Stratégie « soft-énergie » à tous niveaux

Stratégie "soft-énergie" à tous niveaux


L’énergie dans le bâtiment, ce n’est pas que chauffer et refroidir…

L’énergie consommée par un immeuble de bureaux, c’est le double de celle demandée par le chauffage et le refroidissement du bâtiment. En effet, l’éclairage, la bureautique, les pompes et ventilateurs, … alourdissent fortement la facture.

Il est utile de prendre le temps d’étudier tous ces aspects globalement, dès le départ. La place réservée à l’éclairage naturel des locaux en est un exemple clair.

Photo bâtiment Iveg à Anvers.   Photo bâtiment Iveg à Anvers - 02.

Le siège d’Iveg à Anvers consomme 2 x moins que la moyenne … mais sa conception a été étudiée durant 2 ans, en collaboration avec le centre de recherches du CSTC.

 

Le siège d’Elia à Bruxelles est Passif, BREEAM et NZEB grâce à la lumière naturelle, 30 cm d’isolation, du triple vitrage et ses 4 000 m² de PV.

L’énergie dans un immeuble, c’est combien par an ?

L’analyse énergétique d’un local type de bureau (Bâtiment ancien avec 8 cm d’isolant)  :

  • entre 70 et 100 kWh/m²/an de chauffage,
  • 120 kWh/m² électricité (soit 300kWh d’énergie primaire /m²).
  • TOTAL de 385kWh/m²/an d’énergie primaire,
    • dont +- 8,5 m³ de gaz naturel et 120 kWh d’électricité ;
  • Soit +- 47€/m²/an

Dans un immeuble de bureaux QZEN construit aujourd’hui, l’énergie hors bureautique représente un coût d’environ 10 €/m²/an €.

Évaluer

Pour plus d’informations sur les consommations dans différents types d’immeubles climatisés.

Quelle répartition des consommations dans un bâtiment ?

Dans un bâtiment climatisé, en très grosse approximation (puisque tout dépend du type de bâtiment, des vecteurs énergétiques et de son usage), ce coût se répartit en :

  • 15 % pour le chauffage des locaux et de l’air neuf hygiénique,
  • 15 % pour le refroidissement des locaux,
  • 15 % pour l’éclairage,
  • 15% pour les auxiliaires (pompes et ventilateurs) et équipements électriques divers ;
  • 40 % pour la bureautique.

À partir du programme du bâtiment, on demandera au bureau d’études d’établir un bilan global prévisible des sources de consommation.

Concevoir

Pour découvrir un exemple d’analyse des besoins thermiques d’un immeuble de bureaux.


Un choix d’équipements électriques à faible consommation

Une politique « soft-énergie » globale

Pour limiter l’énergie, il est donc tout aussi important d’agir sur le choix du luminaire, sur le mode de régulation de la ventilation que sur l’épaisseur de l’isolant.

Mieux, l’investissement sur des équipements électriques performants permet de faire « coup double » :

  • économie directe d’électricité,
  • économie indirecte sur la demande de refroidissement et donc sur la capacité de « s’en sortir sans climatisation » !

Toute consommation électrique se transforme en chaleur…

La consommation électrique a doublé en 15 ans dans le secteur tertiaire ! La bureautique (PC, imprimante, photocopieuse, …) explose. De plus en plus, nous chauffons nos bureaux … à l’électricité !

Mais ce chauffage-là, il nous est impossible de l’arrêter en été. Pire, le ventilateur de l’air de refroidissement chauffe l’air de 1 degré, environ. Donc plus nous surdimensionnons nos installations, plus le ventilateur sera puissant, plus il faudra le refroidir …

Ne sommes-nous pas là dans un cercle infernal ?

Si on ne peut aller totalement contre cette évolution qui impose l’équipement électrique comme outil de développement économique, il nous est possible de l’infléchir lorsque l’on prend conscience de l’impact de nos choix.

Par exemple, à débit constant, si nous doublons le diamètre d’un conduit d’air, la consommation du ventilateur chute au 32ème de sa valeur !!!

Des options à prendre dès le début du projet

Voici une série de propositions qui peuvent permettre concevoir un bâtiment « low-tech », « low-energy » … tout en étant « high-design » !

Assurer dans tous les locaux de vie, un éclairement naturel qui rende l’éclairage artificiel nécessaire pendant moins de 40 % du temps d’occupation.

Concevoir

Choisir les luminaires.
 Limiter l’éclairage artificiel à une puissance de 8 Watts/m² pour un éclairement de 500 lux : choix de luminaires et de lampes performantes.

Concevoir

Choisir les luminaires.

Réguler l’éclairage artificiel en fonction de l’éclairage naturel pour ne pas avoir de cumul de chaleur entre éclairage artificiel et éclairage solaire.

Concevoir

Apport d’éclairage naturel dans la page Choisir la gestion et la commande
Réguler l’éclairage et la bureautique en fonction de la présence effective de l’utilisateur.

