Dimensionner le chauffage électrique

Dimensionner le chauffage électrique


Appareils de chauffage direct

Pour un appareil de chauffage direct, le dimensionnement est relativement simple : la puissance de chauffe P (kW) doit être au moins égale aux déperditions calorifiques Pn, déperditions normalisées calculées suivant la NBN B62-003.

On prévoit un léger surdimensionnement pour pouvoir atteindre plus rapidement la température de confort lors de la mise en température : P = 1,1 à 1,5 Pn, à moduler d’après le type de local. Par exemple : living 10 %, chambre à coucher 20 %, salle de bains 50 %.

Ce surdimensionnement n’entraîne que peu de conséquences énergétiques si la régulation de l’appareil est suffisamment précise et rapide.


Appareils de chauffage à accumulation

Un dimensionnement en puissance et en capacité de stockage.

Le dimensionnement présente un double aspect :

  • d’une part, il faut déterminer la puissance électrique des résistances Pe,
  • d’autre part, il faut choisir un noyau accumulateur capable d’accumuler et de restituer l’énergie calorifique Q nécessaire au cours de 24 heures.

Cette fois, le surdimensionnement de l’appareil peut porter à conséquence puisqu’une charge de nuit excessive entraînera des pertes par les parois supplémentaires. Sauf si une régulation précise limite cette charge. Le surdimensionnement entraîne alors seulement un investissement inutile.

Les besoins énergétiques Q [kWh] sont déterminés à partir des déperditions calorifiques du local, diminuées des gains thermiques gratuits provenant des apports énergétiques internes ou externes (éclairage, machines, soleil, … ). Pour un local du type « séjour », on démontrera plus loin que Q = 20 x Pn, [kWh].

La puissance électrique théorique des résistances PE [kW] doit être suffisante pour produire l’énergie requise Q en tenant compte du nombre d’heures de charge disponibles de nuit comme de jour : Q = PEx t (t = durée totale de charge).

La taille du noyau doit être adaptée à la quantité de chaleur à accumuler par cycle de 24 h et à la demande de chaleur (puissance calorifique à délivrer en fonction du schéma horaire de charge et de décharge de l’appareil).
En pratique, le dimensionnement des accumulateurs se fera de préférence suivant la méthode décrite dans la norme CEI, Publication 531, appendice B. Cette méthode est basée directement sur les mesures de performance d’accumulateurs décrites dans la même norme et effectuées au calorimètre.

Nous en reprenons ci-dessous la logique, car elle est suivie par les installateurs électriciens.

A. Informations préliminaires, comme données de base des calculs

  1. L’utilisateur donne un profil quotidien de la demande de chaleur.
  2. Les déperditions nettes résultantes Pr sont calculées comme égales à la Puissance normalisée Pn (suivant la NBN B62-003) diminuée des gains thermiques gratuits Pg.
  3. Le programme Journalier de charge est donné par le distributeur d’électricité.
  4. Le constructeur des appareils donne les caractéristiques de réponse de ses appareils (P)

B. Méthode de calcul

1. Profil journalier de la température du local concerné

Exemple pour le secteur de l’hébergement :

Diagramme de la température journalière.

2. Calcul de la demande de chaleur journalière

Les déperditions nettes résultantes Pr sont calculées comme égales à la Puissance normalisée Pn (suivant la NBN B62-003) diminuée des gains thermiques gratuits Pg

Exemple : Pn = 1 000 W, Pr = Pn – Pg

Demande de chaleur journalière.

A tout instant, la puissance de restitution P de l’appareil doit au moins être égale à Pr. Dans l’exemple, le cas le plus défavorable a été examiné, c-à-d. en supposant des gains thermiques Pg = 0 pendant la journée (d’où une puissance de chauffe P = 1 kW). Pendant la nuit, le facteur d’abaissement de Pr est de 0,56, dû aux diminutions des déperditions par abaissement de la température, fermeture des rideaux, stores, etc. ainsi que par diminution du taux de ventilation.

Du graphique de demande de chaleur, résulte la quantité totale journalière Q requise pour chauffer le local :

Q = Qjour + Qnuit = 15 [h] x Pn + 9 [h] x 0,56 x Pn

Q = 15 [h] x 1 [kW] + 9 [h] x 0,56 [kW]

Q = 20 kWh ou Q = 20 [h] x Pn

On parlera d’une durée nominale de chauffe tn égale à 20 heures.

Remarques

  • La valeur de 0,56 est arbitraire, elle arrondit simplement les calculs et d’obtenir un stockage égal à 20 h de fonctionnement à la puissance nominale (c.-à-d. la puissance par – 10°C extérieurs).
  • Le même raisonnement, appliqué au secteur tertiaire (bureaux) génère un stockage égal à 18 heures de puissance nominale (TN = 18 h).
  • Le choix d’annuler les gains gratuits de la journée va surdimensionner l’appareil.
  • Pour un local présentant des déperditions calorifiques de 1 000 W par une température extérieure de – 10°C et une température intérieure de 20°C, tout en tenant compte de 5 K de chaleur gratuite (base des calculs de consommation par la méthode des degrés-jours 15/15), Q se calcule comme suit :

Q = 24 [h] x 1 [kW] x ((20 – 5) – (- 10) / (20 – (10))

Q = 20 kWh

3. Diagramme journalier de charge ou de mise à disposition de l’alimentation des accumulateurs

Supposons les indices suivants :

  • 1 = tarif de nuit
  • 2 = tarif jour hors-pointes
  • 0 = pas de charge autorisée

Appelons :

  • durée totale nuit = t1
  • durée totale jour hors-pointes = t2

> Exemple 1 : 9 heures de charges (accumulation classique).

Accumulation classique.

> Exemple 2 : 8 h + 1 h de charges (accumulation classique avec relance).

Accumulation classique avec relance.

> Exemple 3 : 7 h + 9 h de charges (accumulation hors-pointes).

Accumulation hors-pointes.

4. Calcul de la puissance électrique théorique des résistances PE

PE = Q / (t1 + t2)

Pour l’exemple 1 : Pe1 = 20 kWh / 9 h = 2,22 kW
Pour l’exemple 2 : Pe2 = 20 kWh / 9 h = 2,22 kW
Pour l’exemple 3 : Pe3 = 20 kWh / 16 h = 1,25 kW

5. Détermination du facteur accumulateur fs

Pour comprendre ce que signifie ce facteur accumulateur, partons d’un cas imaginaire : le noyau se charge totalement, puis se décharge pendant 20 heures (hébergement) ou 18 heures (bureaux). La capacité d’accumulation devrait être égale à Q.

En réalité, la charge se fait en parallèle avec la décharge : à peine l’accumulateur monte en température, que déjà il se décharge partiellement par ses parois. En pratique, il ne devra donc stocker qu’une fraction de Q. Cette fraction est appelée FS.

Notre appareil imaginaire avait un FS = 1 et un appareil direct aura un FS = 0, puisqu’il se décharge aussi vite qu’il se charge.

Les facteurs accumulateurs standard en Belgique sont déterminés par les distributeurs d’énergie électrique :

  • exclusif nuit (9 h de charge) –> FS = 0,75
  • exclusif nuit + relance diurne (8 h + 1 h de charge) –> FS = 0,67
  • trihoraire (7 h + 9 h de charge hors pointe) –> FS = 0,35

6. Sélection de l’appareil dans le catalogue des fournisseurs

Le constructeur donne la réponse de ses appareils, pour un facteur accumulateur et un type de noyau donnés.

Exemple 1 : Accumulation classique 9 h (FS = 0,75)

Type de Noyau Résistance Pr [kW] Puissance normalisée couverte Pn,
si TN = 18 h
Puissance normalisée couverte Pn,
si TN = 20 h

A

2 1,0 0,9

B

3 1,5 1,35

C

4 2,0 1,8

Exemple 2 : Accumulation hors-pointes 7 h + 9 h (FS = 0,35)

Type de Noyau Résistance Pr [kW] Puissance normalisée couverte Pn,
si TN = 18 h
Puissance normalisée couverte Pn,
si TN = 20 h

A

1,3 1,15 1,05
1,6 1,30 1,20

B

1,8 1,60 1,44
2,4 2,10 2,07

C

2,7 2,40 2,16
3,2 2,75 2,45

Application : supposons que le local à chauffer présente des déperditions Pn (parois + ventilation) calculée à 1,15 kW. Il s’agit d’une occupation permanente (hébergement) donc TN = 20 h.

En raccordement exclusif nuit, l’appareil choisi sera un noyau de type B, équipé d’une puissance électrique réelle de 3 kW.

En raccordement hors-pointes, l’appareil choisi sera un noyau de type A, équipé d’une puissance électrique réelle de 1,6 kW.


Accumulation dans le sol

Le chauffage par accumulation électrique de nuit dans le sol nous paraît tellement inadapté dans la construction d’aujourd’hui qu’il ne nous paraît pas utile d’en décrire ici le dimensionnement.

Nous renvoyons cependant le lecteur intéressé à l’ouvrage cité ci-dessous, qui décrit très précisément la méthode de dimensionnement.
(Source : d’après « Le code de bonne pratique pour la réalisation des installations de chauffage électrique » – Communauté de l’Electricité – CEG).

Choisir le circuit de distribution


Collecteurs primaires en boucle ouverte

Circuit primaire en boucle ouverte.

Un circuit en boucle ouverte est composé d’un collecteur de départ et d’un collecteur de retour séparés. Il n’y pas de pompe primaire. Ce sont les circulateurs des circuits secondaires qui déterminent le débit qui circulera dans les collecteurs et les chaudières.

Ce circuit présente l’avantage de la simplicité de conception et donc des économies d’investissement.

Par contre, comme inconvénient, il présente des risques d’interférence entre les circuits secondaires et donc des difficultés de régulation. En effet, toute modification de l’ouverture d’une  vanne mélangeuse entraînera une modification du débit dans les autres circuits. Il s’en suivra des réactions en chaîne des régulateurs et des oscillations dans le réglage des vannes.

Cas où la boucle ouverte est recommandée

Ce type de circuit n’est pas à rejeter d’office. En effet, son extrême simplicité peut être exploitée sans problème en présence de

  • chaudières à grand volume d’eau, pouvant fonctionner à débit nul,
  • et pouvant fonctionner sans limite basse de température de retour,
  • et raccordées à des collecteurs primaires courts.

Dans ce cas, en effet

  • Les chaudières ne risquent pas de se rompre au démarrage, alors que toutes les vannes mélangeuses sont fermées.
  • Les chaudières peuvent condenser sans risques lorsqu’en mi-saison, la température de l’eau renvoyée par les circuits secondaires s’abaisse.
  • Le circuit primaire présente des pertes de charge tellement négligeables qu’une modification de débit (vanne mélangeuse se fermant, ou chaudière mise à l’arrêt et isolée), ne modifiera que très peu les conditions de fonctionnement des circuits secondaires.

Remarquons que ce type de schéma convient très bien pour les chaudières à condensation pouvant fonctionner sans débit minimal.

Cas où la boucle ouverte ne convient pas

Dans le cas de chaudières à faible volume d’eau, et donc à forte perte de charge, les circuits primaires en boucle ouverte sont à exclure.

Si la chaudière choisie ne supporte pas les retours à température froide (qui risquent d’apparaître en mi-saison puisque l’eau renvoyée vers la chaudière est à la température de retour des circuits), un circulateur de recyclage doit alors être prévu sur les chaudières.

Circulateur de by-pass placé sur la chaudière.

Cas particulier du remplacement de chaudière

Comme on le voit, toutes les chaudières ne peuvent convenir avec un circuit en boucle ouverte. Il faut donc être attentif lorsque l’on procède au remplacement d’une ancienne chaudière raccordée à ce type de circuit. Il faut que la nouvelle chaudière puisse « survivre » aux mêmes conditions de fonctionnement (sans irrigation minimale, sans limite basse de température de retour). Dans le cas contraire, il faut adapter le circuit primaire, par exemple en installant une pompe de bypass.

En conclusion

En conclusion, pour sa simplicité, le circuit primaire en boucle ouverte peut être considéré comme le circuit le plus intéressant mais ne convient que pour certains types de chaudières. Dans les autres cas, il faudra choisir un circuit en boucle fermée ou avec une bouteille casse-pression qui présentent des performances énergétiques légèrement moindres.


Collecteurs primaires en boucle fermée

Lorsque la chaudière ne peut supporter les conditions de fonctionnement imputables au circuit en boucle ouverte ou que le collecteur primaire doit avoir une longueur importante (cas d’un collecteur alimentant plusieurs sous-stations), on peut avoir recours à un circuit en boucle fermée.

Circuit primaire fermé avec pompe unique.

Circuit primaire fermé avec une pompe par chaudière.

Intérêt d’un circuit en boucle fermée

Le circuit primaire en boucle fermée a pour but d’éliminer la pression différentielle au pied de chaque circuit secondaire. On dit que la boucle primaire est « sans pression » ou que la pression différentielle entre les collecteurs est faible par rapport à la perte de charge des vannes trois voies du secondaire.

En pratique, pour que la boucle fermée puisse jouer son rôle, il faut réduire ses pertes de charge. Pour cela, on double le diamètre des collecteur par rapport au diamètre de la boucle.

Il faut également être attentif à ne pas placer dans la boucle un élément à forte perte de charge comme un clapet anti-retour, ou encore une vanne d’isolement partiellement fermée.

Cette dernière est pourtant couramment rencontrée. Elle est prévue notamment pour le cas où une pompe secondaire tomberait en panne : en fermant la vanne, le circuit primaire se met en pression et de l’eau est poussée par la pompe primaire vers le circuit défaillant. Le problème est qu’il faut être attentif qu’en fonctionnement normal, la vanne soit totalement ouverte, les circulateurs doivent « aspirer » le débit dans la boucle primaire et non se sentir « poussé dans le dos » par la pompe primaire.

Si ces différentes précautions ne sont pas prises, le problème d’interférence hydraulique entre les circuits (parfois rencontré avec les circuits en boucle ouverte) risque d’apparaître.

Inconvénient d’un circuit en boucle fermée

Dans le cas d’installations composées de plusieurs chaudières régulées en cascade, le circuit en boucle fermée implique de faire fonctionner les chaudières à plus haute température pour éviter les problèmes d’incompatibilité des débits entre les circuits secondaires et le collecteur primaire et les risques d’inconfort.

Les chaudières et le collecteur présentent ainsi plus de pertes.

Ce type de circuit est donc énergétiquement moins intéressant et choisir une chaudière très basse température en association avec celui-ci n’a guère de sens.

Calculs

Pour simuler cette situation, cliquez ici !

Collecteurs primaires avec bouteille casse-pression

Circuit primaire avec bouteille casse-pression.

Les avantages et inconvénients de la bouteille casse-pression  sont semblables à ceux de la boucle fermée :

  • S’adresse aux chaudières demandant un débit d’eau minimum permanent et ne pouvant supporter des retours à très basse température.
  • Permet d’éviter les problèmes d’interférence entre les circuits dans le cas de chaudières et de collecteur à fortes pertes de charge.
  • Demande aux chaudières de fonctionner à plus haute température pour éviter les problèmes d’incompatibilité des débits entre le circuit primaire et les circuits secondaires (ici, c’est le premier circuit secondaire après la bouteille casse-pression qui risque de puiser de l’eau froide dans le retour).

Un avantage de la bouteille casse-pression par rapport à la boucle fermée est de pouvoir profiter de la faible vitesse de circulation dans la bouteille pour y installer un dégazeur et une récupération des matières solides qui décantent vers le fond de la bouteille.

On reconnait à droite de la chaudière la bouteille casse-pression. Elle sépare hydrauliquement le circuit de la boucle primaire (venant de la chaudière) des 2 circuits alimentant des collecteurs secondaires (départ rouge et retour bleu).

Ici, le placement d’une bouteille casse-pression paraît discutable puisqu’il s’agit d’une chaudière à condensation…(voir ci-dessous).


Cas particulier des chaudières à condensation

La présence d’une chaudière à condensation impose une étude particulière du circuit hydraulique qui lui sera associée.

En effet, le circuit doit garantir une alimentation de la chaudière avec une eau à la température la plus basse possible, condition pour favoriser au maximum la condensation.

Le choix du circuit hydraulique dépend principalement de 3 facteurs :

    1. le type d’utilisateurs : applications toutes à basse température, applications mixtes basse et haute température, présence d’une production d’eau chaude sanitaire, …
    2. le type de chaudière : avec ou sans irrigation impérative,
    3. le nombre de chaudières : une seule chaudière à condensation, chaufferie composée (une chaudière traditionnelle et une chaudière à condensation).

On comprend que la configuration du circuit hydraulique est intimement liée au type de chaudière choisi. Il est donc impératif que le cahier des charges de la nouvelle installation comprenne une description précise de ces deux éléments. Une modification ultérieure ou un choix incorrect de l’installateur risque de conduire à une association chaudière – circuit ne correspondant plus aux critères de performance d’une installation à condensation.

Principes de base et conseils

Pour assurer une condensation maximale, il faut respecter les principes suivants:

  • S’il y a plusieurs types d’utilisateurs, la chaudière à condensation ou la partie « échangeur-condenseur » de cette chaudière doit être alimentée par les retours les plus froids. Par exemple, avec une installation équipée de groupes de traitement d’air à température élevée et de radiateurs fonctionnant en température glissante, c’est ce dernier circuit qui sera raccordé sur la chaudière à condensation.
  • En aucun cas, le retour d’eau froide vers la chaudière ne peut être mélangé avec de l’eau chaude. Il faut donc éviter les boucles fermées, les circulateurs de by-pass, les soupapes différentielles, …
Exemple.

Dans une installation équipée de vannes thermostatiques, il est coutume de placer au départ de chaque circuit de distribution secondaire, une soupape différentielle qui « court-circuite » une partie du débit pour éviter que la pression n’augmente trop dans le circuit lorsque les vannes se ferment.

Lorsque les vannes thermostatiques se ferment, la pression augmente dans le réseau. La soupape différentielle s’ouvre alors pour renvoyer directement une partie de l’eau chaude vers le retour.

Cette technique a pour effet de remonter la température de retour lorsque les vannes thermostatiques se ferment. Elle est donc à déconseiller.

On peut lui préférer les circulateurs à vitesse variable qui, eux vont automatiquement diminuer le débit à la fermeture des vannes. On y gagne en consommation électrique et en diminution de la température d’eau de retour.

Départ des circuits secondaires avec circulateurs à vitesse variable.

En pratique

Chaque fabricant de chaudière à condensation propose des schémas hydrauliques se rapportant à leur matériel. Ils peuvent également étudier l’intégration de la chaudière dans une installation existante. De même, le subside accordé actuellement par les distributeurs de gaz est soumis à un examen des circuits hydrauliques qui doit garantir le fonctionnement correct de la condensation.

Techniques

Pour visualiser des exemples de circuits hydrauliques favorables à la condensation, cliquez ici !

Raccordement des chaudières au circuit primaire

On rencontre généralement deux types de raccordement des chaudières au circuit primaire : en parallèle ou avec une « boucle de Tichelmann ».

