO       BE       INST

L’administration

Une série de démarches administratives sont nécessaires avant et pendant la mise en œuvre du projet.

Avant exécution des travaux

  • Obtenir le permis de construire.
  • Obtenir le permis d’environnement (ou permis unique).
  • Obtenir l’accord écrit du distributeur d’électricité sur le cahier des charges relatif au raccordement électrique.
  • Réservation des CV auprès de la DGO4 et demande d’avis de la CWAPE sur les valeurs à attribuer au kCO2 et au keco.

Implantation des ouvrages

  • Faire exécuter le piquetage par un géomètre.
  • Placer les panneaux de chantier.
  • Placer les palissades pour la protection des installations de chantier.
  • Définir et assurer le système qualité du chantier.

Plan d’hygiène et de sécurité du chantier

  • Fournir le plan des locaux pour le personnel et leurs accès.
  • Assurer les dessertes pour réseaux d’eau, d’électricité et d’assainissement.
  • Désigner le responsable de coordination entre maître d’ouvrage et maître d’œuvre.
  • Définir les emplacements mis à disposition pour l’entreprise : des installations, matériels, fluides et énergie pour l’exécution des travaux.

Calendrier d’exécution des travaux

  • Établir un programme d’exécution des travaux.
  • Définir les matériels et méthodes utilisés.
  • Définir le calendrier d’intervention sur le réseau électrique.
  • Définir le calendrier d’intervention sur le réseau de chauffage.
  • Informer sur la continuité de services des installations ou dates d’interruptions.

Énergie

  • Électricité : définir les conditions de comptage, de raccordement, de mise sous tension (protection) et de mise en service (réception).
  • Gaz : définir les conditions de livraison, pression, comptage.

Le suivi de chantier

L’exécution du chantier d’intégration de la cogénération est une phase très importante. En effet, c’est à ce niveau que le dimensionnement, la rédaction des cahiers des charges, l’exécution des plans, … sont confrontés à la réalité de terrain qui nécessite souvent des compromis comme :

  • L’arbitrage des choix d’équipements sur base des fiches techniques. Les caractéristiques ne correspondent pas toujours « tip top » aux prescriptions des cahiers des charges, aux dimensionnements, etc.
  • L’adaptation des tracés des circuits hydrauliques en fonction des modifications en cours de chantier qui peuvent intervenir.

Les réunions de chantier sont là pour trouver les compromis nécessaires à la bonne réalisation du projet d’intégration.


Les réceptions

   MO       BE       INST

La réception provisoire

La réception provisoire n’est pas toujours exécutée à la période idéale; c’est-à-dire lorsque les besoins de chaleur sont suffisants pour faire fonctionner l’installation de cogénération. La période idéale pour réceptionner l’installation est en mi-saison sachant que l’on peut réellement observer le bon fonctionnement du régulateur du système de cogénération et de la communication entre ce dernier et le régulateur de chaufferie. En hiver, la réception ne devrait pas poser trop de problèmes. Par contre en été, la réception pose réellement un problème, car, même si des besoins d’Eau Chaude Sanitaire (ECS) sont présents, les tests d’interaction entre la ou les chaudières et l’installation de cogénération sont limités vu les faibles besoins de chaleur.

Dans la mesure du possible il faut éviter cette période.

Toute une série de tests devra être réalisée lors de la réception provisoire. Ils devront être décrits de manière  précise dans le cahier des charges si l’on veut éviter que « pleuvent les suppléments ». Les grandes lignes des tests à réaliser sont reprises ci-dessous en mi saison par exemple. Outre les tests classiques inhérents aux installations de chauffage (sécurités sur les équipements, équilibrage des circuits, autorité réelle des vannes motorisées, tests des pompes de circulation ou des circulateurs, …), à l’installation de cogénération (sécurités, marche/arrêt du cogénérateur sur base des consignes de température,  …), on pointera les tests spécifiques à réaliser sur les interactions entre la chaufferie et l’installation de cogénération (liste non exhaustive) :