Concevoir

Choisir les ordinateurs
 Placement de l’imprimante et de la photocopieuse à proximité de l’extraction d’air hygiénique (évacuation directe des polluants et de la chaleur dissipée).
 Concentration des équipements informatiques et de communication communs (centraux téléphoniques et data, serveurs informatiques, etc…) dans un local séparé des zones de vie ou de travail. Ce local pouvant être refroidi mécaniquement d’une façon distincte.
Intégration des conduits d’air dès la phase de l’esquisse pour favoriser des sections larges et droites, et ainsi limiter les puissances des ventilateurs.

Un emplacement central des groupes de traitement d’air est aussi favorable à ce niveau.

La même démarche peut être réalisée pour les tuyauteries d’eau, mais l’impact énergétique est 10 fois plus faible.

Concevoir

Choisir le réseau de distribution.

Vers une stratégie « soft-énergie »

Poursuivons la traque aux sources de consommation

Sans être ici exhaustif, mais plutôt pour expliquer la logique du raisonnement, on envisagera de :

Maîtriser les apports solaires par le choix de surfaces vitrées limitées (= ne pas vitrer toute la façade) et équipées de protections solaires.

Concevoir

Choisir la fenêtre comme capteur d’énergie solaire.
Prérefroidir l’air hygiénique de ventilation par le passage dans un conduit enterré.
Éviter toute boucle de circulation d’eau chaude sanitaire dans le bâtiment, en décentralisant la production près des points de puisage.

Concevoir

Choisir le réseau d’eau chaude sanitaire

Vers un bâtiment inerte et stable en température intérieure

Si les sources (internes et externes) d’échauffement sont bien maîtrisées, le risque de surchauffe est nettement diminué. Si le bâtiment comporte un grand « réservoir thermique de stockage » : c’est l’inertie de ses parois.

Prévoir d’emblée une inertie thermique accessible suffisante dans les parois : sous l’effet du soleil, le bâtiment ne doit pas se comporter comme une voiture ! Sans inertie, la température intérieure monterait très rapidement et la climatisation mécanique devrait être enclenchée.

Finalement, dans quel type de bâtiment trouvons-nous de la fraîcheur naturelle en été : le préfab de chantier ou l’ancien immeuble de la maison communale ?

Evaluer

Repérer l’origine de la surchauffe

Équipé d’une régulation peu sophistiquée

Et dans ce bâtiment massif, fortement isolé, efficacement ombré, les fluctuations de température seront relativement lentes. Il est donc possible d’y intégrer une forme de régulation qui combine des prises de mesure limitées (la température de quelques locaux représentatifs par exemple) et des actions « douces » (modification d’un régime de température, ouverture modulée d’un dispositif de ventilation, etc.). L’important sera que l’action du système de régulation soit basée sur une mesure la plus représentative possible du ressenti, et donne lieu à des actions mesurées, auxquelles les occupants peuvent déroger. Dans tous les cas, le fonctionnement du bâtiment devra être le plus intuitif possible pour les occupants, et induire naturellement des comportements d’utilisation rationnelle de l’énergie.

Retenons qu’une stratégie « soft-énergie », appliquée à l’ensemble des consommateurs, est un point de départ qui permet ensuite d’envisager pour le traitement thermique des locaux de nombreuses alternatives… douces !


Favoriser les énergies renouvelables

Pour diminuer encore l’appel à des énergies fossiles, il est possible de recourir à la production :

  • d’eau chaude par des capteurs solaires thermiques ou photovoltaïque,
  • d’électricité par des capteurs solaires photovoltaïques,
  • cogénération,
  • pompe à chaleur à haut rendement,
  • de chaleur par utilisation de la biomasse (essentiellement le bois).

Concevoir

Pour plus d’informations sur le chauffage solaire de l’eau chaude sanitaire.

Limiter les pertes de chaleur

Limiter les pertes de chaleur


Un profil de demande thermique en forte évolution

Les conséquences de l’isolation des parois extérieures

Hier et aujourd’hui
(couleur beige = isolant).

Le fonctionnement thermique des bâtiments tertiaires subit une révolution depuis 20 ans suite à la conjugaison de 3 facteurs :

  1. Un renforcement de l’isolation et surtout l’arrivée de vitrages très performants.
  2. Une explosion des apports internes électriques.
  3. Une tendance à augmenter les surfaces vitrées en façade.
Résultats d’une simulation informatique

Pour un même immeuble type de bureau, nous avons comparé les bilans énergétiques entre une construction ancienne (simple vitrage, murs non isolés, …) avec une version usuelle aujourd’hui (double vitrage, murs isolés, …).

Voici les bilans obtenus (évolution de la demande en fonction de la température extérieure, celle-ci variant de – 10 à + 30 °C) :

Une évolution sensible par rapport aux bâtiments des années 70 apparaît :

  • L’isolation élevée diminue les besoins de chauffage en hiver.
  • La bureautique couvre une part des besoins d’hiver… mais augmente les besoins de refroidissement en été et en mi-saison.
  • Le soleil génère des pointes de température difficile à accepter par l’occupant. Les périodes de canicule sont présentes, elles génèrent un risque d’inconfort majeur, mais ne représentent pas une consommation d’énergie élevée, car le temps est court.