Anciennement, la « boucle de Tichelmann » était souvent préconisée du fait de l’équilibrage automatique qu’elle permettait. Elle ne se justifie plus toujours actuellement. En effet :

  • L’équilibrage « naturel » réalisable grâce à une boucle de « Tichelmann » est tout relatif. En effet, étant donné la normalisation des diamètres des conduits de distribution, il est impossible d’obtenir exactement les mêmes pertes de charge dans tous les tronçons. Par exemple, pour un débit de 32 m³/h, la perte de charge est de 96 Pa/m pour une conduite DN 100 et de 346 PA/m pour une conduite DN 80. Les pertes de charges singulières (coudes, tés, …) sont également différentes d’un tronçon à l’autre. Des vannes d’équilibrage peuvent donc être également nécessaires avec un raccordement « Tichelmann ».
  • Avec les chaudières à faible capacité en eau et forte perte de charge, la perte de charge des conduites peut devenir négligeable par rapport à celle des chaudières. La configuration du raccordement des chaudières influe donc peu sur la répartition des débits entre les chaudières.La « boucle de Tichelmann » n’apporte rien en présence d’une combinaison de chaudières différentes (puissance différentes, chaufferie composée d’une chaudière traditionnelle et d’une chaudière à condensation, …) puisque dans ce cas, il ne sert à rien de maintenir une pression identique au droit de chaque chaudière.
  • La « boucle de Tichelmann » ne peut s’appliquer à une installation à plus de 2 chaudières régulées en cascade avec isolation hydraulique à l’arrêt. En effet, si la circulation est stoppée dans une des chaudières, le débit va varier dans certains tronçons et pas dans d’autres. Il apparaîtra alors un « déséquilibre hydraulique » entre les chaudières encore en fonctionnement.

Pour que les circuits alimentant chaque chaudière présentent les mêmes pertes de charge, il faut que
la perte de charge du tronçon AB parcouru par le débit q soit la même que celle du tronçon DE parcouru par le débit 2q et que la perte de charge du tronçon BC parcouru par le débit 2q soit la même que celle du tronçon EF parcouru par le débit q.

Or si la première chaudière est mise à l’arrêt par la régulation, le débit des tronçons DE et EF restent inchangés, tandis que le débit des tronçons AB et BC varie. Les pertes de charge ne sont donc plus identiques entre les circuits de chaque chaudière. Il y a déséquilibre et variation des débits dans les chaudières en fonctionnement.


Configuration des circuits secondaires

Comme cela est également expliqué dans le choix de la régulation :

A chaque « zone thermique homogène », son circuit spécifique.

C’est le critère essentiel pour obtenir une régulation correcte.

Idéalement, le découpage hydraulique coïncidera avec la répartition des locaux ayant des besoins similaires,

  • similaires au niveau des plages horaires d’occupation essentiellement,
  • similaires dans les sollicitations extérieures (soleil, vent,…), ce qui entraîne bien souvent un découpage par façade,
  • similaires au niveau du type d’équipement de chauffage et au niveau de l’inertie du bâtiment (on ne mélange pas des radiateurs et des convecteurs sur un même circuit car ils demandent des températures de fonctionnement différentes).
Exemple.

Par exemple, dans une école, les locaux de classes et les couloirs attenants peuvent être sur un même circuit : leurs plages d’occupation sont similaires et il suffira de placer des vannes thermostatiques sur les radiateurs pour maintenir 16° dans les couloirs. Par contre, la salle de gymnastique devra disposer d’un circuit distinct si,

  • soit son occupation la distingue du reste de l’école (entraînements sportifs le soir, par exemple),
  • soit son type de corps de chauffe est différent (des aérothermes sont toujours alimentés par de l’eau à haute température).

 

De même, lors de la conception d’un immeuble de bureaux, on imaginera de pouvoir chauffer chaque étage indépendamment des autres (utilisation de WE, multi-locataires, …).


Choix des matériaux

Le matériau utilisé pour réaliser le circuit de distribution n’influence pas les performances énergétiques de l’installation.

Par contre, il peut avoir un impact sur les risques de corrosion encourus.

La combinaison du cuivre et de l’acier

Il faut savoir que l’utilisation de plusieurs métaux différents dans une même installation peut être une source de problème.

Notamment, en présence d’eau, le cuivre induit une corrosion du métal auquel il est couplé.

L’utilisation du tube en cuivre et du tube en acier dans une même installation est donc à éviter.

Le risque est cependant limité dans le circuit fermé d’une installation de chauffage si les apports d’oxygène neuf sont faibles, ce qui signifie qu’il faut éviter les rajouts fréquents d’eau d’appoint (fuites, détérioration du vase d’expansion) ou les dépressions dans le circuit.

Concevoir

Les dépressions dans un circuit de chauffage sont le résultat d’un mauvais dimensionnement du vase d’expansion ou de son emplacement incorrect.

Pour en savoir plus, cliquez ici !

La combinaison de l’aluminium et de l’acier

Certains traitements de l’eau consistent à injecter des produits ayant pour but de neutraliser les agents facteurs de corrosion et éventuellement de former une couche protectrice sur la surface métallique.

Pour ces traitements, la cohabitation entre l’acier et le cuivre est acceptable car il existe des conditions de « passivation » (acidité de l’eau) communes pour ces deux métaux.

Par contre, les conditions de passivation de l’acier correspondent aux conditions de corrosion de l’aluminium. Ceci demande donc l’emploi d’inhibiteurs de corrosion appropriés.

Pour cette difficulté, la combinaison de l’acier et de l’aluminimum (certains radiateurs décoratifs) est délicate.

Matériaux synthétiques

Il existe des matériaux synthétiques aptes à être utilisés dans les installations de chauffage (polyéthylène réticulé, polypropylène).

Ceux-ci résistent aux températures et pressions imposées et sont munis de barrières étanches à la pénétration de l’oxygène dans l’installation.

Les produits autorisés font l’objet d’un agrément technique ATG qui précise leur domaine d’application.

Pour en savoir plus sur l’utilisation et la mise en œuvre de ces matériaux, nous renvoyons le lecteur à la note d’information technique NIT 207 du CSTC : Systèmes de tuyauteries en matériau synthétique pour la distribution d’eau chaude et froide sous pression dans les bâtiments (mars 1998).


Isolation

Quelle conduite isoler ?

Suivant les prescriptions de la norme NBN D30-041 et du cahier des charges type 105  de la Régie des bâtiments (1990), les conduites suivantes doivent être isolées :

  • Toutes les conduites de chauffage se trouvant dans le sol, à l’extérieur ou dans des espaces ne faisant pas partie du volume protégé (volume chauffé) du bâtiment (chaufferie, grenier, sous-sol, …).
  • Toutes les conduites de chauffage se trouvant dans des faux plafonds, des locaux techniques ou des gaines techniques, même si ceux-ci font partie du volume protégé du bâtiment.
  • Toutes les conduites de chauffage traversant des locaux où un système de climatisation est prévu.
  • Toutes les conduites de chauffage passant dans des locaux du volume protégé mais desservant d’autres locaux et non le local où elles passent.

Cette dernière exigence est valable si

  • le diamètre de la conduite est supérieur à DN 60,
  • si la longueur totale des conduites de ce type est supérieure à 6 m,
  • et surtout si les déperditions des conduites sont telles qu’elles entraînent une surchauffe (donc une surconsommation) du local traversé.

Évaluer

Pour en savoir plus sur la surchauffe liée à la distribution, cliquez ici !

 Épaisseur d’isolation

Calculs

Pour évaluer l’épaisseur d’isolation à mettre en œuvre et comparer le gain énergétique et financier de plusieurs solutions d’isolation, cliquez ici !

Les tableaux suivants traduisent les exigences de la norme NBN D30-041 en tenant compte de la température de l’eau (fonction du mode de régulation), de la température ambiante et des épaisseurs d’isolant courantes sur le marché :

Conduite extérieure (température ambiante : 0°C)

Épaisseur d’isolant rapportée à un coefficient de
conductibilité de 0,04 W/mK [en mm]

Température de l’eau

45°C (*)

80°C

DN

10 25 40
15 25 40
20 30 40
25 30 50
32 40 50
40 40 50
50 40 50
65 40 60
80 50 60
100 50 80
125 60 80
150 60 80
200 60 80
250 60 80
300 80 100
350 80 100
400 80 100

(*) température équivalente à un fonctionnement en température glissante en fonction de la température extérieure.

Conduite intérieure (température ambiante : 15°C)

Épaisseur d’isolant rapportée à un coefficient de
conductibilité de 0,04 W/mK [en mm]

Température de l’eau

45°C (*)

80°C

DN

10 25 30
15 25 30
20 25 40
25 25 40
32 30 40
40 30 50
50 30 50
65 40 50
80 40 60
100 40 60
125 50 60
150 50 80
200 50 80
250 60 80
300 60 80
350 60 80
400 60 80

(*) température équivalente à un fonctionnement en température glissante en fonction de la température extérieure.

Dispositions particulières

Épaisseur d’isolant

Tuyaux pour les percements dans les planchers et les murs et pour les croisements. La moitié des exigences ci-dessus
Tuyaux situés dans des éléments constructifs entre locaux chauffés et occupés par des utilisateurs différents. La moitié des exigences ci-dessus
Tuyauteries dans la dalle entre locaux chauffés et occupés par des utilisateurs différents. 6 mm
Tuyaux entre locaux chauffés et occupés par le même utilisateur. Aucune

Pour les vannes, filtres et autres brides, la norme NBN D30-041 demande d’isoler les vannes ayant un diamètre supérieur ou égal à DN40 au moyen d’une enveloppe démontable. L’épaisseur d’isolant doit être équivalente à 6 cm de laine minérale.

Protection de l’isolant

Une protection de l’isolant s’impose pour :

  • augmenter la durabilité de l’installation,
  • conserver la valeur de l’isolation en la protégeant des infiltrations d’eau et d’humidité.

Actuellement, on rencontre principalement des tôles d’aluminium, des revêtements plastiques ou du plâtre.

Généralement, les isolants en caoutchouc synthétique ou mousse de PE souple, à structure à cellules fermées et paroi extérieure lisse ne doivent pas être pourvus d’un revêtement complémentaire.

Les isolants placés dans les coudes doivent être protégés par un élément préformé ou découpés sur mesure.

Lorsqu’il s’agit de tuyauteries non apparentes le revêtement peut être appliqué en usine sur les coquilles isolantes. Les joints entre les coquilles devant être parachevés par une bande autocollante (par exemple en aluminium).

Protection de l’isolant en aluminium (pose en cours).

Protection de l’isolant en plâtre.

Choisir la régulation [Chauffage]

La régulation des chaudières

Réduire les pertes des chaudières

Adapter la température de l’eau

Autrefois, la logique de base était la suivante : puisque l’on ne savait pas à quel moment il y aurait des besoins de chaleur (demande de la zone nord, du ballon d’eau chaude sanitaire, …), la chaudière était maintenue sur son aquastat à température élevée en permanence. Les pertes étaient élevées, les chaufferies étaient surchauffées, idéales pour faire sécher un vêtement détrempé ! Pour les chaudières gaz atmosphériques, la perte de rendement était importante car le foyer, surmonté de la cheminée, se refroidissait en permanence !

Ces 20 dernières années, une amélioration est apparue : la température de maintien de la chaudière est liée à la température extérieure. On parle d’une régulation glissante sur sonde extérieure. La chaudière est réglée à 80° en janvier et à 50° en avril, sauf si une limite basse est prévue pour les besoins de l’eau chaude sanitaire ou pour des raisons de condensation.

Aujourd’hui, avec l’apparition de la régulation numérique, une nouvelle logique apparaît : ce sont les circuits consommateurs qui vont définir la température minimale de chauffe. Si le circuit sud demande une température d’eau de 35°C, et le circuit nord de 43°C, la chaudière sera informée qu’une température de 48°C est suffisante. A présent, la régulation numérique peut avertir la chaudière des besoins des consommateurs et la chaudière peut se maintenir à très basse température sans risque de corrosion, si elle est conçue « très basse température« . C’est l’énergie qui est gagnante puisque les pertes sont limitées au minimum.

Concevoir

Attention, ce type de régulation a ses limites dans certaines situations :

  • Une installation combinée alimentant à partir du même collecteur primaire un échangeur instantané (échangeur à plaques) pour la production d’eau chaude sanitaire.
  • La combinaison de plusieurs chaudières, régulées en cascade, d’une boucle primaire fermée et de circuits secondaires équipés de vannes mélangeuses.

Pour en savoir plus sur les limites d’application des chaudières « très basse température » : cliquez ici !

Réguler les chaudières et les brûleurs en cascade

Si l’option a été prise de :

  • diviser la puissance à installer en plusieurs chaudières,
  • choisir des brûleurs 2 allures (gaz ou fuel).

> l’ensemble doit faire l’objet d’une régulation en cascade.

Concevoir

Pour en savoir plus sur le nombre de chaudières et sur le type de brûleur à choisir : cliquez ici !

Cette fonction est prévue dans la plupart des régulateurs modernes qui permettent de gérer en cascade plusieurs chaudières équipées de brûleurs à 2 allures.

Attention, il ne faut pas perdre de vue que la gestion des chaudières en cascade implique le placement de vannes motorisées sur chaque chaudière et commandées par le régulateur.

Protéger les chaudières classiques

Si le choix de la chaudière s’est porté sur une chaudière traditionnelle ne pouvant pas travailler en très basse température, il faudra que la régulation soit adaptée aux prescriptions du fabricant de la chaudière. Ces prescriptions sont le plus souvent :

  • un débit minimal (généralement fixé à un tiers ou à la moitié du débit nominal),
  • une température minimale de l’eau de retour (généralement 55° ou 60°C).

Voici quelques exemples de ce que peuvent imposer les fabricants de chaudières.

Concevoir

Exemples qui montrent également la complexification de l’installation lorsque l’on ne choisit pas une chaudière très basse température (ou à condensation) à grand volume d’eau.

Pour en savoir plus sur le choix d’une chaudière, cliquez ici !

Circulateur de recyclage

Les exigences de débit et de température de retour minimaux sont généralement rencontrées par la présence d’une pompe de charge (ou pompe de recyclage) en by-pass de l’installation ou, mieux, en série avec le générateur. Le débit minimal d’alimentation de la chaudière est assuré, même si les circuits se ferment, et l’eau froide de retour des radiateurs est mélangée à l’eau chaude venant de la chaudière.

Pompe de recyclage permettant un débit permanent dans la chaudière et le maintient du température minimale de retour.

Commande des chaudières en fonction de la température de départ et de retour

Une alternative pour éviter des retours de température trop froids est de choisir un régulateur qui permet une régulation de l’enclenchement des chaudières en fonction de la température de départ et en fonction de la température de retour : le brûleur s’enclenchera si la température de retour ou la température de départ est trop basse.

Ouverture progressive des circuits secondaires

Mais des risques subsistent le lundi matin, lorsque tous les circuits sont ouverts et envoient vers la chaudière de l’eau à 15°C ! … Condensations internes corrosives, chocs thermiques, … peuvent diminuer la durée de vie de la chaudière. On peut dès lors faire mieux : le(s) régulateur(s) de départ des circuits secondaires peuvent limiter leur ouverture de telle sorte que le mélange (by-pass + retour) ne descende jamais sous les 60°C. Le lundi matin, au démarrage de l’installation, les vannes ne laisseront passer qu’un faible débit d’eau vers les radiateurs pour que progressivement toute l’eau de l’installation se réchauffe. Cette fonction est intégrée aux régulateurs actuels.

Une sonde à l’entrée de la chaudière empêche la (ou les) vanne(s) de s’ouvrir si cette température descend au-dessous de 55°C, par une priorité sur l’action du régulateur en fonction de l’extérieur.

Si la chaudière est coupée complètement durant l’inoccupation du bâtiment, certains fabricants recommandent qu’au démarrage, la chaudière tourne dans « son propre jus » et monte en température, avant de s’ouvrir progressivement vers l’eau du circuit. Cela peut se faire au moyen d’un circulateur et d’une vanne 3 voies par chaudière.

Contrôle de la température retour au démarrage de la chaudière au moyen d’une vanne 3 voies et d’un circulateur par chaudière. Le circulateur sera temporisé à pour continuer à évacuer la chaleur de la chaudière après leur arrêt.

Régulation en température glissante avec limite basse

De plus, la température de départ de la régulation glissante peut avoir une limite basse afin de s’assurer d’une température de retour suffisante.

Conduite d’une chaudière en température glissante avec limitation de la température de départ de la chaudière, pour limiter les pertes de la chaudière et éviter les condensations dans la chaudière.


La régulation de la distribution

Découpage des circuits

A chaque « zone thermique homogène », son circuit spécifique.

C’est le critère essentiel pour une réalisation correcte de la régulation.
Idéalement, le découpage hydraulique coïncidera avec la répartition des locaux ayant des besoins similaires,

  • similaires au niveau des plages horaires d’occupation essentiellement,
  • similaires dans les sollicitations extérieures (soleil, vent,…), ce qui entraîne bien souvent un découpage par façade,
  • dans une moindre mesure, similaires au niveau du type d’équipement de chauffage et au niveau de l’inertie du bâtiment.
Exemple.

Par exemple, dans une école, les locaux de classes et les couloirs attenants peuvent être sur un même circuit : leurs plages d’occupation sont similaires et il suffira de placer des vannes thermostatiques sur les radiateurs pour maintenir 16° dans les couloirs. Par contre, la salle de gymnastique devra disposer d’un circuit distinct si,

  • soit son occupation la distingue du reste de l’école (entraînements sportifs le soir, par exemple),
  • soit son type de corps de chauffe est différent (des aérothermes sont toujours alimentés par de l’eau à haute température).

 

En rénovation, on travaille généralement sur base de circuits de distribution existants. Dès lors, si le découpage des circuits correspond à des zones thermiquement homogènes (un circuit pour les classes, un pour la salle de sports, etc…), une régulation spécifique par zone s’implantera facilement.

Améliorer

Si par contre, des modifications nombreuses ont eu lieu depuis la conception du bâtiment et que les fonctions ne se superposent plus aux circuits initiaux, il faudra davantage user d’astuces

Régulation de chaque circuit

Chaque zone thermique est dotée d’une régulation qui lui est propre. Le plus souvent, dans le cas d’un chauffage par radiateur, ce sera une vanne trois voies qui règle la température de l’eau de départ de chaque circuit.

Fonctionnement d’une vanne mélangeuse :
elle mélange l’eau chaude de la chaudière et l’eau froide de retour des radiateurs pour obtenir la température d’eau voulue.

Toute la difficulté consiste à trouver le « témoin » fidèle des besoins de la zone. C’est pourquoi, traditionnellement, on utilise la température extérieure car si la température extérieure descend, le besoin de chauffage augmente. Ce lien n’est que grossièrement valable et d’autres témoins doivent souvent être trouvés.
Par exemple, il est intéressant de choisir un régulateur dont le réglage de la courbe de chauffe peut être automatiquement ajusté (décalage automatique de la courbe) en fonction :

  • d’une sonde d’ensoleillement (pour un circuit alimentant une façade sud),
  • d’une sonde de vent (pour les immeubles de grande hauteur),
  • ou d’une sonde d’ambiance (nécessaire aussi pour gérer l’intermittence avec un optimiseur). cette dernière possibilité permettra de pallier les difficultés de réglage « manuel » de la courbe de chauffe.

Evidemment, on aura compris que ces différentes sondes, appelées « sondes de compensation » ne peuvent pas être utilisées si le circuit de chauffage dessert des locaux d’orientation différente ou avec des apports internes de chaleur différents.