  • Tester la séquence de cascade du cogénérateur par rapport aux chaudières :
    • Le cogénérateur doit être en tête de cascade lorsque des besoins de chaleur réapparaissent après une période de non-demande.
    • Lorsque le cogénérateur ne couvre pas les besoins de chaleur, les chaudières doivent s’enclencher séquentiellement de manière optimale. À l’inverse, quand les besoins diminuent, la séquence d’arrêt des chaudières doit être opérationnelle. Le cogénérateur devra être arrêté en dernier lieu si les besoins deviennent faibles.
  • Tester l’adaptation des débits primaires en fonction des débits secondaires. Lorsqu’une bouteille casse-pression est présente avec des sondes de température de part et d’autre de celle-ci, les débits primaires doivent bien s’adapter au Δ de température donné par les sondes. On pourra mesurer aussi à différents moments de la journée les quatre températures des conduites d’alimentation de la bouteille casse-pression.
  • Analyser le comportement de l’installation de cogénération en fonction d’une demande importante d’ECS. L’augmentation temporaire de la consigne de température du départ primaire pour satisfaire ce type de besoin ne doit pas permettre le réchauffement du retour primaire au-dessus de la consigne d’arrêt du cogénérateur. C’est une manière de constater que l’échangeur du circuit ECS est bien surdimensionné pour pouvoir ramener sur le retour primaire de l’eau chaude la plus froide possible (c’est un paradoxe !).
  • Vérifier que les puissances et rendements électrique et thermique sont conformes au cahier des charges.

En cas de réception provisoire pendant la période d’été, on ne peut évidemment pas analyser et tester les installations dans des conditions optimales. Les seuls tests qui peuvent être réalisés sont principalement :

  • l’équilibrage des circuits;
  • la vérification des débits nominaux.

La période de garantie

Comme signalé précédemment, dans le cahier des charges, il est important de décrire une période de garantie d’un an au minimum pour pouvoir couvrir une saison de chauffe complète et deux mi-saisons.

Pendant cette période, si une installation de Gestion Technique Centralisée (GTC) a été décrite dans le cahier des charges, un protocole de « commissioning » (sur base d’une analyse fonctionnelle) devra être mis en place de manière à contrôler le bon fonctionnement de la cogénération. Lorsqu’une GTC n’a pas été décrite dans le cahier des charges, Il faudra prévoir un relevé manuel des paramètres de fonctionnement principaux du cogénérateur, et ce à intervalles réguliers. On conseille aussi de décrire dans le cahier des charges le protocole d’analyse et de présentation des résultats issus des « trends » (enregistrements).

La réception définitive

La réception définitive en fin de garantie représente la dernière chance de pouvoir définitivement optimiser l’intégration en chaufferie de l’installation de cogénération. Elle n’est en fait qu’une  « deadline » ! Le gros des remarques par rapport à l’intégration du cogénérateur aura dû être résolu pendant la période de garantie.


Les documents utiles

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le cogénérateur

Source : Cogengreen.

Puissances ?

Les puissances du cogénérateur sont déterminées lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la méthodologie présentée compléteront et valideront les résultats.

Combustible ?

Le gaz est très généralement préféré au fuel, lorsqu’il est disponible. Son premier avantage se situe au niveau des émissions moindres que dans le cas du mazout. Autre avantage, les rendements des moteurs à gaz sont généralement meilleurs, mais pour un coût d’investissement plus élevé.

Groupe de secours ?

Une cogénération peut être pensée pour fonctionner en groupe confort secours. Une telle solution doit cependant s’étudier avec beaucoup d’attention, notamment par rapport au délai lors de la mise en route. Parmi les éléments à étudier dans ce cas, citons encore le déclassement nécessaire du moteur  d’un groupe secours existant, si l’on souhaite le faire fonctionner en cogénération. En effet, le fonctionnement en cogénérateur présente des contraintes plus importantes qu’un fonctionnement en groupe secours du fait de la durée de fonctionnement plus importante.

Si le groupe fonctionne au gaz, le fonctionnement du groupe en secours ne sera garanti que si l’approvisionnement en gaz est garanti. Notons finalement à ce sujet qu’un groupe fonctionnant au gaz a une reprise de charge plus lente, de l’ordre de quelques minutes pour atteindre la pleine charge, ce qui est une contrainte de taille pour un groupe de secours dans un hôpital par exemple.

Dans ce dernier cas, la présence d’un groupe de cogénération peut être valorisé comme deuxième source autonome, sorte de groupe de confort.

Le fonctionnement de plusieurs petites machines en parallèle peut-être une alternative, quoique d’un coût sensiblement plus élevé, proportionnellement plus chères que les grosses unités. Cette solution limite les risques de pannes et permet un fonctionnement à charge réduite, notamment pendant l’entre-saison. Cette option présente encore des difficultés quant à la complexité de sa régulation et à son intégration dans le système de gestion des chaudières existantes.


Écrêtage ?

La cogénération présente une philosophie fondamentalement différente de l’écrêtage. Un moteur dédié exclusivement à l’écrêtage ne fonctionne en effet que pour les heures pleines de pointe, c’est à dire 4 heures par jour pendant 4 mois par an. Il s’agit le plus souvent d’un groupe au mazout. À l’opposé, une cogénération fonctionnera de la façon la plus continue possible. Il s’agit le plus souvent d’un groupe au gaz.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be