Si autrefois le chauffage était arrêté par + 15°C extérieur, aujourd’hui le chauffage des locaux est arrêté dès + 11°C extérieur, voire moins s’il y a beaucoup d’apports internes (la chaudière reste en service pour l’éventuel chauffage de l’air neuf et de l’eau chaude sanitaire). En mi-saison, des locaux restent en demande de chaleur au nord, alors que la façade sud est déjà en demande de refroidissement.

L’isolation diminue la demande de chauffage (hiver) et augmente la demande de refroidissement (été). Mais le bilan global des consommations annuelles est toujours positif en faveur de l’isolation.

Par rapport à un bâtiment mal isolé, la consommation de chauffage tombe au tiers de sa valeur. Et parmi ce tiers restant, le chauffage de l’air neuf hygiénique représente la moitié des besoins.

Si autrefois il y avait 8 mois d’hiver et 4 mois d’été, aujourd’hui la période de chauffe est limitée à 6 mois (15 octobre – 15 avril).

Mais le besoin de rafraîchissement est accru, en été et en mi-saison.

La diminution de l’inertie et l’augmentation des gains internes

Autrefois, le bâtiment disposait d’une bonne inertie thermique qui lissait les pointes d’apports solaires en journée (les bâtiments ne se comportaient pas comme une voiture laissée en plein soleil …) grâce à l’immense réservoir que constituait la masse des parois.

Suite à sa faible isolation, le bâtiment se « déchargeait » la nuit de la chaleur accumulée en journée.

Aujourd’hui, la tendance va vers :

  • La diminution de l’inertie pour des raisons fonctionnelles (tapis, faux plafond, cloisons mobiles, …).
  • L’augmentation des équipements de bureautique (doublement des consommations électriques du secteur tertiaire durant ces 15 dernières années !).
  • L’amplification des apports solaires suite au souhait du Maître d’Ouvrage de larges baies vitrées.
  • La chaleur interne se retrouve « piégée » dans le bâtiment suite à l’isolation des parois.

Faut-il une forte isolation ? Ne perd-on pas en climatisation ce que l’on gagne en chauffage ?

Non, toutes les simulations informatiques montrent que le bilan reste bénéficiaire en faveur de l’isolation, notamment parce que la saison de chauffe est plus longue que l’été.

Voyons les choses positivement : autrefois, on n’avait pas conscience de l’existence d’une « chaleur interne » parce que celle-ci était négligeable face aux déperditions des parois. A présent, les fuites de chaleur étant maîtrisées et les apports internes amplifiés par l’évolution technologique, ces apports viennent à satisfaire en bonne partie nos besoins hivernaux. Nous arrivons à chauffer nos bureaux avec 7 litres de fuel au m², contre 20 à 25 dans les années 50. Et c’est tant mieux.

Puisqu’une consommation électrique minimale est nécessaire (bureautique, éclairage, …), tant mieux si nous pouvons « utiliser une deuxième fois » cette énergie pour nous chauffer.

Quant aux besoins de rafraîchissement, la courbe bleue du diagramme ci-dessus montre qu’ils apparaissent majoritairement lorsque la température extérieure est entre 14 et 22°C, c.-à-d. plus froide que l’ambiance intérieure. À ce moment, il devrait être possible « d’ouvrir le bâtiment » pour valoriser l’air frais et décharger le bâtiment,… mais le bruit, la pollution de l’air ou le risque d’intrusion rendent cette ouverture parfois complexe.

Ceci renforce l’importance d’une conception initiale du bâtiment adaptée à ce nouveau profil de consommation et la mise en place d’un système de refroidissement qui valorise l’air frais extérieur.

Théories

Pour plus d’informations sur l’évolution des besoins thermiques des immeubles, suite à l’isolation des parois.

Et ceci ne nous épargne pas la nécessité de trouver une solution pour gérer la période de canicule !


Optimaliser le volume du bâtiment

En réalité la chose n’est pas simple : il s’agit de trouver, selon la programmation du bâtiment et le contexte d’implantation (forme et taille du terrain, environnement bâti ou paysager, …) le compromis optimal entre :

  • une grande compacité pour limiter les pertes de chaleur,
  • et une faible compacité pour profiter d’éclairage naturel et faciliter le rafraîchissement par ventilation naturelle.

L’intérêt de la forte compacité

Un bâtiment compact, s’approchant du cube, a peu de pertes de chaleur. La surface de déperdition de l’ensemble de ses façades est limitée par rapport au volume des locaux. Les zones centrales, en contact avec d’autres locaux à la même température, ont beaucoup moins de pertes de chaleur que les locaux périphériques.

Par contre, ces zones sont difficilement éclairées et ventilées naturellement.