Exemple : la réglementation thermique française

La réglementation thermique française RT 2000 impose des caractéristiques minimales à toute installation de chauffage équipant un bâtiment neuf. Il faut ainsi qu’une installation qui dessert une surface de plus de 400 m² comprenant plusieurs locaux, dispose d’un ou de plusieurs dispositifs centraux de réglage automatique de la fourniture de chaleur au minimum en fonction de la température extérieure. Un même dispositif ne peut desservir une surface de plus de 5000 m².

Différents corps de chauffe

Attention, le type de courbe de chauffe choisie dépend du comportement des corps de chauffe : la puissance émise par un radiateur ne variera pas de la même façon à une variation de température d’eau, qu’un convecteur ou qu’un chauffage par sol.

Certains régulateurs comportent donc la possibilité d’adapter la forme de la courbe de chauffe aux corps de chauffe choisis. C’est pourquoi, on ne peut mélanger sur un même circuit, régulé en fonction de la température extérieure, des convecteurs et des radiateurs.

Exemple.

Courbes de chauffe typiques en fonction du type de corps de chauffe.
Les pentes programmées sont de (70° / 25°) = 2,8 pour les radiateurs, de (60° / 28°) = 2,1 pour les convecteurs et de (35° / 25°) = 1,4 pour le chauffage par le sol. Pour les convecteurs, la courbure de la courbe de chauffe augmente lorsque la hauteur du convecteur diminue.


La régulation locale

Le bâtiment est découpé en zones. Chaque zone a son circuit, avec une température d’eau préparée en fonction de ses propres besoins (sonde extérieure, programmation horaire,…). Reste que chaque local peut avoir des besoins différents de celui de sa zone ! … De plus, la seule régulation en fonction de la température extérieure ne tient pas compte d’une série d’éléments perturbateurs :

  • renouvellement d’air variable du bâtiment en fonction du vent,
  • apports internes (occupants, bureautiques, .) variables en fonction des locaux,
  • apports externes (soleil, ombre d’un bâtiment voisin, .) variables,
  • l’impact d’une augmentation des pertes par ventilation sur la température intérieure est immédiat, celui d’une diminution de température extérieure, lent, du fait de l’inertie du bâtiment,
  • déséquilibre thermique entre les corps de chauffe,

Il est donc nécessaire de recourir à une régulation de l’ambiance local par local, en complément d’une régulation centrale en fonction des conditions extérieures :

  • pour assurant le confort dans tous les locaux,
  • sans surchauffe (et donc surconsommation) dans les locaux favorisés.

Améliorer

Pour en savoir plus sur le gain énergétique réalisable grâce à la régulation locale, cliquez ici !

Choix d’une vanne thermostatique

La solution la plus facile à mettre en œuvre est la vanne thermostatique. Celle-ci permet de limiter le débit dans les corps de chauffe pour ne pas dépasser une température de consigne. Cette solution est quasi obligatoire dans tout local bénéficiant d’apports de chaleur internes et/ou externes plus importants que les autres locaux.

Attention, une vanne thermostatique ne peut agir que dans le sens de la réduction ! Aussi, il sera utile d’ajuster la régulation centrale sur les locaux les plus exigeants (locaux de coin, locaux sous la toiture, locaux au nord, …).

Il n’est pas forcé de prévoir partout des vannes thermostatiques

Exemple.

Dans l’ensemble des locaux administratifs d’un hôpital, par exemple, les besoins sont homogènes. Une régulation centrale du circuit peut être suffisante et il peut être tenu compte des influences diverses par la présence de 2 ou 3 sondes d’ambiance. On parle d’une régulation centralisée sur sonde extérieure, avec compensation par sondes d’ambiance (dont on prend la valeur moyenne).

On peut régler la proportion d’influence entre sonde extérieure et sonde intérieure.

Vannes « institutionnelles »

Il existe deux objections importantes au placement de vannes thermostatiques sur les corps de chauffe :

  • Les occupants des bâtiments tertiaires ne savent pas comment on manipule une vanne thermostatique et parfois ne se sentent pas responsables de son réglage (exemple, les élèves d’une classe).
  • En fonction du type de public, les tentatives de détérioration peuvent être fréquentes.

Heureusement, le matériel disponible sur le marché permet de répondre à ces objections, grâce aux vannes dites « institutionnelles ». Ces vannes sont résistantes aux chocs. Leur organe de fixation est caché et la plage de réglage est bloquée.

 

Vanne institutionnelle : le réglage de la consigne n’est pas accessible à l’occupant, elle résiste aux chocs (même d’un ballon de basket .) et ne peut être facilement démontée.

Vannes avec préréglage du débit

Il est préférable de choisir un corps de vanne avec préréglage de débit incorporé. Certains fabricants ne commercialisent d’ailleurs plus que ces vannes.

En effet, ces vannes permettent de palier aux défauts d’équilibrage entre les corps de chauffe. Le réglage est plus facile avec ce type de matériel qu’avec les traditionnels tés de réglage dont on ne sait trop bien sur quelle position ils doivent être réglés.

Exemple.

Pour que la vanne thermostatique fonctionne correctement, le fabricant recommande une chute de pression dans la vanne de 0,1 bar (10 kPa ou 1 mCE).

Pour un radiateur de 1 kW (dimensionné en régime 90/70, soit un Δt de 20°C et un débit nécessaire de 1 [kW] / 1,16 [kW/m³.°C] / 20 [°C] = 43 [l/h]) et une perte de charge de la vanne de 0,1 bar, l’abaque ci-dessus indique que la vanne doit être préréglée sur une position comprise entre 3 et 4.

Le débit correct de chaque radiateur est ainsi réglé et la vanne thermostatique travaille dans des conditions adéquates.

Évaluer

Pour en savoir plus sur les problèmes liés aux déséquilibres hydrauliques, cliquez ici !

Améliorer

Pour en savoir plus sur l’équilibrage d’une installation, cliquez ici !

Type de sonde thermostatique

Les vannes dont le bulbe thermostatique est rempli de gaz réagissent nettement plus vite à toute variation de température intérieure, le gaz ayant une inertie thermique moindre que les liquides. Les fluctuations de températures seront dès lors moindres, ce qui est favorable à une meilleure maîtrise des consommations. Les vannes équipées d’un gaz sont cependant plus chères.

Vanne équipée d’un gaz et vanne équipée d’un liquide.

Régulation de zone

S’il est possible d’isoler en bout de circuit, une zone comprenant plusieurs locaux présentant les mêmes apports de chaleur gratuits, on peut simplifier la régulation locale en utilisant une vanne de zone commandée par un thermostat d’ambiance (placé dans un endroit représentatif).

Régulation locale au départ d’un local témoin, avec une vanne de zone motorisée et un thermostat d’ambiance.

Exemple. Par exemple, le logement des médecins de garde pourrait avoir une régulation qui lui est propre sans forcément posséder son propre circuit depuis la chaufferie.

Dans ce cas, il faut que les occupants du local témoin soient conscients de leur impact sur le confort des autres locaux : il ne s’agit pas d’ouvrir les fenêtres, de fermer les vannes des radiateurs, de placer une armoire devant le thermostat, …
Attention, on ne peut pas mélanger dans un même local un thermostat d’ambiance et des vannes thermostatiques. En effet, imaginons que la consigne du thermostat d’ambiance soit supérieure à la consigne donnée aux vannes. Lorsque cette dernière est atteinte, la vanne va se refermer. Le thermostat d’ambiance sera, lui, toujours en demande et restera puisque les vannes empêchent la température de monter. Il en résultera :

  • Un fonctionnement permanent de la chaudière si le thermostat d’ambiance agit sur le brûleur (cas d’une installation de type « domestique »).
  • Une ouverture complète et permanente de la vanne de zone.

Avec pour conséquence, surchauffe et surconsommation dans les locaux sans vannes thermostatiques. À l’inverse, si la consigne du thermostat d’ambiance est inférieure à la consigne donnée aux vannes, le thermostat arrêtera la fourniture de chaleur et les vannes seront en permanence insatisfaites et donc ouvertes en grand. Elles deviennent donc inutiles.

S’il y a une régulation locale, la régulation centrale est-elle nécessaire ?

On pourrait penser que le travail de la vanne mélangeuse est superflu, qu’il suffit de préparer une seule température en sortie de chaudière et que les vannes thermostatiques feront le travail de modulation des débits et de la puissance fournie.
Ce raisonnement, parfois appliqué à tort dans les installations domestiques, est erroné.

Puissance émise par un radiateur lorsque son débit varie (100 % = débit nominal).

En effet, prenons un radiateur dont le régime normal équivaut à une entrée de l’eau dans le radiateur à 80° et une sortie à 60° (en plein hiver). Lorsque le débit du radiateur est freiné de moitié (50 %), la puissance du radiateur est encore de 80 % de sa valeur maximale. Pour diminuer la puissance du radiateur de plus de la moitié (moyenne de la saison de chauffe), il faut diminuer le débit en dessous de 20 %. Il faut travailler sur le dernier quart de la course de la vanne. Or celle-ci a une plage de travail de l’ordre de 0,3 .. 0,8 mm au total ! Si au mois d’avril, le radiateur est alimenté avec de l’eau trop chaude, la vanne va osciller (s’ouvrir et se fermer), « pomper » disent les spécialistes, et un sifflement désagréable apparaîtra. À noter que ce phénomène est amplifié si le circulateur est surdimensionné (c’est souvent le cas !).

Sans compter que les pertes de distribution sont plus importantes.

Puissance émise par un radiateur lorsque son débit et sa température d’eau varient (100 % = débit nominal).

Si on diminue la température de l’eau alimentant le radiateur, il est possible d’adapter sa puissance aux besoins tout en conservant une ouverture de la vanne suffisante pour son bon fonctionnement.

De plus, la régulation centrale est également nécessaire parce qu’elle permet une gestion globale des intermittences (nuit, week-end, vacances,…).

Soupape différentielle ou circulateur à vitesse variable

Attention : lorsqu’une vanne thermostatique se ferme, le débit d’eau est arrêté dans la branche qui va vers le radiateur. C’est comme lorsqu’un enfant bouche de son pouce l’embouchure du jet d’une fontaine, … les autres jets sortent plus fort ! en fait, c’est la pression qui monte dans le réseau et tous les autres radiateurs voient leur débit augmenter. Toutes les autres vannes vont se fermer un peu plus…

Imaginons que vers midi quelques vannes soient encore ouvertes : elles reçoivent toute la pression de la pompe, elles ne s’ouvrent que d’une fraction de millimètre… et se mettent à siffler !

Une vanne thermostatique ne doit pas sentir si sa voisine vient de se fermer. Il est donc utile de stabiliser la pression du réseau. C’est le rôle de la soupape à pression différentielle. Placée après le circulateur, elle lâche la pression lorsque les vannes se ferment. En quelque sorte, elle « déverse le trop plein vers le retour ».

Lorsque les vannes thermostatiques se ferment, la pression augmente dans le réseau. La soupape différentielle s’ouvre alors pour renvoyer directement une partie de l’eau chaude vers le retour.

Encore faut-il pouvoir calibrer le niveau de pression maintenu entre le départ et le retour… Si l’installation est nouvelle, le bureau d’études connaît la pression nominale nécessaire. Si l’installation est ancienne, on ne pourra y aller que par essai successif en diminuant progressivement la pression. La pression manométrique du milieu de la courbe du circulateur (voir catalogue du fournisseur) est également une indication.

Force est de constater que la solution de la vanne à pression différentielle n’est pas très élégante ! Créer une pression à la pompe et la lâcher juste après, sur le plan énergétique, c’est un peu pousser sur l’accélérateur et le frein en même temps !

Actuellement, il est possible d’installer un circulateur à vitesse variable : la vitesse est régulée de telle façon que la pression du réseau reste constante. Si seulement quelques vannes sont ouvertes, il tournera à vitesse réduite. L’achat d’un circulateur avec régulateur de vitesse intégré est rapidement amorti durant l’exploitation.

Circulateur à vitesse variable.

Concevoir

Pour en savoir plus sur le choix d’un circulateur, cliquez ici !

L’emplacement des capteurs

Le rôle d’un capteur est d’être un témoin fidèle … de ce qu’il est censé mesurer ! Ce n’est pas toujours le cas :

  • la sonde d’ambiance d’un local est parfois influencée par le soleil qui lui tombe dessus à certains moments,
  • la sonde placée sur la tuyauterie est parfois détachée et le contact ne se fait plus,

Par quelques graphiques, précisons les critères à respecter pour les sondes intérieures et extérieures.

Emplacement des sondes de température intérieures

A éviter :

La sonde ne peut être soumise à l’ensoleillement.

La sonde ne peut être influencée par une source de chaleur interne (éclairage, radiateur, …).

La sonde ne peut pas être placée sur un mur extérieur.

La sonde ne peut être placée contre une cheminée.

La sonde ne peut être placée dans un endroit clos, peu influencé par l’air ambiant

 La sonde ne peut être placée dans un endroit clos, peu influencé par l’air ambiant (dans une niche, derrière une tenture, …).

Emplacement des sondes de température extérieures

S’il n’y a qu’une sonde pour le bâtiment, on la posera sur une façade nord-ouest ou nord-est.

Elle doit être placée à une hauteur de 2 m à 2 m 50 au-dessus du niveau du sol ou accessible à partir d’une fenêtre.

A éviter :

La sonde ne peut être soumise à l’ensoleillement direct.

La sonde ne peut être placée contre une cheminée.

La sonde ne peut être placée au dessus d’une fenêtre.

La sonde ne peut être placée au dessus d’une sortie de ventilation.

Emplacement des vannes thermostatiques

Pour qu’une vanne thermostatique assure correctement son rôle, elle doit mesurer une température la plus représentative possible de la température ambiante. Le tête de la vanne, comprenant l’élément thermostatique, ne doit pas être échauffé par le corps de chauffe. On peut repérer comme influences parasites :

  • les coins de murs,
  • l’air chaud s’élevant des tuyauteries ou du radiateur (vanne placée verticalement),
  • un radiateur épais (radiateur de plus de 16 cm de large),
  • des tablettes ou caches décoratifs (tablette située à moins de 10 cm du radiateur),
  • des tentures,
  • .

Si les conditions adéquates ne sont pas réunies, il sera nécessaire d’utiliser des vannes thermostatiques avec bulbe à distance.



Positionnements incorrects et corrects d’une vanne thermostatique.

Vanne thermostatique qui sera placée juste au-dessus d’un nouveau radiateur : jamais elle ne pourra travailler correctement.


L’intermittence et la dérogation

Pratiquer l’intermittence de chauffage en fonction de l’occupation ne peut conduire qu’à une économie d’énergie.
Celle-ci est entre autres fonction du type de régulation qui est appliquée.

Coupure complète

Le régulateur doit permettre une coupure complète de l’installation en période d’inoccupation. Au moment de la coupure, le régulateur doit :

  • fermer la ou les vannes de régulation,
  • arrêter le ou les circulateurs,
  • et éventuellement arrêter le brûleur (si la chaudière peut fonctionner en très basse température).

La consigne de nuit sera surveillée par une sonde d’ambiance qui relancera l’installation si nécessaire (par exemple, si la température descend sous 16° en semaine et 14° le week-end dans certaines zones comme l’administration).

Optimiseur

La technique qui maximalise l’économie réalisée est l’optimiseur auto-adaptatif. Le principe de base du travail de l’optimiseur consiste à couper au plus tôt et à relancer au plus tard, tout en conservant le confort intact. C’est ainsi que la température moyenne intérieure sera la plus basse et que donc les économies seront les plus importantes.

Pour ce faire, l’optimiseur adapte automatiquement le moment de coupure et de relance en fonction de la température extérieure (sonde extérieure), de la température intérieure (sonde d’ambiance), l’inertie du bâtiment et la surpuissance disponible à la relance.

Attention cependant, le fonctionnement correct de l’optimiseur est lié :

Si ces conditions ne sont pas remplies, l’optimiseur ne pourra pas calculer le moment de la relance et risque d’anticiper tellement celle-ci que le ralenti disparaîtra.

Évaluer

Pour en savoir plus sur les dysfonctionnements hydrauliques, cliquez ici !

Dérogation

Dans les bâtiments où des activités sont organisées en dehors des heures d’occupation normales, il doit être possible d’étendre la durée de fonctionnement de l’installation.

Quel que soit le mode de dérogation appliqué, il est important que le système se remette de lui-même en fonctionnement automatique. Une dérogation dont la fin serait gérée manuellement par les occupants risque rapidement de conduire à des oublis.
On peut imaginer :

  • Une horloge annuelle : un gestionnaire peut encoder à l’avance les périodes d’occupation exceptionnelles au moyen d’une horloge. Ce système a comme avantage de centraliser la gestion auprès d’une seule personne responsable, ce qui évite les erreurs de manipulation et permet un suivi de l’activité du bâtiment.
    Les inconvénients sont : la centralisation peut poser des problèmes en cas d’absence du responsable, une relance ou une suppression de la dérogation « improvisées » sont impossibles, de même qu’une modification en dernière minute, de la durée de chauffage programmée. Ce mode de gestion demande également souvent que la programmation soit possible depuis le bureau du gestionnaire (au moyen par exemple d’une GTC).
  • Un bouton poussoir : en utilisant un bouton poussoir, les occupants peuvent relancer l’installation pour une période donnée, par exemple 2 heures. Après cette période, le régulateur se remet tout seul en mode automatique. Cette fonction est intégrée d’office sur beaucoup de régulateur. Sur une installation existante, il est possible de l’intégrer au moyen d’un bouton poussoir et d’un relais temporisé raccordé au régulateur en by-passant la commande de l’horloge. Le gros avantage de ce système est de permettre une dérogation « improvisée » sans dépendre du gestionnaire. La relance se fait malheureusement pour des durées fixes (par exemple 2 heures) et ne permet pas une relance anticipée qui peut être nécessaire après une longue coupure.
Exemple.

D’autres informations peuvent permettre de passer d’un régime vers l’autre :

  • Un bouton-poussoir placé à l’entrée de la salle de sports, ou de la salle des fêtes, peut enclencher le chauffage et un détecteur de présence peut l’interrompre parce qu’aucune présence n’a été détectée dans le dernier quart d’heure.
  • Dans une école d’Habay-La-Neuve, c’est le prof de gym qui enclenche l’installation de chauffage de la grande salle de sports en tournant la clef dans la porte d’entrée (un contact électrique enclenche un relais) et qui l’arrêtera en refermant derrière lui. Le temps de passage dans le vestiaire (dont le chauffage est programmé classiquement) est suffisant pour remettre la salle en température.

L’essentiel est de trouver un témoin fidèle de l’occupation (l’éclairage ? l’ouverture d’une porte ? d’un sas ? …). Bien sûr, pour diminuer le temps de remise en température, ce type d’action sous-entend soit une faible inertie des parois, soit une température de « veille » pas trop différente de celle de fonctionnement.

Rappelons qu’envisager des possibilités de dérogation peut également influencer le découpage hydraulique choisi : il faut essayer de circonscrire les activités « exceptionnelles » sur un même circuit de distribution de manière à réduire au maximum la zone chauffée.