L’intérêt de la faible compacité

Un bâtiment peu compact (barre, en « peigne », carré avec cour intérieure, présentant de nombreux décrochements, …) a une surface de façade plus importante par rapport au volume des locaux et aura donc plus de déperditions, et une demande de chauffage accrue.

Par contre, le fait d’avoir plus de locaux en façade permet de les éclairer naturellement, et d’organiser relativement facilement une ventilation naturelle.

Exemple : Queen’s Building de l’Université de Montfort, en Angleterre. Les locaux, ventilés naturellement, sont agencés par rapport à leur fonction et la développée de l’enveloppe est importante.

Photo Queen's Building.

Plan Photo Queen's Building.

Plan du premier niveau :

  1. ateliers d’électricité
  2. salles de cours
  3. atrium
  4. auditoires
  5. laboratoire de mécanique

Concrètement

Selon les cas, le juste compromis sera en faveur de l’une ou de l’autre solution.

Dans les bâtiments récents, bien isolés, le problème de la surchauffe et de la consommation de froid prend de plus en plus d’importance par rapport à celui de la consommation de chauffage.

Il convient donc, a priori, de favoriser autant que possible l’éclairage naturel et les possibilités de refroidir naturellement le bâtiment par ventilation naturelle intensive en :

  • Limitant la profondeur des locaux. On recommande de limiter la profondeur des bureaux au double de la hauteur du local, soit à environ 6 m. Ainsi, si deux rangées de bureaux sont séparées par un couloir central, cela donne une profondeur de bâtiment d’environ 15 m.
  • Limitant le nombre d’étages à 2 ou 3 idéalement. Les contraintes techniques pour organiser une ventilation naturelle intensive dans des bâtiments plus hauts deviennent très lourdes (exemple : cheminées hautes).

Limiter les besoins de chauffage

Opter pour un bâtiment bien isolé

L’isolation de l’enveloppe est, et de loin, le moyen le plus efficace pour réduire la consommation d’un bâtiment. Et les vitrages très performants permettent aujourd’hui de diminuer drastiquement les consommations d’hiver.

Non, on n’isole JAMAIS trop. L’isolation diminue la demande de chauffage en hiver et augmente celle de refroidissement en été, mais le bilan global des consommations annuelles est toujours en sa faveur.

Il est toujours utile d’isoler, même si cela entraîne la nécessité de climatiser. Bien entendu, l’idéal est de trouver des solutions naturelles pour rafraîchir le bâtiment et éviter ainsi le refroidissement mécanique.

Dans les propos ci-dessous, on supposera toujours que le bâtiment est bien isolé.

On donnera également aux concepteurs le temps et les moyens nécessaires pour étudier les détails de construction à prévoir pour éviter les ponts thermiques (principe de continuité de l’isolation).

Concevoir

Pour plus de détails sur la conception des détails de façades.

Favoriser l’étanchéité de l’enveloppe

Le problème est qu’il est impossible d’arrêter ce type de ventilation lorsqu’elle n’est pas nécessaire, en dehors des temps d’occupation notamment. Or elle est fortement consommatrice d’énergie.

Aujourd’hui, il convient de réaliser une enveloppe très étanche à l’air (parois, joints, portes, etc.) et d’organiser une ventilation hygiénique contrôlée (naturelle ou mécanique).

  • Lors de la construction, on sera très attentif à l’étanchéité à l’air des parois. Le bâtiment ne doit pas se « décharger » de sa chaleur en hiver par des fuites multiples de son enveloppe. La norme européenne EN 13779 recommande un taux de renouvellement d’air maximum sous la pression d’essai de 50 Pa (n50) de 1/h, ce qui génère en moyenne un taux de renouvellement d’air par infiltration de 4 % (0,04/h).

« Blower-test » de contrôle de l’étanchéité .

  • Il sera très utile de prévoir un sas à l’entrée du bâtiment, particulièrement en cas de climatisation de celui-ci.
  • On sera très attentif également à la fermeture des grilles de châssis (ventilation hygiénique) pendant la nuit et le week-end, quitte à installer des grilles motorisées si la motivation future de l’occupant paraît faible…

Limiter les besoins de chauffage de l’air neuf hygiénique

Dans un immeuble bien isolé d’aujourd’hui, le chauffage de l’air neuf hygiénique génère plus de la moitié des consommations de chauffage. On veillera dès lors à :

  • Limiter le débit d’air neuf à 30 m³/heure/personne en période de chauffe. Ce débit peut bien sûr être augmenté en mi-saison et/ou en été.
  • Favoriser les installations de ventilation « double flux » : une école est occupée 25% du temps, un bureau 30% du temps ! Il est donc fondamental de pouvoir stopper le débit d’air en période d’inoccupation.
  • Gérer ce débit en fonction de la présence effective des occupants : un capteur (détecteur de présence, sonde CO2, …) peut permettre de moduler le débit, par palier (ventilateur à plusieurs vitesses) ou en continu (ventilateur à vitesse variable). Tout particulièrement, le débit d’air neuf sera stoppé lors de la relance du bâtiment (le lundi matin, par exemple), avant l’arrivée des occupants.
  • Préchauffer l’air neuf hygiénique par récupération de chaleur
    • Sur l’air extrait (échangeur à plaques, par exemple). Idéalement, il faudra prévoir alors que les conduites d’extraction soient proches des conduites de pulsion d’air.
    • Sur une zone tampon du bâtiment. Par exemple, une prise d’air placée dans un atrium captera de l’air déjà préchauffé par le bâtiment et/ou le soleil.
    • Sur un puits canadien dans le sol pour capter l’énergie géothermique.
    • Sur un condenseur de machine frigorifique, si celui-ci présente un fonctionnement annuel. On imagine par exemple qu’un rideau d’air chaud à l’entrée du bâtiment puisse être alimenté par le refroidissement de la salle informatique ou de la chambre froide de la cuisine.

Si ces idées sont retenues dès le début du projet, elles entraînent peu de surcoûts.

Concevoir

Pour plus de détails sur la conception des installations de ventilation.

Faut-il forcément climatiser le bâtiment ?

Pour certains, le rafraîchissement de l’ambiance intérieure semble aujourd’hui incontournable. Le maître d’ouvrage se trouve-t-il alors confronté à l’obligation d’investir à la fois dans une installation de chauffage, certes plus petite qu’avant, mais aussi dans une installation de refroidissement ?

Non, une machine frigorifique ne doit pas être obligatoirement être installée dans nos régions. Mais une « stratégie de rafraîchissement active » doit être étudiée si la puissance thermique des apports de chaleur dépasse 50 à 60 W/m² au sol.

Décrivons ci-dessous ces diverses possibilités.

Calculs

Pour évaluer la puissance thermique prévisible dans un local et vérifier que les 60 W/m² ne sont pas dépassés, nous vous proposons

une feuille de calcul simplifiée sur Excel.

Trois stratégies sont possibles :

Stratégie 1 : limiter les sources de chaleur et se passer de la machine frigorifique

Constat : depuis l’âge de la pierre, l’homme se chauffe. Cela se comprend, il souhaite vivre dans une ambiance entre 20 et 24°C. Or la température moyenne extérieure annuelle dans nos Régions est de 10°C. Un complément de chaleur est nécessaire.

Par contre, la température à Uccle dépasse 24° durant 2 % de l’année seulement ! Autrement dit, 98 % du temps, il fait plus froid à l’extérieur du bâtiment qu’à l’intérieur. Comment se fait-il que nous ayons alors besoin d’une machine frigorifique pour le refroidir ???

Inspirons-nous du mas provençal (qui reste bien frais même lorsqu’il fait torride à l’extérieur) pour construire un bâtiment.

  • Il dispose de suffisamment d’inertie intérieure pour stabiliser les variations de température en journée,
  • il « décharge » le bâtiment via un rafraîchissement nocturne par air (free cooling) ou par eau (slab cooling) pour évacuer l’excédent de chaleur grâce à l’air frais de la nuit.

Free cooling et slab cooling.

Pour vous faire une opinion, voici trois exemples conçus en Angleterre, pays qui a pris beaucoup d’avance dans ce domaine :

Études de cas

Le bâtiment environnemental du « BRE ».

Études de cas

Le centre administratif de Powergen.

Études de cas

Le « Queen’s Building » de l’Université De Monfort.

Mais en Belgique aussi, des initiatives sont prises, comme dans le bâtiment IVEG à Anvers :

Études de cas

Le bâtiment IVEG.

Stratégie 2 : installer chauffage et refroidissement, mais en limiter l’usage aux périodes extrêmes

Analysons la répartition des températures extérieures à Uccle :

Admettons l’évolution actuelle vers l’installation d’une machine frigorifique. Ce n’est pas en soit plus mauvais de refroidir que de chauffer (contrairement à une idée couramment répandue, avec un 1 kWh électrique au compresseur, on produit 3 kWh de froid. Et pour obtenir 1 kWh électrique en sortie de centrale, il faut consommer 2,8 kWh d’énergie primaire. Donc le bilan entre chauffage et refroidissement est neutre).

L’objectif de conception devient :

  • recours au chauffage des locaux durant les seules périodes de grands froids (T°ext <…5°C…),
  • recours au refroidissement mécanique aux seules périodes chaudes (T°ext >…18°C…),
  • durant le reste du temps (5°C < T°ext > 18°C), c.-à-d. plus de 60 % de l’année, les apports internes et externes « gratuits » assurent le chauffage, et l’air extérieur assure le refroidissement de mi-saison. Aucun apport thermique par combustible ne doit être apporté à ce moment.

Cela sous-entend une conception adaptée du bâtiment (pouvoir ouvrir les façades dès qu’il fait trop chaud à l’intérieur, par exemple) et du système de climatisation (conçu comme un appoint), ainsi que le placement d’un récupérateur de chaleur sur l’air extrait, …

C’est une solution à très basse consommation, mais qui nécessite parfois un investissement plus élevé, sauf si le même système gère le chaud et le froid (slab cooling, pompe à chaleur, …). En contre-partie, elle apporte une garantie de résultat final : chauffage et climatisation sont présents pour couvrir toute période de pointe, toute évolution future du bâtiment.