Fonctions annexes

Le régulateur choisi peut intégrer les fonctions complémentaires suivantes :

  • La programmation horaire : idéalement, le régulateur doit permettre, en fonction des besoins, d’encoder des programmes de fonctionnement journaliers (coupure de nuit), hebdomadaires (coupure de week-end) et annuels (coupure de vacances).
  • La température d’inoccupation : en période de coupure, on a toujours intérêt à abaisser au maximum la température de consigne. Cependant, une température inférieure à environ 9°C risque de poser des problèmes de condensation dans les locaux. De plus, en fonction de la surpuissance de l’installation, un abaissement de température excessif peut poser des problèmes de relance pour les températures extérieures extrêmes. Le régulateur peut alors remonter automatiquement la température de nuit en fonction de la température extérieure.
Exemple.

Par exemple, lorsque la température extérieure descend au-dessous de 5°C, la température de consigne de nuit augmente de 0,7°C par °C extérieur.

Si la température extérieure est de – 5°C, la consigne de nuit sera réglée automatiquement à :

9  [°C]  + 0,7  [°C]  x (5  [°C] – (- 5 [°C])) = 16 [°C]

  • La compensation de l’effet de paroi froide : lors de la remontée en température, quand on atteint la température de consigne, le régulateur peut continuer à envoyer toute la puissance, pendant un temps programmé, pour éviter un inconfort du fait du rayonnement froid des parois du local non complètement réchauffées.

Analogique ou digital ?

Nous vivons une période charnière où deux types d’équipements de régulation coexistent : la régulation analogique traditionnelle et la régulation numérique (encore appelée régulation digitale ou DDC, Direct Digital Control).

  

Régulateurs analogique et digitaux.

L’évolution des technologies nous entraîne vers l’installation d’équipements numériques. Tous les arguments ne jouent cependant pas en ce sens :

Pour le digital

Un raisonnement de bon sens nous porterait à dire : achetons dès aujourd’hui du numérique, demain nous pourrons centraliser toute la gestion des équipements et, par exemple, la gérer à distance par modem (quel bonheur de pouvoir de chez soi contrôler l’origine de la panne signalée par un enseignant, plutôt que de devoir aller voir sur place… souvent pour rien).

L’ennui, c’est qu’actuellement les protocoles de communication ne sont toujours pas compatibles : la marque X parle chinois et la marque Y parle arabe, impossible de les mettre sur le même bus ! On attend une uniformisation du même type que celle qui a eu lieu dans le domaine informatique (PC IBM compatible, DOS Microsoft). Actuellement, choisir une marque de régulateur, c’est pratiquement se résoudre à rester dans la même marque dans le futur pour assurer la compatibilité des connexions !

Contre le digital

Le régulateur numérique reste souvent une « boîte noire ». Dans la pratique, nous constatons souvent une difficulté de lecture des paramètres de ces régulateurs par le gestionnaire.

Aucun contrôle de la régulation n’est alors possible et une intervention du technicien d’exploitation devient (très) difficile. Si un mode d’emploi clair explique le paramétrage (à exiger donc !), c’est gérable, mais encore faut-il que ce mode d’emploi ne se perde pas. Le seul recours est alors de faire appel au chauffagiste. En cas de changement de ce dernier, il est fort probable que le paramétrage soit perdu et le régulateur déconnecté par le gestionnaire (cas vécu).

En conclusion, la régulation numérique permet des possibilités de régulation quasi illimitées. Cependant, nous constatons sur le terrain que plus le schéma de régulation est complexe et plus le paramétrage des régulateurs est « obscur », plus le risque de voir la régulation incontrôlable et incontrôlée est grand.

On risque donc d’obtenir le résultat inverse de celui souhaité, avec à l’extrême un retour en mode manuel.

Cette conclusion est évidemment à nuancer en fonction du type de bâtiment et de structure de gestion technique des équipements : un hôpital n’est pas une école primaire.


Fonctions annexes

Arrêt des circulateurs

Si une vanne se ferme ou si le brûleur s’arrête, signifiant l’absence de besoin de chauffage, il est inutile de maintenir les circulateurs en fonctionnement.

Cela doit être prévu dans la régulation, de même qu’une temporisation (d’environ 6 minutes) à l’arrêt pour permettre une évacuation complète de la chaleur contenue dans l’eau.

Les régulateurs permettant cette fonction comprennent généralement aussi une fonction « dégommage » des circulateurs. C’est une fonction qui remet les pompes en marche pendant 30 secondes, par exemple toutes les 24 heures. Pour éviter l’entartrage et le blocage de celles-ci. Cette fonction peut également être appliquée aux vannes motorisées.

On peut également prévoir la commutation automatique des pompes jumelées lorsqu’une tombe en panne et également à intervalle régulier (toutes les 150 h par exemple).

Détection des pannes

Il peut être également très utile de choisir des régulateurs capables de détecter eux-mêmes et d’afficher les différentes pannes pouvant apparaître dans les équipements de mesure et les fonctions de régulation.

Exemples.

  • court-circuit ou coupure dans le câblage des sondes,
  • écart trop important de la température de départ,
  • modification trop rapide ou écart trop grand de la température ambiante,
  • ..

Communication

La gestion à distance des équipements (modification des paramètres, repérage des pannes, mise en dérogation, …) apporte un plus dans la conduite des installations.

Pour qu’à terme, l’installation puissance être raccordée à un système de gestion technique centralisée (GTC), il faut dès le départ choisir un matériel dit « communiquant » (et pour être à l’abri des problèmes de protocole de communication, de la même marque que les autres régulateurs).

Suivi des consommations

La mise en place d’une nouvelle régulation constitue un moment clé pour l’implantation de compteurs dans l’installation. On peut envisager ainsi :

  • Le comptage de la chaleur délivrée vers une zone du bâtiment, en plaçant un compteur d’énergie thermique. Il va mesurer le débit d’eau qui alimente la zone et l’écart de température entre l’entrée et la sortie. Un petit processeur fera alors le calcul et affichera les kWh consommés. Ceci part d’un principe de management très efficace : décentraliser les budgets auprès des consommateurs finaux. Si la section primaire de l’école occupe une aile du bâtiment, et qu’un circuit distinct l’alimente (ou s’ils sont situés sur la fin du circuit), le compteur thermique leur donnera leur propre consommation. Leur motivation dans la gestion des consommations sera renforcée et remboursera rapidement l’investissement dans le compteur, sans compter l’absence de conflits liés à la répartition arbitraire. Mieux ! Pour un prix de l’ordre de 750 €, il existe des vannes deux voies dont l’ouverture est commandée par un thermostat d’ambiance, et qui comptent simultanément l’énergie véhiculée (ce sont des vannes qui assurent généralement la régulation et la répartition des frais de chauffage dans les immeubles à appartements multiples).
  • Le comptage de la consommation de fuel, par un simple compteur fuel sur la vanne magnétique de la ligne gicleur : cela permet de faire un suivi régulier des consommations et de détecter une anomalie de fonctionnement, ce que la jauge ne permet pas.
  • Le comptage de l’eau sanitaire : vu l’augmentation rapide du coût de l’eau, il devient un plus dans la surveillance des fuites et autres chasses d’eau cassées.
  • Le comptage de l’appoint d’eau du circuit de chauffage : on rencontre parfois des installations où le concierge ajoute chaque jour un appoint d’eau sans que personne ne s’inquiète. Et pourtant, l’eau fraîche régulièrement ajoutée apporte également beaucoup d’oxygène en suspension, oxygène qui est un des principaux agents de corrosion. Avec un petit compteur de débit placé sur le tuyau de raccordement de l’eau de ville vers le réseau de chauffage, une évaluation du problème est possible …
  • Le comptage des degrés-jours : sur base des relevés de la sonde extérieure, le régulateur peut fournir les degrés-jours, chiffre indicateur du froid qu’il fait. Cela permet une gestion efficace des consommations par le rapport consommation/degrés-jours.

Gérer

Pour en savoir plus sur la comptabilité énergétique, cliquez ici !

Suivi des paramètres de régulation

En pratique, il n’est pas rare de rencontrer des installations de régulation dont personne ne connaît très bien le mode fonctionnement…

Les schémas sont perdus, les modes d’emploi sont introuvables, …

Il sera donc toujours utile de prévoir dès le début de la nouvelle installation la mise en place de son suivi :

  • La présence d’une copie des schémas hydrauliques et des schémas de régulation dans la chaufferie.
  • L’indication des caractéristiques de tous les appareils (lorsqu’un circulateur tombe en panne, on le remplace provisoirement par celui disponible en réserve, le provisoire devient définitif,… et on a perdu toute référence du circulateur correct !).
  • La présence d’un carnet de bord qui signale le réglage initial des paramètres et les modifications réalisées durant la vie de l’installation, outil qui aide le petit nouveau qui vient remplacer celui qui part à la pension !

Ces conseils semblent scolaires, … ils sont pourtant vraiment très utiles en pratique.


Gestion Technique centralisée (GTC) ?

Que peut apporter une GTC ?

Local de gestion centralisée au Collège St Paul à Godinne.

La motivation paraît double :

> Organisationnelle avant tout. Il s’agit d’améliorer l’efficacité de la gestion des hommes chargés de la maintenance, de réduire les déplacements inutiles, de mieux préparer le matériel nécessaire pour l’intervention, voire de mieux suivre le travail effectif de chaque ouvrier. L’amélioration du confort dans les bâtiments s’ensuivra par une gestion très rapide des alarmes : une anomalie sera corrigée avant même que l’occupant ne s’en aperçoive (donc pas de plaintes !). ce type de gain est difficilement chiffrable …
> Énergétique ensuite. L’intelligence restant au niveau de la chaufferie, la télégestion n’assure qu’un transfert de l’information. A première vue, l’amélioration semble nulle par rapport à une régulation locale correcte. Cependant l’expérience des gestionnaires ayant fait le choix d’une GTC montrent que ce poste est plus important qu’on pourrait le penser a priori.
En effet, il apparaît que :

  • Dans les 6 mois qui suivent l’installation, de nombreuses mises au point sont effectuées grâce aux historiques transmis par la télégestion (comportement du système la nuit, le W-E, …). À titre d’exemple, on peut citer l’adaptation de la courbe de chauffe d’un bâtiment ou le repérage d’un défaut sur une sonde, actions très facilitées par la présence d’une télégestion.
  • Les installations sont mises en dérogation manuelle plus souvent qu’on ne le croit. Le rôle « d’espion » permanent de la télégestion permet des économies réelles, quoique difficilement chiffrables. En fait, l’économie dépendra de la situation initiale. Sur un bâtiment en chauffage quasi continu, 30 % d’économie sont possibles. Mais au départ d’un bâtiment muni d’une régulation correcte et régulièrement vérifiée, on ne peut espérer plus de 5 % d’économie d’énergie supplémentaire par l’installation d’une télégestion.

À ceci, viennent s’ajouter des besoins complémentaires éventuels qui améliorent la rentabilité de l’opération : le contrôle des accès, la prévision du remplissage des cuves, le suivi des consommations d’eau, …

Exemple.

Dans l’institution de Monsieur M., un supplément de 10 000 € a été dépensé en consommation d’eau l’an dernier, suite à des fuites non détectées. Un programme de télégestion peut déclencher un message d’alarme si un compteur d’impulsion l’informe des consommations anormales.

 Quelle GTC ?

Le principal critère de choix entre une GTC réalisée avec un système propriétaire lié à une seule marque pour les régulateurs et la supervision ou un système plus ouvert permettant l’intégration d’appareil de marque différente mais utilisant des « standards » de communication, se situe au niveau de l’ampleur du bâtiment et des équipements à gérer.

Dans un bâtiment de taille moyenne (par exemple, une école) un système propriétaire pour ne gérer que les installations de chauffage conviendra tout à fait.

Dans un bâtiment de taille plus importante où l’on veut étendre le système de gestion à d’autres systèmes que le chauffage (éclairage, stores, intrusion, incendie, …), on sera presque obligé de se tourner vers un système utilisant les standards « LON », « EIB », « KONNEX », …

Dans tous les cas, il faut être attentif lorsque l’on se lance dans un projet de GTC à différents critères de choix. Notamment :

  • l’existence d’une liste de prix clairement publiée et complète,
  • un engagement éventuel sur des prix durant x années lors de l’acquisition du système de supervision (on pourrait imaginer une adjudication pour tous les bâtiments existants, avec contrat à long terme (10 ans) sur un pourcentage de variation de prix),
  • la fiabilité dans le temps de la société de régulation,
  • l’accès à l’information sur le fonctionnement des systèmes (mode d’emploi, formation, … ),
  • le besoin éventuel de recourir à un contrat de maintenance (ces deux derniers points sont liés à la lisibilité des messages par le personnel de maintenance),
  • les possibilités d’adaptation des programmes de gestion des équipements si ceux-ci sont modifiés (par exemple, le remplacement d’une chaudière par deux plus petites en cascade nécessite-t-il une reprogrammation par le constructeur ?),
  • la lisibilité des informations prévues par le logiciel de supervision. Le prix annoncé comprend-t-il un synoptique de l’installation ou simplement un listing des états et valeurs des entrées/sorties ?

Quel que soit le choix réalisé, il est essentiel d’avoir en tête que le coût le plus élevé sera celui accordé au software.

Tout programme spécifique (mise au point d’une communication entre deux régulateurs de protocole différents, par exemple) sera hors de prix par rapport à l’acquisition d’un hardware compatible …

Préalablement à la consultation des différents constructeurs, il est utile de réfléchir :

  • aux techniques que l’on souhaite surveiller dans chaque bâtiment (chauffage, éclairage, eau, incendie, …),
  • aux informations qu’il sera nécessaire de renvoyer vers le poste de contrôle pour chacune de ces techniques,
  • et donc au nombre d’entrées et de sorties à prévoir pour chaque application. Ce seront ces « points » qui définiront la taille du système et donc son coût.

Exemple des points envisageables dans une chaufferie pour sa télégestion.

Signalisations TS

  • Marche/arrêt : pompes, brûleurs, ventilateurs, surpresseurs
  • Fin de course : vannes

Alarmes TA

  • Disjoncteur : général, pompes, brûleurs, ventilateurs.
  • Dépassement de limite : température de fumées, niveau de cuve fuel, température chaudière, température ECS. température eau départ, température eau retour, pression eau, pression gaz, débit.
  • Anomalies : brûleur, incendie, fuite gaz, fuite d’eau.
  • Intrusion : ouverture porte local, ouverture porte coffret.

Comptage d’impulsion TCI

  • Débits : fuel, gaz, vapeur, eau.
  • Énergie : électrique, thermique consommée, thermique produite.

Comptage horaire THI

  • Fonctionnement : pompes, brûleurs, ventilateurs, surpresseurs.

Mesures TM

  • Température eau : départ chauffage, retour chauffage, écart départ-retour, boucle ECS, ballon ECS.
  • Température air : extérieur, locaux témoins.
  • Autres températures : fumées.
  • Pressions : eau, vapeur, gaz.
  • Niveaux : fuel.

Commandes TC

  • Marche/arrêt : pompes, brûleurs, ventilateurs, ralenti chauffage, boucle ECS.
  • Ouverture/fermeture : vannes.

Réglages TR

  • Consignes de régulation : température de départ, température d’ECS, température ambiante, courbe de chauffe.
  • Position : vanne.

On vérifiera également si le logiciel de supervision est prévu pour créer une alarme sur base des informations transmises. Par exemple, lire les consommations d’eau constitue une première étape, mais pouvoir définir les paramètres qui entraînent une alarme dans un logiciel de gestion standard sera tout aussi important (exemple : une alarme est déclenchée si la consommation de nuit dépasse x m³). Si ce logiciel doit être réalisé à la carte, la démarche risque d’être coûteuse.

Exploitation de la GTC

La mise en place d’un système de télégestion entraîne également une modification de la distribution des tâches au sein de l’équipe technique. Si l’organisation est assurément améliorée, c’est notamment parce qu’une personne du cadre assure un suivi régulier des installations. Celle-ci doit avoir une compétence minimale en HVAC et une connaissance physique des installations gérées pour pouvoir interpréter les mesures et les pannes constatées. Par exemple, la baisse de la température de l’ambiance peut provenir de diverses causes.

Si son rôle se limitait à répercuter le message d’alarme à l’équipe de maintenance, une part de l’intérêt de l’opération serait perdue …

Une efficacité accrue de l’équipe d’intervention se réalise donc moyennant un investissement plus important du staff de maîtrise.

 Investir plus tard ?

Dans tous les cas, le problème de télégestion doit être posé. Même si aucune réalisation n’est envisagée à court terme, il est utile d’investir actuellement dans du matériel DDC « communiquant », avec la perspective qu’une gestion centralisée puisse avoir lieu dans le futur.

Études de cas

La conduite des bâtiments de la ville de Mons.

Études de cas

La rénovation de la régulation au Collège St Paul à Godinne.


Synthèse : les 6 principes de base

Principe de régulation d’une installation de chauffage équipée de deux chaudières à grand volume d’eau et pouvant travailler en très basse température (ou chaudière à condensation).

>

Les chaudières sont régulées en cascade par action sur leur brûleur, leur vanne d’isolement et leur circulateur éventuel.

>

La température des chaudières suit au plus près la température des circuits secondaires de distribution (sauf si chaudière ne pouvant descendre en température, production instantanée d’eau chaude sanitaire combinée ou collecteur primaire bouclé).

>

Chaque zone d’occupation et de besoin homogènes dispose de son propre circuit de distribution dont la température d’eau est régulée en fonction d’un thermostat d’ambiance ou le plus souvent d’une sonde extérieure.

>

Chaque circuit dispose un thermostat d’ambiance qui permet de gérer la température d’inoccupation et éventuellement d’ajuster le réglage de la courbe de chauffe dans le cas d’une régulation en fonction de la température extérieure.

>

Les locaux profitant d’apports de chaleur plus importants que les autres sont équipés de vannes thermostatiques le plus souvent « institutionnelles ».

>

L’intermittence est gérée par un optimiseur qui assure une coupure complète des circuits de distribution et éventuellement des chaudières et calcule automatiquement le moment de la coupure et de la relance en fonction des températures intérieures et extérieures.


Cas particulier des petits bâtiments

On définit comme petit bâtiment, un bâtiment dont le circuit de chauffage est unique et directement alimenté par la chaudière. Ce mode de conception s’apparente aux installations domestiques.

Si on choisit une chaudière très basse température (ou à condensation), ce que nous recommandons, la régulation centrale agira directement sur la chaudière :

  • Un thermostat d’ambiance commande le brûleur et le circulateur. Le fonctionnement de ce dernier est temporisé pour anticiper l’allumage du brûleur (et éviter un allumage sans circulation) et, à l’arrêt, pour évacuer la chaleur résiduelle contenue dans l’eau. En dehors des demandes du thermostat, l’ensemble de l’installation est mise à l’arrêt. Le thermostat permettra un ralenti grâce à deux températures de consignes différentes. Des vannes thermostatiques affinent le réglage de température dans les locaux ne comprenant pas le thermostat d’ambiance s’ils présentent des apports de chaleur plus importants que le reste du bâtiment ou demandent une température de consigne moindre.
  • Une sonde extérieure qui adapte la température de l’eau de la chaudière. Dans ce cas, le circulateur fonctionne en continu durant la saison de chauffe. Ce système est utilement complété par une sonde d’ambiance pour gérer la température en période de ralenti (le circulateur peut être arrêté lors de la coupure). Des vannes thermostatiques dans chaque local doivent prendre en compte les apports de chaleur particuliers.