Comment choisir ?

La première stratégie devrait a priori être toujours étudiée. Puisqu’elle ne fonctionne que si les apports de chaleur sont drastiquement réduits, ceci sous-entend que l’approche énergétique est globale. On y gagne donc deux fois : parce que les équipements sont à faible consommation et parce qu’ils n’ont pas entraîné le fonctionnement d’un climatiseur. De plus, la simplification des systèmes est une garantie d’exploitation future à faible coût. Enfin, elle permet à l’occupant de retrouver le contact avec l’extérieur par l’ouverture des fenêtres, ce qui est luxe à nul autre pareil.

La deuxième stratégie est certainement prometteuse. Cette recherche « d’autonomie » maximale du bâtiment sans énergie autre que celle des équipements interne (éclairage et bureautique) et externe (soleil), cette conception des systèmes de chauffage et de refroidissement comme appoint en période de pointe, … constitue un des défis majeurs à relever pour les bâtiments futurs. Lorsque le contexte l’impose (environnement bruyant et pollué, volonté de garantir une stricte consigne de température intérieure, …), c’est la voie à suivre. Elle demande de la créativité tant à l’architecte qu’à l’ingénieur. Encore faut-il leur en laisser le temps et les moyens dans la phase de conception.

À noter une troisième stratégie « de compromis » :

Peut-être qu’une climatisation partielle du bâtiment est la solution ?

Dans les locaux avec forte production de chaleur interne (le centre informatique d’une société d’assurances, par exemple), la climatisation s’impose. Mais il est possible de regrouper dans cette partie du bâtiment les équipements les plus dispensateurs de chaleur (photocopieuses, imprimantes, …) et d’y prévoir une installation de free-chilling (by-pass de la machine frigorifique en hiver et refroidissement direct sur l’air extérieur).

Une telle centralisation des équipements de bureautique permet également de mieux gérer le bruit dans les locaux : les moniteurs des PC sont centralisés en ne laissant plus l’accès qu’aux écrans et claviers. Des lecteurs communs de CD ou de disquettes sont accessibles en partage.

De même, l’ensemble des locaux de réunion peuvent être regroupés (superposés, un ou deux par étage) et gérés par une installation « à volume d’air variable » (VAV).

Enfin, les autres locaux, dégagés des apports thermiques principaux, peuvent alors être gérés par refroidissement naturel.

A chaque besoin,… sa solution. Et cette « décomposition thermique » du bâtiment peut avoir un impact extérieur visible sur son architecture, … ce qui n’est pas inintéressant !

Choisir le programme de bâtiment

Définir le programme, c’est aussi imaginer l’ambiance intérieure …


Mise en commun et chasse à l’inoccupation des espaces

Un point important pour réaliser des économies d’énergie consiste mettre en commun un maximum de services de manière à réduire le nombre de ceux-ci tout en permettant qu’ils soient de taille et qualité satisfaisante.

Lors des premiers dessins, il faut se poser la question du taux d’occupation des différents espaces et étudier la possibilité de combiner des usages de manière à réduire la quantité d’espace non utilisé de longues heures chaque jour. En agissant ainsi, le coût de la construction sera réduit et ce sont autant de m² et de m³ qui ne devront être chauffés alors qu’ils sont inoccupés la plupart du temps.

Est-il nécessaire d’avoir 8 imprimantes par étage ? Faut-il réellement une salle de réunion par département ? Chaque étage doit-il avoir sa cafétéria ? Plutôt que d’avoir un parking de 200 places chacun, nos deux enseignes ne pourraient-elles pas se contenter d’un parking commun de 300 places utilisable en soirée par les riverains ?

Un point important pour réaliser des économies d’énergie consiste mettre en commun un maximum de services de manière à réduire le nombre de ceux-ci tout en permettant qu’ils soient de taille et qualité satisfaisante.

Lors des premiers dessins, il faut se poser la question du taux d’occupation des différents espaces et étudier la possibilité de combiner des usages de manière à réduire la quantité d’espace non utilisé de longues heures chaque jour. En agissant ainsi, le coût de la construction sera réduit et ce sont autant de m² et de m³ qui ne devront être chauffés alors qu’ils sont inoccupés la plupart du temps.

Plus la mise en commun sera forte et plus le taux d’occupation des espaces sera optimisé, plus les économies d’énergie seront grandes.

Schéma sur le principe de mise en commun des espaces.


Choisir l’ambiance intérieure souhaitée

L’architecte et le bureau d’études ne pourront développer des stratégies adéquates que si le Maître de l’Ouvrage s’est préalablement positionné sur l’ambiance intérieure qu’il souhaite créer dans son bâtiment.

Le souhait de pouvoir gérer son propre environnement

Parmi les attentes exprimées auprès des promoteurs, on entend de plus en plus souvent le souhait des occupants de pouvoir ouvrir leur fenêtre. Il y a un certain rejet des ambiances feutrées, trop coupées du bruit du monde extérieur.

Malgré la fluctuation des températures que cela peut entraîner, il apparaît que l’occupant est beaucoup plus conciliant avec le confort lorsqu’il gère lui-même son environnement. Par contre, il sera très exigeant avec le service de maintenance lorsqu’il se trouve face à une fenêtre fixe, totalement dépendant de la pulsion d’une bouche d’air…

Dans les bureaux paysagers, les personnes qui ont vue sur l’extérieur et accès à l’ouverture de la fenêtre sont généralement beaucoup plus satisfaites que les autres occupants.

Plus généralement, c’est donc l’accès éventuel par l’occupant à la ventilation, à l’éclairage, aux protections solaires, au chauffage, … qui doit être défini dès le départ du projet.

Attention : la définition de l’ambiance dépasse le simple souhait et demande une réflexion approfondie. Ainsi,

  • l’ouverture des fenêtres peut générer des nuisances acoustiques,
  • l’air extérieur peut être pollué et nécessiter une filtration,
  • si la climatisation est installée, elle devra être coupée lors de l’ouverture de la fenêtre. L’occupant devra alors choisir : fermer sa fenêtre et avoir une ambiance refroidie, ou ouvrir sa fenêtre et laisser la température monter.

Par exemple, au siège d’ELIA à Bruxelles, chaque zone de 40 m² peut réguler la température locale de +-2 °C par rapport à la température de consigne générale et ouvrir une bouche d’aération naturelle sur simple pression d’un bouton. La hauteur et l’exposition au vent grâce au site dégagé du bâtiment rendent la ventilation naturellement puissante et sensible par les occupants.

Le remplacement de la climatisation par un free cooling de nuit

Voici un autre exemple de choix d’un type d’ambiance : une stratégie de « free-cooling », c’est à dire de refroidissement naturel du bâtiment sans climatisation mécanique, peut être décidée. On profite de la fraîcheur de la nuit pour ventiler le bâtiment.

Ceci sous-entend une variation de la température intérieure sur la journée puisque c’est le bâtiment qui fait tampon, accumule la chaleur en journée et attend la nuit pour se décharger.

Il faut donc décider d’accepter ou non le fait qu’en été le bâtiment soit par exemple à 22°C au matin et à 26°C au soir.

L’intégration de la lumière dans le bâtiment

Photo d'un atrium.

Par un jeu d’atria, par des puits de lumière, par des coupoles vitrées,… il est possible d’intégrer la lumière naturelle au sein du bâtiment. La consommation d’éclairage artificiel en sera diminuée d’autant, mais surtout, le bâtiment y trouvera son âme.

A contrario, ce sont des m² ou des m³ à financer. Et ce sont bien souvent des apports de chaleur excédentaires en été, qui ne pourront être maîtrisés que par une possibilité d’ouverture automatisée en toiture. Donc un coût.

Il faut trouver l’optimum entre une grande compacité pour limiter les pertes de chaleur et une moins grande compacité (augmenter les surfaces déperditives) pour profiter davantage d’accès à de la lumière naturelle. La compacité du bâtiment joue un rôle fondamental dans le calcul du niveau K du bâtiment.

Mais la qualité architecturale est un élément de satisfaction de l’employé sur son lieu de travail qui influe aussi sur sa productivité professionnelle…
En caricaturant quelque peu, on peut aller jusqu’au fait que le choix de la hauteur sous-plafond caractérisera la « hauteur d’esprit » des occupants !


Choisir des consignes de confort réalistes

Les études du « sick building syndrom » ont montré l’impact négatif d’un choc thermique trop important à l’entrée du bâtiment climatisé. Ceci ne veut pas dire que l’on apprécie pas la fraîcheur d’un bâtiment en plein été, mais bien que notre corps s’adapte au climat et trouve très confortable une ambiance à 26°C lorsqu’il fait 30°C dehors.

Si aux États-Unis l’ambiance intérieure semble établie sur base d’un « 22°C toute l’année, quelle que soit la température extérieure », un mouvement d’opinion se dessine chez nous pour rejeter ce « tout air conditionné » et réintégrer une certaine saisonnalité de l’ambiance intérieure. On parle plutôt de « rafraîchir » l’ambiance afin de passer plus facilement les quelques jours de canicule de l’année.

Le bureau d’études concevra le système et le dimensionnera en fonction des exigences de son client. C’est donc ce niveau d’exigence qui sera à la base du projet. On sera donc attentif à définir avec soin les consignes intérieures souhaitées.

Température et humidité

Solution 1

Classiquement, on impose au cahier des charges des températures intérieures à vérifier dans les situations extérieures les plus critiques.
Par exemple :

  • Température en hiver : 21°C par – 10°C extérieur (- 8° à Bruxelles et – 12°C en Ardennes).
  • Température en été : 24°C (26°C si plafonds froids) par + 30°C et 50 % HR.
  • Humidité : min 40 % en hiver, max 65 % en été.