Nous ne disposons pas de données chiffrées neutres qui nous permettrait de départager ces deux solutions d’un point de vue énergétique (la combinaison des 2 est aussi envisageable). La première solution est plus classique mais demande de trouver un local témoin représentatif.

Choisir les corps de chauffe

Choisir les corps de chauffe


Convecteurs, radiateurs ou chauffage par le sol ?

Les corps de chauffe se différencient par le mode d’émission de chaleur

  • convection pour les convecteurs,
  • rayonnement pour le chauffage par le sol,
  • convection et rayonnement pour les radiateurs.

Schéma convection et rayonnement.

Mode d’émission de chaleur des corps de chauffe.
Par exemple, un radiateur traditionnel à ailettes émet environ 70 % de sa chaleur par convection et 30 % par rayonnement. Ce rapport est de 50 % / 50 % pour un radiateur à panneaux sans ailettes.

Confort

Le « rayonnement doux » (c’est-à-dire à basse température) est le mode d’émission le plus confortable

  • sensation de confort globale la meilleure,
  • homogénéité des températures (peu de stratification des températures, pas de fort rayonnement sur une face du corps).

C’est ainsi que des grands radiateurs fonctionnant à basse température et le chauffage par le sol se démarquent légèrement des autres types de corps de chauffe.

Par exemple, une étude menée en France par le « GREC » (Groupe de recherche sur les émetteurs de chaleur) montre que faire fonctionner un radiateur en basse température (augmentant ainsi la part d’émission par rayonnement par rapport à la convection) diminue de 0,5 à 7,5 % le nombre d’insatisfaits. Un niveau plus bas de température de fonctionnement suppose un investissement et un encombrement supérieur. En contrepartie, la basse température d’émission présente aussi des avantages en terme de consommation de la chaudière.

Consommation

Convecteur ou radiateur ?

Un convecteur suppose une température de fonctionnement plus élevée que des radiateurs, ce qui implique des pertes de distribution et de production légèrement plus importantes (une chaudière à condensation est par exemple moins efficace avec des convecteurs).

Courbe de chauffe type pour des convecteurs, des radiateurs et du chauffage par le sol.

Cette différence de température de fonctionnement implique également que l’on ne peut raccorder des radiateurs et des convecteurs sur un même circuit de distribution. Chacun demande une régulation de température spécifique.  De plus, la transmission de chaleur via de l’air entraîne inévitablement une certaine stratification des températures.

Cela oblige d’augmenter la température moyenne de la pièce pour un même confort au niveau des occupants. L’impact est cependant faible pour les locaux d’une hauteur sous plafond de 2,5 .. 3 m. Il n’en va pas de même pour les locaux de plus grande hauteur. Surtout s’ils sont très mal isolés puisque pour fournir une puissance plus élevée, la température de l’air sera plus élevée.

Exemple. On observe un gradient vertical de :

  • Pour les radiateurs : 0°C/m (bâtiments très bien isolés) à 0,8°C/m (bâtiments anciens.
  • Pour les convecteurs : 0,5°C/m (bâtiments très bien isolés) à 1,2°C/m (bâtiments anciens).
  • Pour les planchers chauffants : 0°C/m (pour tout type de bâtiment).

Exemple de stratification des températures avec un chauffage par radiateur et un chauffage par convecteur, dans un local mal isolé (source : « Les émetteurs de chaleur » du Groupe de Recherche sur les Émetteurs de Chaleur de l’ADEME).

En conclusion, un convecteur n’est choisi par rapport à un radiateur que parce qu’il est moins cher et moins inerte. Il répond ainsi rapidement à une variation de charge fréquente (local ensoleillé, local de réunion).

Lorsqu’il s’agit de locaux climatisés au moyen de ventilos-convecteurs (convecteurs avec ventilateur intégré), on ne dédouble évidemment pas les systèmes. L’émission de froid et de chaud est réalisée par le même appareil.

Chauffage par le sol

Par rapport aux radiateurs et aux convecteurs, le chauffage par le sol est plus difficile à situer. Il présente des grandes qualités et des grands défauts.

Sa consommation est fonction de sa situation :

  • Si le plancher chauffant est situé au-dessus d’une cave, d’un vide ventilé ou du sol, il présentera des pertes vers le bas qui peuvent devenir importantes cette perte peut rapidement dépasser 10 .. 20 % de la puissance émise, en fonction de l’isolation sous le plancher. Dans ce cas, le chauffage par le sol est clairement plus énergivore que le chauffage par radiateurs ou convecteurs.

Chauffage par le sol (au rez-de-chaussée) avec isolation insuffisante (seulement 2 cm de polystyrène expansé).

Calculs

Pour estimer la perte d’un chauffage par le sol situé au dessus d’une cave, en fonction du degré d’isolation : cliquez ici !
  • Si le plancher chauffant est situé entre 2 étages occupés, cette perte peut être négligée. Le chauffage par le sol peut alors être énergétiquement plus intéressant. Dans ce cas, les études du GREC le présentent comme 10 % moins consommateur. Cela s’explique par le fait que, puisque la température moyenne des parois (dont fait partie le sol) est plus élevée, la température de l’air ambiant pourra être plus basse, pour obtenir un confort équivalent.
  • Le chauffage par le sol sera alors d’autant plus intéressant s’il est associé à une chaudière à condensation. En effet la température de retour de l’eau dans un chauffage par le sol ne dépasse pas 40°C et permet donc la condensation toute l’année.

Nous tenons cependant à nuancer l’économie possible, présentée ci-dessus. Nous ne pouvons cependant pas quantifier cette nuance :

  • Par son inertie thermique importante, le chauffage par le sol peut conduire à des surchauffes (et donc des surconsommations) plus importantes que les autres systèmes. En effet, c’est l’entièreté de la dalle de sol qui est chaude. Celle-ci ne peut donc réagir instantanément à l’apparition d’apports de chaleur gratuits importants et, de plus, elle a perdu une bonne partie de sa capacité à absorber la chaleur excédentaire.
  • Ce phénomène est quelque peu contrecarré par les propriétés d’autorégulation du système : l’émission de chaleur du plancher diminue d’elle-même lorsque la température de l’air augmente et se rapproche de celle du sol (de l’ordre de 24°C). Mais avant que l’émission de chaleur devienne négligeable, la surchauffe se fera ressentir.
  • L’inertie thermique importante du système, réduit le gain que l’on pourrait réaliser en pratiquant une intermittence du chauffage en période d’inoccupation.
Exemple. La dalle de sol, au pied d’une baie vitrée est un régulateur de l’apport solaire : il emmagasine le rayonnement solaire durant la journée et le restitue (avec un déphasage) en soirée. C’est ce qui fait la différence entre un bâtiment massif et une caravane (ou une voiture).

Comparaison entre la chaleur instantanée due à l’ensoleillement et la chaleur réellement restituée au local, pour des bâtiments à forte et faible inertie.

Si ce « réservoir », ce « ballon tampon », est déjà en partie préchauffé par le système de chauffage, il ne peut guère remplir son rôle. Si encore, on pouvait prévoir l’arrivée du soleil … Mais le chauffage de la dalle devant être démarré 4 heures avant l’usage du local, il est impossible de prédire la présence du soleil. Un compromis ? Il est peut-être possible de diviser la dalle de sol en deux partie : un réseau alimentant la zone proche de la façade et un réseau plus intérieur au bâtiment. En mi-saison, seule la zone intérieure serait alimentée, gardant « au frais » le plancher susceptible d’être ensoleillé. Nous n’avons jamais rencontré une telle solution, qui reste donc théorique. On peut aussi dédoubler les systèmes : le chauffage par le sol peut assurer un chauffage de base et un chauffage par radiateurs ou convecteurs en complément, qui peut réagir rapidement à un apport de chaleur subit. Mais dans ce cas, on perd un des avantages du chauffage par le sol qui est l’absence d’encombrement (pas de corps de chauffe visible) et augmente les coûts déjà importants (le chauffage par le sol entraîne à lui seul un surcoût de 20 %).

Par exemple, le chauffage par le sol ne convient absolument pas pour une école dont le temps d’inoccupation et les apports de chaleur gratuits (élèves, ensoleillement) sont importants. Pas plus pour un restaurant. Il ne convient pas non plus pour tout local fortement ensoleillé.

Par contre, il convient tout à fait dans les locaux de grande hauteur (atrium, local avec mezzanine, …) pour lesquels la stratification des températures devient importante dans le cas d’un chauffage par convection.

Chauffage par le sol dans un grand hall.

En conclusion

Le chauffage par le sol est intéressant (tant au niveau du confort que de la consommation)

  • dans des locaux situés au-dessus de locaux chauffés,
  • non soumis à des apports de chaleur importants et variables (occupants, soleil, …),
  • à usage continu (de type hébergement).

Le chauffage par convecteur convient dans des locaux à une variation de charge fréquente (local ensoleillé, local de réunion).

Dans tous les autres cas, le chauffage par radiateurs est le meilleur compromis confort/consommation.


Le chauffage par le plafond ?

Cela existe !

Photo chauffage par le plafond. Le principe de l’émission de chaleur est semblable à celui des planchers chauffants. Comme 90 % de la transmission de chaleur se fait par rayonnement, la stratification des températures dans le local reste réduite et les performances énergétiques bonnes.

Généralement, il s’agit de plafonds électriques. Mais il est également possible de combiner plafond refroidissant et plafond chauffant dans un même système. Cela permet d’éviter un dédoublement des systèmes et tout encombrement au sol lorsque l’on choisit une climatisation par plafond froid. A priori (nous ne disposons pas de résultats de mesure neutres), l’efficacité énergétique obtenue doit être semblable à celle des planchers chauffants (rayonnement, eau à basse température).

En pratique, une technique consiste à découper le plafond en plusieurs zones. Seule la bande de plafond proche de la façade sera alors alimentable en eau chaude. La puissance émise est suffisante pour chauffer des bureaux présentant des charges internes non négligeables.

D’après la littérature, le plafond chauffant donne des résultats semblables au chauffage par le sol, en ce qui concerne le confort et la consommation. Il présente, cependant une inertie moindre qui lui permet de réagir plus rapidement aux apports de chaleur gratuits. L’intermittence est également plus aisée, pour peu que l’on augmente la température de l’eau au moment de la relance, avant l’arrivée des occupants. Cela se justifie par le peu de surpuissance disponible par m² de plafond si on travaille à température de régime (puissance de l’ordre de 75 .. 90 W/m²).


Le chauffage par le système de ventilation mécanique ?

Dans les anciens immeubles de bureaux non isolés, la puissance nécessaire au chauffage est telle que le débit de ventilation hygiénique est insuffisant si on veut assurer avec celui-ci un chauffage aéraulique. La séparation des fonctions « ventilation hygiénique » et « chauffage » s’impose d’autant plus que le bâtiment est peu isolé et que les apports internes de chaleur (machines, éclairage, …) sont faibles.

Si on veut combiner ventilation et chauffage, un recyclage partiel de l’air doit être organisé pour augmenter les débits pulsés, ce qui surdimensionne les équipements de ventilation.

Par contre, dans les bâtiments de bureaux plus modernes, bien isolés, fortement équipés (ordinateur, imprimante personnelle), la puissance de chauffage nécessaire se réduit fortement, et avec elle, les débits d’air nécessaires pour un chauffage aéraulique. Dans ce cas, il peut être logique d’envisager la combinaison du chauffage et de la ventilation au sein d’un système double flux flux. Il n’y a plus alors d’autres sources de chauffage.

Exemple.

Prenons un bureau au sein d’un immeuble. La largeur de façade du bureau est de 4 m , pour une hauteur de 3 m. La profondeur du local est de 5 m. Le bureau est entouré (au-dessus, en dessous et sur les côtés d’autres bureaux. La façade est composée de vitrages sur une hauteur de 2 m et de maçonnerie pour le mètre restant. La température intérieure de consigne est de 20°C.

Le débit d’air neuf recommandé est de 2,9 m³/h.m², soit pour ce bureau de 60 m³, 58 m³/h ou un renouvellement d’air de 1 vol/h.

En imaginant que la température de l’air pulsé soit au maximum de 35°C, la puissance calorifique maximum transportée par l’air de ventilation est de :

0,34 [W/(m³/h).K] x 58 [m³/h] x (35 [°C] – 20 [°C]) = 296 [W]

Puissance et débit nécessaire pour assurer le chauffage par – 9°C extérieurs

Type de façade Puissance de chauffage Débit d’air nécessaire (température de pulsion = 35°C)
Mur non isolé, simple vitrage 1 682 [W] 330 [m³/h]
Mur isolé, double vitrage 673 [W] 132 [m³/h]
Mur isolé, double vitrage HR 394 [W] 77 [m³/h]
Mur isolé, double vitrage HR et 10 W/m² d’éclairage 194 [W] 38 [m³/h]

On voit que pour un bâtiment non isolé, il faut multiplier le débit d’air hygiénique par 5 si on veut combiner chauffage et ventilation. Cette majoration n’est plus nécessaire pour des bâtiments bien isolés avec un minimum d’apport de chaleur interne (éclairage, bureautique, ….).

Attention, si, pour assurer une puissance de chauffage suffisante, une majoration du taux de brassage d’air est nécessaire, elle doit se faire par recyclage d’une partie de l’air extrait. Le risque est de majorer le débit d’air neuf. C’est à proscrire car cela entraîne une augmente de la consommation non négligeable dans un bâtiment bien isolé.

Pour optimaliser la relance matinale du système de chauffage aéraulique, il faut prévoir la possibilité de travailler en tout air recyclé, l’apport d’air n’étant enclenché qu’à l’arrivée des occupants.


Dimensionnement des corps de chauffe

Actuellement les chaudières les plus performantes sur le marché sont les chaudières gaz à condensation.

La quantité de fumée condensée et donc, le rendement de celles-ci augmente lorsque la température de l’eau de l’installation diminue. Pour assurer une température d’eau minimale durant l’ensemble de la saison de chauffe, on a donc tout intérêt à dimensionner les radiateurs à un régime de température de 80/60 au lieu du 90/70 traditionnel, malgré une augmentation de la surface des radiateurs d’environ 26 % et un surcoût (sur le matériel) du même ordre.

Rappelons également que le chauffage par rayonnement à basse température est plus confortable.

Exemple.

Le coût global d’une installation de chauffage de 400 kW dans un nouveau bâtiment est de l’ordre de 120 000 .. 180 000 €.

Ce coût peut être comparé au surcoût de choisir des radiateurs dimensionnés en régime 70°/50° : environ 6 000 €.

> Quel est le gain réalisable sur le rendement de la chaudière à condensation ?

Lorsque les radiateurs sont dimensionnés en régime 90/70 (sans surdimensionnement), la température moyenne de retour des radiateurs sur l’ensemble de la saison de chauffe est de l’ordre de 43°C (avec une régulation en température glissante). Avec des radiateurs dimensionnés en régime 70/50, cette même température sera d’environ 33°C.

Pour une chaudière à condensation performante dans laquelle la température des fumées à la sortie est supérieure de 3°C à la température de retour de l’eau, le graphe suivant montre qu’en diminuant la température moyenne de l’eau de retour de 10°C, le rendement moyen de la chaudière à condensation augmente de 6 %.

Rendement utile d’une chaudière gaz en fonction de la température des fumées et de l’excès d’air (n = 1,3 équivaut à un excès d’air de 30 %). Pour un excès d’air de 20 %, une température de retour 43° C (équivalent à une température de fumée de 46°C) équivaut à un rendement utile de 97 %, une température de retour de 33°C (équivalent à une température de fumée de 36°C), à un rendement utile de 103 %.

Sur une consommation de l’ordre de 50 000 m³ de gaz, cela équivaut à une économie de l’ordre de 3 000 m³ de gaz par an ou environ 680 €/an.

Le même principe peut être appliqué aux autres utilisateurs comme les batteries à eau chaude dans les groupes de traitement d’air, les ventilos-convecteurs ou encore la production d’eau chaude sanitaire.

Ces équipements travaillent généralement à plus haute température. Il est conseillé de les surdimensionner pour diminuer leur température de fonctionnement, par exemple en leur appliquant un régime de fonctionnement 70°/40° (batteries à eau chaude, échangeurs à plaque  fonctionnant avec une température d’entrée de 70° et une température de sortie de 40°). Cette pratique qui, pour les batteries, n’est pas encore rentrée dans les habitudes, conduit à un surinvestissement rapidement rentabilisé en exploitation.

Raccordement hydraulique des corps de chauffe.

Dimensionnement des corps de chauffe.


Emplacement des corps de chauffe et rendement d’émission

Schéma sur l'emplacement des corps de chauffe.

Lorsque l’on place un radiateur le long d’une paroi extérieure, une partie de la chaleur émise est directement perdue vers l’extérieur :

  • le dos du radiateur rayonne directement vers la façade,
  • la température de l’air au dos du radiateur est plus élevée,
  • de l’air chaud lèche généralement les vitrages (radiateur en allège) ce qui augmente leur perte.

Anciennement, les corps de chauffe étaient, quand même, placés le long des façades pour compenser le rayonnement froid des murs extérieurs non isolés et des simples vitrages.

Ce choix ne se justifie plus aujourd’hui puisque l’isolation des murs et la présence des doubles vitrages (vitrages haut rendement) ont entraîné une augmentation

Il devient dès lors judicieux de placer les corps de chauffe le long des murs intérieurs, supprimant ainsi entièrement les pertes. Le gain réalisable est de l’ordre de 1 à 2 % sur le rendement d’émission et donc sur la consommation globale.

Photo de radiateurs devant des vitrages.

Il faut absolument éviter est le placement (malheureusement encore rencontré dans des bâtiments neufs) de radiateurs devant des vitrages (vitrages descendant jusqu’au plancher).

Emplacement des corps de chauffe.

Dimensionner une chaudière et ses auxiliaires

Dimensionner une chaudière et ses auxiliaires


Dimensionnement des chaudières à condensation

Le principe

La puissance de la production de chaleur est déterminée en fonction des besoins de chaleur du bâtiment. Sur base du besoin de chaleur, l’objectif du dimensionnement de la ou des chaudières est de lui/leur permettre de travailler à charge partielle un maximum de temps pendant la période de chauffe. En effet, le fonctionnement à charge partielle permet aux chaudières à gaz ou au fuel de produire de la chaleur avec un meilleur rendement de combustion.

Concevoir

Pour plus de renseignements sur le dimensionnement des installations de chauffage.

Quelle puissance pour les chaudières ?

Avec les chaudières modernes dont le coefficient de perte à l’arrêt est extrêmement réduit (… 0,2 % … de la puissance chaudière), en adaptant la puissance du brûleur aux besoins réels, le rendement s’améliore. En effet, dans ce cas, la surface d’échange de la chaudière augmentant par rapport à la puissance de la flamme, la température de fumée à la sortie de la chaudière sera plus basse et le rendement de combustion plus élevé. Cette augmentation de rendement sera plus élevée que la légère augmentation des pertes à l’arrêt. Il faut cependant faire attention à ne pas abaisser exagérément la puissance du brûleur par rapport à la puissance de la chaudière sous peine de voir apparaître des condensations dans celle-ci. Il faut rester dans les limites préconisées par chaque constructeur. Il faut également tenir compte du surinvestissement éventuel pour la chaudière. La PEB demande de préciser quel est le rendement à un taux de charge de 30 % ; c’est la valeur à laquelle l’ensemble brûleur/chaudière donne en général son meilleur rendement. De ce point de vue, le choix d’une puissance de chaudière plus élevée que la puissance de dimensionnement ne permettra pas à celle-ci de travailler à charge partielle pendant un maximum de temps.

En effet, comme le montre le schéma ci-dessous, le rendement de combustion s’améliore à charge partielle. Les brûleurs gaz à pré-mélange avec contrôle de la combustion permettent d’améliorer le rendement de 4 à 5 % entre la charge nominale (100 %) et la limite basse de charge partielle (10 %). La plupart des constructeurs ne vont pas plus bas que les 10 %. Pour beaucoup de modèles de chaudière à air pulsé, l’optimum de rendement se situe autour des 30-40 % de taux de charge.

Rendement de combustion.

La monotone de chaleur donne des renseignements sur le taux de charge de la chaudière auquel on doit s’attendre sur une saison de chauffe, et ce pendant un nombre d’heures déterminé.

Exemple

Le besoin de chaleur d’un bâtiment tertiaire est représenté par la monotone de chaleur suivante. On constate que :

  • La puissance maximale correspondant au dimensionnement est de 600 kW, soit 100 % de taux de charge ;
  • La période pendant laquelle une chaudière au gaz avec brûleur à pré mélange travaillera entre 10 et 30 %, est de 5 000 – 2 300 = 2 700 heures/an, soit de l’ordre de 2 700 / 5 500  =  49 %. Cette valeur de 49 %, au niveau énergétique est très intéressante. En d’autres termes, pendant la moitié de la saison de chauffe, la chaudière fonctionnera à son meilleur rendement ;
  • En surdimensionnant de 110 % la puissance de la même chaudière, la période pendant laquelle le même brûleur travaillerait entre 10 et 30 % serait de 4 900 – 1 800 = 3 100 heures/an, soit 56 % de la période de chauffe. Un léger surdimensionnement dans ce cas-ci est bénéfique d’un point de vue énergétique. Attention toutefois que le fait d’augmenter la puissance de l’ensemble chaudière/brûleur implique aussi que pour les faibles besoins de chaleur, le « pompage » (marche/arrêt intempestif) du brûleur  sera plus important pour une production surdimensionnée.

Quelle combinaison de puissance ?

La norme NBN D30-001 (1991) propose la répartition de puissance suivante :

Puissance calculée
Qtot [kW]
Nombre
minimum
de chaudières
Puissance utile de la chaudière
Chaudière 1 Chaudière 2 Chaudière 3
< 200 1 1,1 x Qtot
200 kW < .. < 600 2 0,6 x Qtot 0,6 x Qtot
> 600 3 0,33 x Qtot 0,33 x Qtot 0,5 x Qtot
3 0,39 x Qtot 0,39 x Qtot 0,39 x Qtot

Il ne faut sûrement pas aller au-delà du surdimensionnement proposé ici. En effet, ce dernier peut déjà être important si on considère que le calcul de « Qtot » inclut déjà des marges de sécurité.


Dimensionnement des chaudières bois

Les chaudières au bois, pellets ou plaquettes, possèdent des spécificités par rapport aux chaudières gaz ou fioul si bien qu’elles sont dimensionnées différemment, du moins dans le domaine tertiaire.  Voici les éléments qui vont modifier le raisonnement :

  • Plage de modulation de puissance plus restreinte : Les chaudières au bois fournissent leur meilleur rendement près de la puissance nominale, c’est-à-dire proche de la puissance maximale. Quand on réduit la puissance, le rendement diminue légèrement. Néanmoins, comme toute chaudière, la plage de modulation des chaudières au bois sont limitées. Cette plage est plus restreinte que pour le gaz ou certains brûleurs au mazout. En dessous d’un certain seuil de puissance, le rendement de la chaudière et la qualité de la combustion deviennent nettement dégradés. Pour les chaudières de puissances élevées, on peut donner un ordre de grandeur pour la puissance minimale qui est de 25-30 % de la puissance nominale. En dessous de cette valeur de puissance minimale instantanée, il n’est pas souhaitable de faire fonctionner la chaudière au bois.
  • Besoin de cycles longs de production : Les chaudières au bois ont besoin de fonctionner sur base de cycles de production longs pour atteindre les meilleurs rendements et une qualité de combustion efficace, ce qui limite l’émission de gaz et particules nocifs. Pour un besoin de puissance thermique faible du bâtiment, c’est-à-dire à température extérieure modérée, la puissance minimale de la chaudière ne peut descendre à ce niveau (à cause des limites de modulation citées ci-dessus). On pourrait imaginer de travailler avec une puissance à la chaudière qui appartient à sa plage de modulation (par exemple, à puissance minimale) et arrêter/redémarrer la production de la chaudière de manière régulière pour atteindre le niveau de demande du bâtiment. En d’autres termes, puisqu’on n’est pas arrivé à réduire suffisamment la puissance instantanée de la chaudière pour rencontrer le niveau de besoin du bâtiment, on diminue son temps de fonctionnement. Par définition, cela raccourcit la durée de cycles de production ce qui n’est pas compatible avec de bons rendements et une faible émission de gaz nocifs. Cette notion de « cyclage », c’est-à-dire d’arrêter et redémarrer la combustion pour les faibles besoins, est aussi rencontrée pour le chaudières gaz et mazout possédant un niveau de modulation de puissance relativement faible. Pour les techniques gaz et mazout, idéalement, il faut aussi éviter ces cyclages. Néanmoins, la longueur des cycles de production est moins critique pour ces vecteurs énergétiques que pour le bois-énergie.
  • Le coût des chaudières au bois : Les chaudières au bois sont intrinsèquement plus chères que leurs homologues au gaz ou au mazout. Il n’y a rien d’alarmant à voir dans ce constat. En effet, avec le bois-énergie, on peut bénéficier d’un coût du combustible inférieur aux autres vecteurs énergétiques classiques. Du coup, le surinvestissement pour la chaudière au bois peut-être amorti. Après ce délai, on peut même engendrer des gains. Par contre, il peut être intéressant de ne pas choisir une chaudière au bois trop puissante pour limiter le coût et de réaliser les appoints de puissance par une chaudière traditionnelle, ces appoints étant relativement peu fréquents.

Dimensionnement de la puissance maximale des besoins

Comme il a été expliqué dans la section précédente, on part de la puissance maximale demandée au système de chauffage. Celle-ci est estimée en sommant les pertes par transmission, ventilation, infiltration avec une température externe égale à la température de base. Ensuite, on  complète éventuellement par une certaine marge de puissance afin d’assurer la relance (si on travaille en régime intermittent).

Dimensionnement de la chaudière bois : aspects techniques

Si on dimensionne la puissance nominale de la chaudière principale au bois sur la puissance maximale demandée au chauffage, elle ne pourra pas répondre à tous les appels de puissance du bâtiment. En effet, à température externe modérée, la modulation de la chaudière principale au bois ne pourra pas toujours descendre au niveau de puissance requis sans dégrader fortement son rendement voire la qualité de la combustion. Pour les faibles puissances, celles-ci devront être produites par une autre chaudière capable de travailler efficacement dans cette plage. Dans le diagramme ci-dessous, l’énergie produite par la chaudière principale au bois peut être comparée à l’énergie produite par l’appoint : il s’agit des aires sous la courbe.

 

Illustration sur la monotone de charge du taux de couverture d’une chaudière bois dimensionnée sur la puissance maximale.

Le fraction de la demande annuelle produite par la chaudière principale au bois s’appelle le taux de couverture. Pour optimiser la chaudière principale au bois, il faut maximiser ce taux de couverture. La manière de procéder consiste à ne pas dimensionner la puissance nominale de la chaudière sur la puissance maximale demandée au système de chauffage. Cela abaisse la puissance minimale qui peut être produite par la chaudière et on est donc à même de produire pour des températures extérieures plus modérées correspondant à des besoins relativement faibles. En fait, dans la monotone de charge, on sacrifie les pics de puissance qui n’ont lieu que pendant peu de temps pour intégrer les faibles puissances qui sont atteintes pendant une plus grande partie de l’année : le niveau de puissance que l’on retrouve pendant la majeure partie de la saison de chauffe s’appelle aussi charge de base. On peut se convaincre de l’intérêt de dimensionner à une puissance inférieure à la puissance maximale des déperditions avec la monotone de charge suivante où la production annuelle de la chaudière principale bois est supérieure au cas précédent  (c’est-à-dire quand la chaudière a une puissance nominale égale à la puissance maximale de besoin de chauffage).

Illustration sur la monotone de charge du taux de couverture d’une chaudière bois dimensionnée à une puissance inférieure à la puissance maximale.

On peut réaliser le même raisonnement pour différents niveaux de puissance nominale de chaudière principale au bois. Typiquement, on obtient un taux de couverture optimal avec une puissance de chaudière principale bois inférieure à la puissance maximale de besoin de chauffage : une puissance nominale trop faible donne des taux de couverture trop faibles et, au-delà de l’optimum, une puissance nominale trop proche de la puissance maximale réduit le taux de couverture. En fait, cet optimum dépend de la forme de la monotone de charge et donc varie d’un bâtiment, d’une institution, à l’autre.

Exemple d’évolution du taux de couverture en fonction du rapport entre la puissance de la chaudière (PN) et la puissance maximale des déperditions (QT).

Il faudra réaliser un appoint de puissance pour couvrir les besoins de puissance du bâtiment supérieurs à la puissance nominale de la chaudière bois. Cela s’opère par une chaudière d’appoint. Si cette chaudière d’appoint travaille sur base d’un vecteur énergétique autre que le bois, on dira que l’on travaille en mode bivalent. Dans certains cas, la chaudière d’appoint pourrait elle-même fonctionner au bois-énergie. Dans ce cas, on dira plutôt que l’on travaille avec des chaudières en cascade si le conditionnement est le même pour les deux chaudières.

Dimensionnement de la chaudière bois : aspects économiques

Les chaudières bois sont caractérisées par des coûts d’achat supérieurs aux chaudières traditionnelles gaz ou mazout. Du coup, il peut être intéressant de ne pas dimensionner la chaudière bois sur la puissance maximale de chauffage comme les puissances élevées sont appelées très peu souvent. On calibre la chaudière bois sur la charge de base pour qu’elle fonctionne un maximum de temps et que le surinvestissement pour la chaudière bois puisse s’amortir plus rapidement. C’est une seconde raison qui justifie un fonctionnement en mode bivalent.

Dans le point précédent, nous avions annoncé que la chaudière d’appoint pouvait fonctionner au bois. Pourtant, sur base de considérations économiques, l’intérêt de placer une chaudière traditionnelle gaz ou mazout est plus évident étant donné qu’elle est amenée à fonctionner pour des courtes périodes de la saison de chauffe. Néanmoins, dans certains cas, une chaudière d’appoint fonctionnant au bois-énergie semble pouvoir se justifier économiquement.  Tout dépend de la consommation annuelle que devra assurer cette chaudière, du coût et de la disponibilité du combustible pour l’institution qui utilisera cette chaudière.

Sécurité d’approvisionnement de chaleur : chaudière de soutien

Dans les considérations précédentes, on pourrait penser que la chaudière d’appoint a une puissance relativement faible, c’est-à-dire juste le complément de puissance nécessaire pour assurer, avec la chaudière principale au bois, le besoin maximal de chauffage. En fait, dans certains cas, la puissance de la chaudière d’appoint est supérieure à la puissance de la chaudière bois. En effet, on veut, pour certaines applications, garantir l’alimentation en chaleur du bâtiment même si la chaudière bois ne peut plus fonctionner (pour cause de panne, entretien, manque de combustible dans le silo). Ce problème de sécurité d’approvisionnement se pose pour tous les vecteurs énergétiques (gaz et mazout compris). La chaudière d’appoint aura un rôle de soutien (« backup ») pour pouvoir maintenir la température du bâtiment à un niveau acceptable même si la chaudière principale au bois ne peut plus fonctionnement temporairement, niveau qui n’est pas nécessairement égal à la température de consigne : on peut dans certains cas juste maintenir la température à une valeur modérée inférieure à la consigne, le temps de remettre la chaudière principale au bois en fonctionnement.

À titre d’exemple, on peut citer le cas de la chaufferie de Libin qui alimente un réseau de chauffage urbain. La chaudière principale est une chaudière à plaquettes de 550kW qui est dimensionnée pour répondre à 95% du besoin annuel de chaleur. Par conséquent, la chaudière d’appoint ne doit répondre qu’à 5% du besoin annuel. Néanmoins, cette chaudière travaillant au mazout présente une puissance nominale de 600kW afin de pouvoir servir de soutien en cas de panne de la chaudière principale.

Nombre de chaudières

Dans les considérations précédentes, nous avons essentiellement analysé le cas d’une seule chaudière bois principale qui assure la majeure partie de la production annuelle de chaleur. Le besoin d’une chaudière d’appoint a été longuement discuté. Si la puissance demandée est suffisamment importante, on peut aussi réaliser la production principale de chaleur sur base de plusieurs chaudières au bois-énergie. Cela permet, d’une part, de balayer une plage plus large de puissances sans devoir faire face au problème de « cyclage » et, d’autre part, de répondre à la question de la sécurité d’approvisionnement en cas de panne.

Exemples d’une installation composée de deux chaudières à pellets fonctionnant en cascade.


Dimensionnement des circuits de distribution

Le débit que doit véhiculer un circuit de distribution dépend de la puissance à fournir et du régime de dimensionnement des corps de chauffe.

Exemple

L’aile nord d’un bâtiment demande une puissance de chauffage (calcul des déperditions) de 50 kW à fournir par des radiateurs dimensionnés pour fonctionner en régime 90°/70°.

Le débit d’eau chaude nécessaire pour obtenir cette puissance de chauffage est égal à :

Débit = Puissance / (capacité thermique de l’eau x ΔT°)

= 50 [kW] / (1,16 [kWh/m³.K] x (90 – 70)[K]) 

= 2,16 [m³/h]

La section des conduites se déduit de la relation :

section = débit / vitesse

Plus les conduites de distribution sont étroites, pour assurer ce débit, plus la vitesse de l’eau est élevée, avec pour conséquences :

  • l’augmentation du bruit,
  • l’augmentation des pertes de charge et de la consommation électrique du circulateur,
  • la difficulté de réglage de l’installation.

En contre-partie, le coût des conduites est moindre.

Deux techniques sont possibles pour dimensionner le diamètre des conduites :

  • se fixer une vitesse maximale constante (par exemple 0,5 m/s) dans tout le réseau,
  • ou se fixer une perte de charge constante pour chaque tronçon (par exemple, 120 Pa/m).

La première méthode donne généralement d’importants diamètres (investissement élevé, mais consommation des circulateurs moindres). La deuxième méthode peut donner des vitesses de circulation élevées et des problèmes acoustiques.

Dans son rapport n°1 de 1992, CSTC conseille de combiner les deux méthodes :

  • pour les diamètres réduits (DN10-20), limiter la vitesse de l’eau à 0,4 m/s pour des raisons acoustiques,
  • augmenter cette vitesse à 0,8 .. 1,2 m/s dans les grands diamètres (> DN50) si les conduites parcourent des locaux inoccupés, pour des raisons économiques,
  • ne pas dépasser une perte de charge de 120 Pa/m pour les tronçons intermédiaires pour limiter les pertes de charge.

Ce n’est évidemment pas au responsable technique à dimensionner les conduites. Il peut cependant s’interroger sur les grandeurs de référence maximale utilisées par le bureau d’études lors de la conception. Par exemple, si on dimensionne les conduites pour une perte de charge linéaire de 50 Pa/m au lieu de 120 Pa/m, la puissance absorbée par le circulateur diminuera de 30 .. 40 %. Le prix des conduites augmentera de 4 .. 8 %.


Dimensionnement des circulateurs

Le dimensionnement correct des circulateurs est un poste important qui va conditionner non seulement la consommation électrique de l’installation, mais aussi son confort.

Malheureusement, on ne calcule pas toujours précisément l’installation parce que cela prend du temps et que cela coûte plus cher que de mettre un circulateur trop gros.

On peut se faire une idée du dimensionnement correct des circulateurs en comparant la puissance électrique de ces derniers à la puissance des chaudières. Attention cependant, cette méthode ne peut convenir que pour vérifier le dimensionnement. Elle ne peut en aucun cas servir au dimensionnement d’un nouveau circulateur qui doit se faire en calculant les pertes de charge du réseau.

Simulation du rapport entre puissance électrique du circulateur Pe en [W] et la puissance des chaudières Pth [kW] en fonction du volume du bâtiment, pour plusieurs circulateurs présents sur le marché. Hypothèses de calcul : régime de température avec DT = 20 °C (ex : 90°/70 °C), pertes de charge linéiques de 0,01 [mCE/m] et pertes de charge de la chaudière et des organes de régulation de 1 [mCE/m] (valeurs réalistes et représentatives de la pratique). (Source : Cyssau, Mortier et Palenzuela, revue CVC, novembre 2000).

  1. pour le circulateur avec rendement moyen,
  2. pour les circulateurs avec rendement élevé,
  3. pour les circulateurs avec rendement faible. Le rapport PE/Pth ne dépasse 2 que pour des circulateurs ayant un rendement faible

Les Suisses (programme d’impulsion RAVEL) considèrent qu’une installation équipée de radiateurs normalement dimensionnée doit vérifier la relation :

puissance électrique d’un circulateur PE en [W] =
puissance thermique du réseau qu’il alimente Pth [kW]

En tout cas si :

puissance électrique d’un circulateur PE en [W] =
2 x puissance thermique du réseau qu’il alimente Pth [kW]

Il est fort probable que le circulateur choisi soit surdimensionné ou que son rendement soit mauvais.

La puissance thermique de chaque réseau a dû être calculée par le bureau d’études, car elle est nécessaire pour établir le débit d’eau à fournir. On peut également la vérifier par une méthode approximative, circuit par circuit. Par extrapolation, on peut également dire que les circulateurs sont globalement bien dimensionnés si :

puissance électrique de tous les circulateurs PE en [W] =
puissance thermique des chaudières Pth [kW]

Comme pour les circulateurs de moins de 1 kW, les constructeurs ne fournissent pas la puissance électrique absorbée des circulateurs pour chaque point de fonctionnement, on se basera pour établir la puissance électrique du circulateur choisi sur la relation :

puissance électrique du circulateur [W] =
90 % de la puissance lue sur la plaque signalétique [W]


Dimensionnement des corps de chauffe

Comme mentionné dans « Le choix des corps de chauffe« , dimensionner les corps de chauffe pour un régime de température de 70°/50° au lieu du 90°/70° traditionnel augmente les performances des chaudières à condensation. Cependant, le surcoût de ce surdimensionnement ne sera pas vite rentabilisé. Si ce temps de retour est considéré comme excessif, un bon compromis est alors de choisir le régime 80°/60°.

Exemple.

Le coût global d’une installation de chauffage de 400 kW dans un nouveau bâtiment de 4 000m² est de l’ordre de 120 000 … 180 000 €.

Ce coût peut être comparé au surcoût lié au choix de radiateurs dimensionnés en régime 70°/50°, soit un supplément de puissance installée de 69 % : environ …10 000… €.

> Quel est le gain réalisable sur le rendement de la chaudière à condensation ?

Lorsque les radiateurs sont dimensionnés en régime 90°/70° (sans surdimensionnement), la température moyenne de retour des radiateurs sur l’ensemble de la saison de chauffe est de l’ordre de 43 °C (avec une régulation en température glissante). Avec des radiateurs dimensionnés en régime 70°/50°, cette même température sera d’environ 33 °C.

Pour une chaudière à condensation performante dans laquelle la température des fumées à la sortie est supérieure de 3 °C à la température de retour de l’eau, le graphe suivant montre qu’en diminuant la température moyenne de l’eau de retour de 10 °C, le rendement moyen de la chaudière à condensation augmente de 6 %.

Rendement utile d’une chaudière gaz en fonction de la température des fumées et de l’excès d’air (n = 1,3 équivaut à un excès d’air de 30 %). Pour un excès d’air de 20 %, une température de retour 43° C (équivalent à une température de fumée de 46 °C) équivaut à un rendement utile de 97 %, une température de retour de 33 °C (équivalent à une température de fumée de 36 °C), à un rendement utile de 103 %.

Sur une consommation de l’ordre de 50 000 m³ de gaz, cela équivaut à une économie de l’ordre de 3 000 m³ de gaz par an.

> Que conclure ?

Le surcoût d’installation des radiateurs est donc non négligeable… D’autant que l’économie faite par la chaudière est déjà comptabilisée dans la justification de son propre surcoût…

En fait, de toute façon un surdimensionnement des radiateurs de 27 % (régime 80/60) est de rigueur (pour assurer la relance), donc la température moyenne de l’eau de retour est de 39 °C. Par ailleurs, les apports internes vont créer un surdimensionnement de facto de l’installation. Donc, même si tout abaissement de température est bénéfique pour le CO2, il ne semble donc pas que ce soit sur ce poste qu’il faille mettre l’investissement prioritaire. Il sera beaucoup plus important de s’assurer que le circuit hydraulique provoque un réel retour d’eau froide vers la chaudière (pas de bypass de chaudière, ni de soupape différentielle, par exemple).

Le même principe peut être appliqué aux autres utilisateurs comme les batteries à eau chaude dans les groupes de traitement d’air, les ventilos-convecteurs ou encore la production d’eau chaude sanitaire.

Ces équipements travaillent généralement à plus haute température. Il est conseillé de les surdimensionner pour diminuer leur température de fonctionnement, par exemple en leur appliquant un régime de fonctionnement du type 70°/40° ou 90°/45° (batteries à eau chaude, échangeurs à plaque fonctionnant avec une température de sortie de 40°.45°). Cette pratique qui, pour les batteries, n’est pas encore rentrée dans les habitudes, conduit à un surinvestissement rentabilisé par l’exploitation.

Définir la rentabilité d’un projet « Pompe à chaleur »

Définir la rentabilité d'un projet "Pompe à chaleur"


Avis Important aux Lecteurs (mars 2024)

Cet article présente des informations basées sur les données et le contexte de 2007 concernant les pompes à chaleur (PAC). Bien que les principes fondamentaux et les concepts expliqués restent pertinents, il est important de noter que l’article restera inchangé et peut ne pas refléter les dernières avancées technologiques, les changements dans le marché de l’énergie, ou les évolutions des politiques d’incitation financière. En gardant cela à l’esprit, voici quelques conseils pour aider les lecteurs à mettre en perspective les informations fournies :

  1. Considérez l’Évolution des Technologies : Les technologies des PAC ont considérablement évolué depuis 2007, offrant de meilleures performances et une efficacité accrue. Les valeurs de COP mentionnées peuvent donc avoir été dépassées par les modèles plus récents.
  2. Tenez Compte des Changements dans le Mix Énergétique : La consommation en énergie primaire et les émissions de CO2 liées à l’utilisation des PAC peuvent avoir changé, notamment en raison d’une part accrue des énergies renouvelables dans le mix énergétique.
  3. Actualisez les Informations sur les Coûts : Les données sur les coûts d’investissement et d’utilisation des PAC, ainsi que les incitations financières disponibles, peuvent avoir évolué. Il est conseillé de consulter des sources actuelles pour des estimations de coûts et de rentabilité plus précises.
  4. Recherchez les Dernières Subventions et Incitations : Les programmes de subventions et les incitations fiscales pour l’installation de PAC sont susceptibles d’avoir changé. Il est important de se renseigner sur les aides financières les plus récentes pour maximiser la rentabilité de votre investissement.
  5. Évaluez l’Impact Environnemental Actuel : Les impacts environnementaux des PAC, notamment en termes d’émissions de CO2, doivent être évalués à l’aune du mix énergétique actuel et des avancées dans les technologies de production d’électricité.

Nous invitons les lecteurs à utiliser cet article comme une base de connaissances tout en recherchant des informations supplémentaires et à jour pour prendre des décisions éclairées concernant l’utilisation des pompes à chaleur dans le contexte énergétique et environnemental actuel.

Une efficacité dépendante de la performance de la pompe

Quelle efficacité en énergie primaire si la PAC fonctionne avec l’électricité du réseau belge ?

A en croire certains fabricants, la pompe à chaleur « crée » de l’énergie gratuite « récupère » l’énergie solaire gratuite et renouvelable…

En analysant le bilan énergétique, on constate en effet que pour 3 kWh thermiques fournis, environ 2 kWh thermiques peuvent provenir de l’air extérieur ou de l’eau d’une rivière, donc des sources d’énergie renouvelable. Néanmoins, pour fonctionner, elle utilise alors 1 kWh d’énergie électrique. Or la production électrique provenant du réseau a un rendement moyen de 35 % (qui provient la production et des pertes de transport et distribution de l’électricité). Il faut donc approximativement 3 kWh en centrale pour donner 1 kWh à la PAC, … qui fournira 3 kWh en chaleur. Sur base de cette analyse, on voit que le potentiel de réduction de consommation en énergie primaire par rapport à un chaudière traditionnelle au gaz ou mazout n’est pas si évident. Sur base de chiffres plus précis, il est effectivement possible de démontrer que les PAC permettent un réduction de la consommation en énergie primaire. Néanmoins, comme montré dans le raisonnement ci-dessus, il faut s’attendre à une réduction de dizaines de pour cent, mais pas une diminution drastique par un facteur 2 ou 3.

Remarque : Par rapport au chauffage à résistances électriques, le chauffage par pompe à chaleur est donc écologiquement beaucoup plus performant. Mais si le maître d’ouvrage envisage de remplacer ses accumulateurs, il va ouvrir la comparaison à l’ensemble des moyens de chauffage …

Les performances en termes d’énergie primaire dépendent essentiellement de deux facteurs, le coefficient de performance annuel (COPA) ainsi que le facteur de conversion en énergie primaire, que nous appellerons ici « f », de l’électricité disponible sur le réseau belge. Nous reprenons ci-dessous la valeur de COPA pour les différents types de PAC selon trois sources différentes. Dans les deux dernières colonnes, on reprend la valeur minimale et maximale de COPA que l’on considère dans les estimations de performance que nous allons réaliser dans cette page.

Type COPA (Source 2009 : EF4, facilitateur PAC de la Région wallonne) COPA (Source 2008 : Paul Cobut, Energy Saving Services) COPA (Source : rapport Ministerie van de Vlaamse Gemeenschap, ANRE) COPA minimum calcul COPA maximum calcul
Air-Air 2.8-3.5 2.7 2.5 3.5
Air-Eau 2.5-3.5 3.0-3.5 2.7 2.5 3.5
Eau-Eau 3-4.5 3.0-3.8 3.0 4.5
Eau glycolée-Eau 3-4 3.2-4.0 3.2-3.6 3.0 4.0
Sol-Eau 3-4 3.2-4.0 3.2-3.6 3.0 4.0
Sol-Sol 3-4 3.2-4.0 3.2-3.6 3.0 4.0
ECS 2.5-3.0 2.0 3.0

Synthèse des différentes valeurs de COPA diffusées par différentes sources : le facilitateur PAC de la Région wallonne, EF4, un spécialiste de la PAC en Belgique, Paul Cobut, un rapport du ministère du Ministère de la Communauté flamande sur l’installation des  PAC.

La quantité d’énergie primaire consommée par kWh d’énergie thermique utile est calculée pour les différents types de PAC : plus la valeur est faible et plus la technologie est intéressante au niveau de la consommation en énergie primaire. À titre comparatif, les chaudières au gaz et au mazout se situent approximativement autour de 1.2-1.3.

On considère un scénario conservatif avec les valeurs les plus basses de COPA et un scénario positif avec les valeurs maximales. Premièrement, on considère un facteur de conversion pour l’électricité de notre réseau de 3.1. Cela veut dire que pour obtenir 1 kWh électrique en distribution, il faut compter 3.1 kWh en énergie primaire. Cette valeur correspond au cas réel de notre réseau qui produit essentiellement son électricité sur base d’énergie nucléaire (approximativement 60 %). A titre indicatif, on peut considérer la valeur de facteur de conversion prescrite par la PEB qui correspond à la part non nucléaire du réseau.

Type COPA minimum calcul COPA maximum calcul Rapport Eprimaire/Eutile pour f = 3.1 et COPA minimum Rapport Eprimaire/Eutile pour f= 3.1 et COPA maximum Rapport Eprimaire/Eutile pour f =2.5 (PEB) et COPA minimum Rapport Eprimaire/Eutile pour f = 2.5 (PEB) et COPA maximum Rapport Eprimaire/Eutile par ANRE
Air-Air 2.5 3.5 1.25 0.88 1.0 0.71 0.9
Air-Eau 2.5 3.5 1.25 0.88 1.0 0.71 0.9
Eau-Eau 3.0 4.5 1.0 0.68 0.83 0.55 0.66-0.83
Eau glycolée-Eau 3.0 4.0 1.0 0.77 0.83 0.62 0.76
Sol-Eau 3.0 4.0 1.0 0.77 0.83 0.62 0.73
Sol-Sol 3.0 4.0 1.0 0.77 0.83 0.62 0.73
ECS 2.0 3.0 1.5 1.0 1.25 0.83

Rapport entre consommations en énergie primaire et énergie utile pour les différentes technologies de PAC suivant deux scénarios de COPA (conservatif et optimiste) et deux facteurs de conversion de l’électricité du réseau en énergie primaire.

Si on prend l’hypothèse la plus défavorable de COPA minimum avec un facteur de conversion de 3.1 (avec nucléaire), on voit que le rapport entre énergie primaire et énergie thermique utile délivrée est du même ordre de grandeur que pour les chaudières gaz ou mazout. Seule la production d’ECS donne des résultats moins intéressants. Par contre, dès que l’on travaille avec les meilleures performances de PAC (COPA max), les valeurs sont nettement plus intéressantes. Sur base de cette observation, nous proposons la conclusion suivante : avec les COPA attendu les plus faibles, les PAC sont aussi performantes que les chaudières en ce qui concerne l’énergie primaire, par contre, en travaillant sur base des meilleures performances, un gain substantiel est possible.

Cela met aussi clairement en évidence l’intérêt de travailler avec dans les meilleures conditions pour obtenir les meilleures performances : bon matériel, bonne conception, bonne régulation et bon maintien, entretien de l’installation. La qualité est un aspect très important. Il existe un label au niveau wallon pour l’installation des pompes à chaleur, le label PACQUAL : voir ouverture d'une nouvelle fenêtre ! le site internet de RBF (Renewable Buiseness Facilitateur) qui représente les intérêts d’entreprises wallonnes actives dans le renouvelable.

Logo du label PACQUAL (Source : ouverture d'une nouvelle fenêtre !  site internet RBF).

Quelle efficacité en émission de CO2 si la PAC fonctionne avec l’électricité du réseau belge ?

Comme pour l’analyse de la consommation en énergie primaire, le coefficient de performance annuel de la PAC, le COPA, est un paramètre de première importance.  Les valeurs introduites dans le tableau ci-dessus, valeurs typiques minimales et maximales, seront reprises pour l’évaluation des émissions de CO2. En ce qui concerne l’électricité du réseau, nous tenons compte de la production des centrales nucléaires. Cela donne une émission de 302 grammes d’équivalents-CO2 par kWh électrique consommé sur le réseau. À titre comparatif, nous avons placé dans le tableau les émissions caractéristiques de CO2 pour un chauffage direct par l’électricité et par une chaudière au gaz (dont on considère que le rendement saisonnier est de 90 %, le cycle complet du combustible avec 232 grammes d’équivalent-CO2 produits par kWh thermique final).

Type COPA minimum calcul COPA maximum calcul Emission de CO2 : COPA mininmum [gramme équivalent CO2/kWh] Emission de CO2 : COPA maximum [gramme équivalent CO2/kWh]
Air-Air 2.5 3.5 120 86.28
Air-Eau 2.5 3.5 120 86.28
Eau-Eau 3.0 4.5 100 67.11
Eau glycolée-Eau 3.0 4.0 100 75.5
Sol-Eau 3.0 4.0 100 75.5
Sol-Sol 3.0 4.0 100 75.5
ECS 2.0 3.0 151 100
Chauffage électrique direct 302 302
Chauffage au gaz naturel 257 257

Émission de CO2 pour les différentes technologies de PAC suivant les deux scénarios de performance COPA.

Le résultat est sans appel : quelque soit le niveau de performance, COPA, considéré, les PAC émettent nettement moins de CO2 que le chauffage traditionnel et, évidemment, que le chauffage électrique direct. C’est parfois un argument qui est avancé pour promouvoir l’installation des pompes à chaleur. Cet argument est correct, mais nous tenons néanmoins à donner une nuance. Le lecteur pourra ainsi se faire sa propre opinion.

Ces performances en émission de CO2 des PAC proviennent essentiellement de la structure de la production électrique en Belgique, essentiellement dominée par les centrales nucléaires. Sur base des analyses de bilan CO2 actuelles, le nucléaire émet très peu de CO2. Dans le débat, il faut savoir aussi que certains groupes remettent en question cette hypothèse de départ.  D’après ceux-ci, la production d’énergie par centrales nucléaires contiendrait beaucoup d’ « énergie grise » (pour la construction, démantèlement, gestion des déchets, …). Comme les centrales nucléaires émettent relativement peu de CO2 et que les PAC consomment de l’électricité, les émissions de CO2 sont donc relativement plus faibles, ce qui est tout bénéfice pour éviter le réchauffement climatique. Néanmoins, il ne faut pas perdre de vue que le nucléaire produit des déchets qui peuvent être potentiellement très dangereux pour l’environnement. La problématique des déchets nucléaires est un sujet bien connu. En conclusion, on a, quelques part déplacé le risque du réchauffement climatique (CO2) vers le danger des déchets nucléaires.

Quelle efficacité environnementale si la PAC fonctionne avec l’électricité produite de manière renouvelable ?

Les conclusions données précédemment considéraient que l’électricité consommée par la PAC provenait du réseau, réseau essentiellement dans son état actuel. Les conclusions sont tout à fait différentes si on considère que l’électricité qui alimente la PAC est produite sur base d’énergie renouvelable. Dans ce cas, les performances environnementales des PAC sont remarquables.

Quelle rentabilité financière ? Investissement et coût à l’utilisation

Une installation de chauffage basée sur une PAC est généralement plus chère à l’investissement qu’une installation équivalente basée sur des chaudières traditionnelles. On l’observe du moins clairement dans le secteur domestique. Par contre, pour le domaine du tertiaire, nous manquons d’information.

En ce qui concerne le coût d’utilisation, les frais liés à la consommation d’électricité, le coefficient de performance annuel, COPA est encore central.

Nous allons reprendre notre petite étude avec la plage de valeurs de COPA rencontrées en pratique. Le prix de l’électricité est pris à 192 c€/kWh en heures pleines et 105 c€/kWh en heures creuses. Le prix du gaz est fixé à 70 c€/kWh. Ces valeurs sont caractéristiques du secteur domestique en juin 2009 (Source : Apere, Renouvelle). Les calculs suivants sont bien sûr des instantanés dans la mesure où le prix de l’énergie est amené à évoluer dans le temps.

Type COPA minimum calcul COPA maximum calcul Coût : COPA minimum [c€/kWh] (elec de jour) Coût : COPA maximum [c€/kWh] (elec de jour)
Air-Air 2.5 3.5 76.8 54.8
Air-Eau 2.5 3.5 76.8 54.8
Eau-Eau 3.0 4.5 64 42.6
Eau glycolée-Eau 3.0 4.0 64 48
Sol-Eau 3.0 4.0 64 48
Sol-Sol 3.0 4.0 64 48
ECS 2.0 3.0 96 64
Chauffage électrique direct
(élec. de jour)
192 192
Chauffage électrique accumulation
(élec. de nuit)
105 105
Chauffage au gaz naturel 77.8 77.8

Coût du kWh thermique utile produit pour des PAC fonctionnant avec l’électricité de jour (heures pleines). Le prix de l’énergie est aligné sur le secteur domestique à la date de juin 2009.

Le Tableau ci-dessus considère que les PAC fonctionnent essentiellement sur l’électricité de jour, en heures pleines durant lesquelles les prix sont les plus élevés. C’est donc un cas assez défavorable. Comparé à un système conventionnel comme une chaudière au gaz, on voit que les PAC air-air et air-eau sont comparables au gaz avec les COPA faibles. Pour les autres approches, l’énergie fournie est légèrement moins chère que le gaz. Par contre, en considérant les meilleures performances, on obtient des prix sensiblement plus intéressants que le gaz. Cela met encore une fois en évidence l’importance d’installations de PAC qui fonctionnent de manière optimale, et donc, présentant les meilleurs COPA.

On voit donc l’équilibre qu’il faut atteindre pour réaliser une installation rentable basée sur une PAC. L’investissement sera généralement plus cher que pour une chaudière traditionnelle, mais le coût d’utilisation sera moindre. Ces gains durant la durée d’utilisation du matériel doivent contrebalancer ce surinvestissement.  Dans ce genre de calcul, on considère typiquement que la durée d’utilisation d’une pompe à chaleur ou une chaudière est de 20 ans. En d’autres termes, il faut récupérer les surinvestissements sur ces 20 années au maximum pour que le projet soit rentable.

Dans les calculs précédents, nous avons supposé que la PAC fonctionnait avec l’électricité de jour, en heures pleines. En fait,  il est possible de stocker en partie la chaleur fournie par la PAC durant la nuit (chauffage par le sol, par ex.) et donc d’avoir une partie substantielle du coût en électricité de nuit. Néanmoins, cette gestion détériore le rendement du système de chauffage (forte inertie, difficulté de régulation en période ensoleillée, air extérieur plus foid la nuit si PAC Air/eau, …). En conclusion, il est difficile d’établir un prix du kWh en travaillant de cette manière.

Pourquoi ne trouve-t-on pas plus de pompes à chaleur dans nos maisons ?…

Supposons une PAC air-air. Elle doit fonctionner avec du courant de jour. Pour le particulier, le prix du kWh électrique est 3 x plus élevé que le prix du kWh thermique (gaz, fuel, …). Avec un COPA inférieur à 3, la rentabilité financière n’existe plus pour la PAC… Malgré un rendement de près de 300 % sur l’énergie électrique fournie, c’est pratiquement aussi cher que de produire la chaleur par un système traditionnel au gaz ou au fuel…

Supposons une PAC air-eau, avec un système de chauffage par le sol. Cette fois, l’inertie du chauffage par le sol permet d’utiliser le courant de nuit dont le prix du kWh est de l’ordre de 2 fois celui du kWh thermique. Ainsi, la PAC se justifie beaucoup mieux. Seul inconvénient : la régulation du chauffage par le sol est difficile (quelle charge du sol durant la nuit ? Quel temps fera-t-il demain ? Si les occupants sont absents toute la journée, pourquoi chauffer ? Si le sol est déjà chaud, l’arrivée des rayons solaires va provoquer une surchauffe…) et le système reperd une part de sa rentabilité par les pertes de régulation …

Bien sûr, l’usage de la PAC est nettement plus logique que le chauffage électrique, direct ou à accumulation. Ces derniers systèmes devraient d’ailleurs être interdits, pour protéger le consommateur(dépendant du choix fait par des promoteurs immobiliers) et la société (bilan écologique désastreux).


Une performance dépendant de divers facteurs

Dans la section précédente, nous avons clairement mis en évidence l’importance de travailler avec les meilleurs COPA pour atteindre les meilleures rentabilités et performances environnementales (analysées ici en termes d’émission d’équivalent CO2 et de consommation en énergie primaire).

Ce coefficient de performance annuel, COPA, dépend de multiples facteurs faisant référence à tous les aspects d’un bâtiment. C’est pourquoi, pour assurer les meilleures performances, tous ces critères doivent être respectés au sein d’une approche globale. Suivant les présentations techniques de Paul Cobut (Energy Saving Services) de 2009, les différents paramètres influençant le COPA sont répertoriés de la manière suivante :

  • Les performances du matériel en tant que tel, de la PAC : Celles-ci sont traduites par le COP évalué en laboratoire dans des conditions d’essai reprises dans des normes. Il faut donc être vigilant par rapport à du matériel proposé par des fabricants ou installateurs dont les performances n’ont pas été certifiées.
  • La zone climatique : Si on travaille avec l’air extérieur comme source froide, les performances seront d’autant meilleures que la température extérieure sera élevée. Les performances annuelles de la PAC seront donc influencée par la zone climatique à laquelle on appartient.  On peut se rendre de compte de l’évolution des conditions météorologiques à l’échelle de notre territoire en analysant l’évolution des degrés-jours suivant les différentes localités.
  • Le type de chauffage : On a aussi bien développé l’influence du type de source chaude ainsi que leurs caractéristiques. De manière générale, on favorise les émetteurs basse température, que ce soit un chauffage par le sol ou par radiateurs basse température, pour atteindre la différence de température la plus faible entre la source chaude et froide et ainsi atteindre les meilleurs COP.
  • Le mode de vie : Sur base de ce constat, on peut aussi en déduire que le mode de vie, la façon dont les occupants gèrent la consigne de température dans le bâtiment a une influence : augmenter la température de consigne est équivalent à augmenter la température de la source chaude et donc synonyme de COP plus faible.

   

Affiches tirées de la partie Sensibilisation

.

  • Le mode de régulation : De même, l’influence du mode de régulation a été développée dans une autre page. Il s’agit d’une part, de la régulation de la PAC (mode « tout ou rien », avec « by-pass » ou « modulation de fréquence) mais aussi de la régulation de la PAC avec son appoint.
  • Fonction simple ou mixte : Le fait que la PAC doive produire la chaleur pour le chauffage des pièces et de l’ECS (fonctionnement mixte). La production d’ECS demande une température de la source chaude plus élevée (notamment pour la stratégie d’élimination du risque de légionnelles). Du coup, les performances seront plus faibles que pour le chauffage des locaux. Dans les raisonnements ci-dessus, un COPA distinct pour la production d’ECS a été considéré.

Une campagne de mesure sur site en Belgique

Généralement, les fiches techniques des fabricants de pompes à chaleur indiquent un COP instantanés mesuré en usine dans des conditions idéales. Les valeurs proposées sont donc peu instructives pour un calcul de rentabilité.
La Faculté Polytechnique de Mons procède à une campagne de mesure des performances de pompes à chaleur à usage domestique (chauffage d’habitation) dont les résultats partiels (après 5 mois d’études) sont les suivants :

PAC Air/ Air

Une première installation, d’une puissance de 13,4 kW + appoint électrique de 7,5 kW a donné un COP moyen mesuré sur 5 mois de 2,15 (2.63 si on considère uniquement la pompe à chaleur). Le COP annoncé par le fournisseur était de 3,53 dans des conditions de température intérieure de 20°C et extérieure de 7°C.
Une seconde installation, d’une puissance de 10.5 kW + appoint électrique de 2,5 kW a donné un COP moyen mesuré sur 5 mois de 1,41 (1,74 si on considère uniquement la pompe à chaleur). Le COP annoncé par le fournisseur était de 3,09 dans des conditions de température intérieure de 21°C et extérieure de 8°C.

PAC Air/ Eau

Une première installation, d’une puissance de 10,4 kW + convecteurs électriques d’appoint dans certaines pièces et résistance électrique d’appoint sur le circuit, a donné un COP moyen mesuré sur 5 mois de 2,08 (3 si on considère uniquement la pompe à chaleur). Le COP annoncé par le fournisseur était de 3,92 dans des conditions de température extérieure de 7°C et d’eau de chauffage de 35°C.
Une seconde installation, d’une puissance de 16,28 kW + convecteurs électriques d’appoint dans certaines pièces (700 W) et résistance électrique d’appoint sur le circuit (6 kW) a donné un COP moyen mesuré sur 5 mois de 2,8 (3,45 si on considère uniquement la pompe à chaleur). Le COP annoncé par le fournisseur était de 4,35 dans des conditions de température extérieure de 7°C et d’eau de chauffage de 35°C.

PAC Sol/Sol

Une première installation couvrant une partie de l’habitation (125 m²), d’une puissance de 10,1 kW + 3 appoints électriques dans les pièces chauffées par la PAC (total = 3,25 kW) et 5 appoints dans les pièces non chauffées (total = 4,25 kW), a donné un COP moyen mesuré sur 5 mois de 2,54. Le COP annoncé par le fournisseur était de 3,99 dans des conditions – 5°C/30°C (surchauffe de 10°C et sur refroidissement nul).
Une seconde installation couvrant une partie de l’habitation (75 m²), d’une puissance de 6.8 kW + 3 appoints électriques dans les pièces chauffées par la PAC (total = 3 000 W) et 4 appoints dans les pièces non chauffées (total = 4 250 W), a donné un COP moyen mesuré sur 5 mois de 2,91. Le COP annoncé par le fournisseur était de 4,45 dans des conditions – 5°C/30°C (surchauffe de 10°C et sur refroidissement nul).
De quoi remettre les pendules à l’heure…

Frais d’investissement

Le principal facteur influençant le coût d’investissement de la PAC est la puissance du compresseur. Plus elle sera élevée, plus la pompe à chaleur sera chère.

Pour les petites puissances, la relation théorique entre la puissance du compresseur Qc et le coût d’investissement (CI) est de l’allure suivante pour les PAC Air/Eau et Eau/Eau :

CI = 2 500. (QC) 0,4

Frais d’investissement pour les PACs Air-Eau et Eau-Eau (Source KUL).

À cela, il ne faut pas oublier d’ajouter le coût du réseau de distribution (chauffage par le sol, par exemple) et des différents appareils annexes (compteur électrique,…). Pour les PAC bivalentes, il faut aussi tenir compte du coût de la chaudière traditionnelle.

Les ordres de grandeur des coûts d’investissement pour des pompes à chaleur de 10 à 12 kW présentes sur le marché belge (puissances typiques pour un logement d’une surface habitable de 150 m² isolée au niveau d’isolation K55) sont repris ci-dessous. Ces coûts comprennent les équipements d’appoints. Il est probable que ces coûts vont diminuer dans les prochaines années.

Système COPs
(y compris pertes de distribution)
Coûts d’investissement
pour une puissance installée
de 10 à 12 kW [€]
Air/ Air 2.5 8 750 à 9 400
Air/ Eau 2.9 9 400 à 10 500
Sol/ Eau 3.3 11 250 à 13 750

Source : Institut de Conseils et d’Études en Développement Durable (ICEDD).

Néanmoins, l’utilisateur peut avoir intérêt à choisir des pompes de forte puissance. En effet, ramené au kW, les frais d’investissement décroissent avec la puissance. À titre d’exemple, voici l’évolution des frais d’investissement de pompes à chaleurs en Suisse en 1992 en fonction de la puissance nominale de chauffage (source Ravel). On voit ainsi que plus l’installation sera puissante, moins le kW thermique installé sera cher.

À noter qu’une pompe à chaleur n’a besoin ni de cheminée, ni de citerne, ce qui permet de réduire le coût du gros œuvre.

Dans les études de rentabilité des PAC, on considère typiquement que le durée d’utilisation de l’installation est de 20 ans. A titre d’exemple, les expériences d’installations aux États-Unis (on estime à environ 940 000 le nombre d’installations ces dernières années) indiquent des durées de vie moyennes de l’ordre de 17 ans.

Dans le cas particulier des pompes domestiques alimentées par nappe phréatique, il faut tenir compte du coût du forage (de 500 à 850 € par mètre) et de frais annexes : étude de faisabilité (850 à 2 500 €), analyse de l’eau (850 €). Ces valeurs sont uniquement des ordres de grandeur indicative.

Si la demande de puissance est plus importante, les frais d’investissement seront plus lourds :

Puissance nominale du chauffage [kW] Diamètre du puits [mm] Frais spécifiques [€/m]
< 70

71 à 140

141 à 550

150

300

800

200 à 250

300 à 400

350 à 500

Source : Ravel-Suisse. (Chiffres de 1995).

Le coût des installations géothermiques à forage vertical est aussi très important : entre 600 et 900 € par kW de chaleur récupérée, à savoir 55 à 65 € le mètre de profondeur et un besoin d’une quinzaine de mètres par kW.


Frais d’exploitation

Il est impossible d’évaluer simplement la consommation d’une PAC d’un bâtiment tertiaire, d’autant que celle-ci reprend souvent autant des consommations de chaud que de froid. Seule une simulation informatique peut atteindre cet objectif, avec un encodage lourd des caractéristiques du bâtiment et de ses critères d’exploitation.

Méthode proposée par Electrabel pour le domestique

Par contre, selon Electrabel, une estimation des consommations d’une pompe à chaleur domestique peut être calculée a priori selon la formule :

Où,

  • K1 est un facteur tenant compte du ralenti de nuit éventuel. En cas de ralenti, il vaut 0.85 si PAC air/air et 0,9 si PAC air/eau,
  • K2 est un facteur prenant en compte l’occupation ou la non-occupation de jour,

Régime d’occupation

K2
Occupation de jour
Non-occupation de jour PAC air/air
Non-occupation de jour PAC air/eau
1
0.90
0,95
  • K3 est un facteur prenant en considération l’impact d’un chauffage auxiliaire par convecteurs électriques,

Watts aux. /
PAC Watts + 7°C

K3 si air/air K3 si air/eau
0.15
0.20
0.25
0.30
0.35
1.15
1.19
1.23
1.25
1.30
1.17
1.21
1.26
1.30
1.35
  • K4 est un facteur de rendement de la pompe à chaleur relatif à sa température d’équilibre (= T° correspondant à la puissance de dimensionnement de la PAC) et à la température minimale extérieure. C’est la valeur inverse du COP annuel (COPA),
K4 si air/air
équilibre PAC équilibre PAC
T°min. ext. [°C] – 5 < T° éq. < – 2 – 3 < T° éq. < 0
> = – 10°C
< – 10°C
0.37
0.40
0.38
0.44
K4 si air/eau
équilibre PAC équilibre PAC
min. ext. [°C] – 5 < T° éq. < – 2 – 3 < T° éq. < 0
> = – 10°C
< – 10°C
0.34
0.37
0.35
0.41

Pour les pompes bivalentes parallèles, les choses sont plus compliquées. Les paramètres deviennent très nombreux et il est difficile de formuler des règles générales. Cependant, il est important de voir qu’il existe, en fonction de la situation et des équipements choisis, une puissance de dimensionnement qui minimise les coûts annuels.

Globalement, les PAC domestiques bivalentes sont plus économiques que les monovalentes, puisque la chaudière supplée à la PAC lorsque celle-ci présente son plus mauvais rendement. Mais l’investissement est plus important.


Temps de retour de l’investissement

Le temps de retour de l’investissement est calculé par sur base du surinvestissement par rapport aux systèmes de chauffage classiques et du bénéfice fait annuellement sur les frais de fonctionnement (aussi appelé ci-dessous frais d’exploitation). Il est bien sûr dépendant de l’efficience de la pompe installée, de son prix à l’achat, de sa puissance, du coût de l’énergie,…

Pompe à chaleur domestique : nos estimations en 2009

Sur base de nos estimations dans le domestique, hors subsides, primes et incitants fiscaux, les pompes à chaleur peuvent être intéressantes économiquement si on peut compter sur les meilleures performances annuelles COPA (dont les valeurs cibles réalistes sont reprises dans le tableau ci-dessus). Dans ce cas, on est en mesure d’amortir en un temps inférieur à la durée d’utilisation de la PAC (c’est-à-dire 20 ans) le surinvestissement par rapport à des chaudières classiques fioul ou gaz. De beaux gains sont possibles.

Cependant, il faut aussi être vigilant concernant les performances du bâtiment, de son enveloppe, à chauffer. Techniquement, le bâtiment doit être suffisamment bien isolé pour permettre de travailler avec des émetteurs basse température (BT) et donc atteindre les meilleurs rendements. D’un autre côté, il faut que le besoin net de chauffage du bâtiment soit suffisamment important pour pouvoir amortir le matériel (son surinvestissement) sur base de frais d’utilisation plus faibles que les chaudières classiques. Par exemple, hormis quelques modèles spécifiques, on rencontre rarement des PAC installées dans les maisons passives. Une des raisons est le surinvestissement pour une installation de PAC et les faibles consommations qui rendront l’amortissement plus délicat.

Pourquoi ne pas citer des chiffres sur les temps de retour ou d’autres indicateurs économiques ? Simplement parce que l’investissement est très variable suivant les circonstances : d’une part selon le projet, le type d’émetteurs que l’on choisit (chauffage par radiateurs BT ou par la sol), la production d’ECS combinée ou pas et, d’autre part, selon les installateurs et les marques. Il y a de grosses variations qui ne permettent pas de donner des chiffres précis, mais plutôt des tendances comme nous l’avons fait ci-dessus. Cette remarque nous permet, premièrement, d’encourager les candidats à comparer les prix tout en s’assurant de la qualité du matériel et de l’installation (cfr. label PACQUAL) et, deuxièmement, d’encourager les candidats à réaliser sur base des devis obtenus une étude de la rentabilité du projet. Les fourchettes de valeurs de performances données dans le tableau ci-dessus devraient donner une bonne estimation du temps de retour.

Finalement, il ne faut pas oublier d’intégrer les incitants fiscaux (primes, subsides ou réductions fiscales) qui rendent les investissements encore plus attrayants.

Pompe à chaleur domestique : autre point de vue, étude de la KUL de 1997

Les tableaux ci-dessus résument une évaluation par la KUL de 1997 des temps de retour d’investissement pour des puissances calorifiques de pompes à chaleur de 5, 10 et 15 kW avec distribution par chauffage par le sol, par rapport à des chauffages au fuel et au gaz avec le même mode de distribution. Ces valeurs concernent l’utilisation de la PAC comme chauffage domestique. Attention : le nombre et la variabilité des paramètres sont tels que ces résultats ne peuvent pas être généralisés. Ils constituent cependant un point de départ utile pour une discussion sur le temps de retour de la PAC.

Puissance
calorifique

Chaudière
classique

Temps de retour
PAC Air/Eau monovalente
[années]
SPF = 2 3 4 5 6

5 kW

Gasoil

X 523 30 19 16

Gaz

X 41 21 16 14

10 kW

Gasoil

X X 29 16 12

Gaz

X 75 20 14 11

15 kW

Gasoil

X X 26 13 10

Gaz

X 147 18 12 10

X = Frais d’exploitation de la pompe > Frais d’exploitation du chauffage traditionnel.

Source : KUL – 1997.

Puissance
calorifique

Chaudière classique

Temps de retour
PAC Air/Eau bivalente
[années]
SPF = 2 3 4 5 6

5 kW

Gasoil

X 281 14 9 7

Gaz

X 24 12 10 8

10 kW

Gasoil

X X 5 2 2

Gaz

X 52 8 5 4

15 kW

Gasoil

X X 3 2 2

Gaz

X X 7 5 4

X = Frais d’exploitation de la pompe > Frais d’exploitation du chauffage traditionnel.

Source : KUL – 1997.

On remarque que le temps de retour diminue avec la puissance de la pompe installée et son facteur de performance saisonnier SPF. Il est aussi plus court pour les PAC bivalentes que pour les monovalentes grâce à leur fonctionnement continu durant la période de chauffe.

Si on considère une durée de vie de 15 à 20 ans, la PAC monovalente ou bivalente ne sera rentabilisée que si son coefficient de performance saisonnier SFP est supérieur à 4 ou 3  respectivement. De tels résultats ne peuvent s’obtenir que si l’installation est performante et bien régulée.

Notons que les subsides accordés aux installations de PAC n’ont pas été pris en compte. Ils permettent pourtant de réduire significativement le temps de retour de l’investissement… De plus, certaines économies de gros œuvre permises par les PAC monovalentes (absence de cheminée) n’ont pas été retenues. Enfin, la probable évolution à la baisse des coûts d’investissement et l’évolution favorable des coûts de l’énergie électrique face aux combustibles fossiles vont aussi améliorer rapidement ces performances (les prix de l’énergie pris en compte datent de 1997. On constate d’ailleurs que les prix du fuel étaient très bas à l’époque. En 2002, le prix du fuel a rejoint celui du gaz, qui lui-même a fortement augmenté depuis 1997). Malgré qu’elle soit dépassée, nous avons volontairement gardé cette étude parce qu’elle montre l’importance d’une évaluation sur le long terme du prix de l’énergie.

Pompe à chaleur tertiaire

Les pompes à chaleur utilisées dans le tertiaire sont plus rentables du fait du coût plus élevé des éléments qu’elles remplacent, comme des systèmes de traitement d’air, de leur valorisation en chaud comme en froid, ou de leur utilisation directement destinée la récupération de chaleur. Il est cependant difficile de donner des évaluations du temps de retour tant le nombre de facteurs impliqués est grand et la diversité des solutions importante.

Il est possible de se faire une idée à partir de quelques études de cas extraites de la littérature :

Études de cas

Pour découvrir la rentabilité de quelques applications tertiaires de la PAC.

Subventions

Sous conditions, la Région wallonne accorde une prime sur le placement d’une pompe à chaleur.  En outre, dans le cas du remplacement d’une chaudière existante, on peut bénéficier de réductions fiscales. Pour tout renseignement utile, voir ouverture d'une nouvelle fenêtre ! le portail de la Région wallonne ou ouverture d'une nouvelle fenêtre ! le site du facilitateur pompe à chaleur de la Région wallonne EF4.