Imposer une telle exigence à un bureau d’études, c’est forcément imposer une climatisation mécanique.

Solution 2

On peut également lui proposer un niveau d’exigences plus compatible avec la recherche de solutions alternatives, admettant de dépasser temporairement certaines limites de température. Par exemple, en Hollande, il est proposé le critère de « 100 heures par an au dessus de 25,5°C, dont 20 heures au dessus de 28°C ». C’est une simulation informatique qui devra prouver que cette exigence sera bien satisfaite pour une année climatique type moyenne.

Solution 3

On peut également aborder le problème sur base d’un rafraîchissement garanti. Ce n’est plus une consigne intérieure fixe mais bien un abaissement de 3 ou 4°C par rapport à la température extérieure.

Solution 4

Et un compromis peut être trouvé : une climatisation partielle des lieux. Pourquoi ne pas concentrer les locaux générateurs de surchauffe (locaux informatiques, salles de réunion, …) dans une zone du bâtiment qui sera refroidie mécaniquement ? Les autres locaux seront moins chargés en apports internes et seront plus facilement refroidis naturellement. Les niveaux d’exigence sont alors adaptés en fonction des lieux.

Apport d’air neuf hygiénique

Dans un bâtiment bien isolé, la consommation liée au traitement de l’air neuf hygiénique (chauffage et humidification en hiver, refroidissement en été) dépasse les pertes par les parois de l’enveloppe. La définition du débit est donc d’une importance capitale pour la consommation future du bâtiment.

La norme européenne EN 13779 (Ventilation for buildings – Performance requirements for ventilation and air-conditionning systems, Commission technique CEN/TC 156, 1999) propose différents débits d’air neuf à respecter en fonction de la qualité de l’ambiance à respecter :

Norme européenne EN 13779 pour les locaux sans fumeur.
Catégorie de qualité d’air Débit d’air neuf
Excellente qualité
(niveau ambiant de CO< 400 ppm au dessus du niveau extérieur)
> 54 [m³/h.pers]
Qualité moyenne
(niveau ambiant de CO400 – 600 ppm au dessus du niveau extérieur)
de 36 à 54 [m³/h.pers]
Qualité acceptable
(niveau ambiant de CO600 – 1 000 ppm au dessus du niveau extérieur)
de 22 à 36 [m³/h.pers]
Faible qualité
(niveau ambiant de CO> 1 000 ppm au dessus du niveau extérieur)
< 22 [m³/h.pers]

L’exigence du RGPT, 30 [m³/h.pers], correspond donc à une qualité acceptable. Un courant actuel venu des pays nordiques tend à installer de 50 à 70 [m³/h.pers]. Compte tenu des fortes conséquences énergétiques de ce choix (chauffage, humidification, refroidissement), une valeur située entre 30 et 40 m³/h semble adéquate. On choisira certainement 30 m³/h si une possibilité d’ouvrir les fenêtres existe. Un système double flux avec récupération de la chaleur sur l’air rejeté permet de préchauffer l’air neuf et réduire considérablement les pertes liées à la ventilation.

Éclairage

Une des techniques les plus économes pour un immeuble de bureaux consiste à assurer un éclairement général de 200 lux, tout en dotant chaque poste de travail de son éclairage individualisé. On atteint dans ce cas une puissance installée de 7 Watts/m²/500 lux… soit 3 x moins que ce qui était installé dans les années 70.

Question : lorsque le bureau d’études estime les charges thermiques du local, doit-il cumuler la charge d’éclairage et celle d’ensoleillement ? Si le soleil est présent, ne peut-on tabler sur une extinction des luminaires ?

Bureautique

Il existe des solutions pour diminuer les charges internes. Un PC dégage 150 Watts, dont 100 pour l’écran. Si le choix d’écran plat est décidé, les apports de chaleur diminuent au tiers. Et le gain énergétique est double puisqu’à l’énergie électrique plus faible pour alimenter l’équipement est ajoutée l’énergie économisée en climatisation.

En tant que maître de l’ouvrage, il faut clairement définir les charges liées à l’équipement. Cela évitera au bureau d’études de prendre des coefficients de sécurité trop importants. Si le niveau énergétique est faible, cela lui donnera également plus d’aisance pour proposer des solutions alternatives.

Par exemple, si la charge thermique est faible (équipements à faible consommation et apports solaires limités), il est possible d’utiliser des plafonds froids ou des poutres froides, alimentés par de l’eau à 17°C (régime 17/19).

Photo plafond froid.

Le risque de condensation est faible lors de l’ouverture des fenêtres et l’on ne devra plus consommer beaucoup d’énergie pour déshumidifier l’air neuf hygiénique. De plus, une partie de l’année, l’eau réchauffée à 19°C pourra être refroidie en toiture sans équipement frigorifique, simplement en passant dans un aéroréfrigérant (= échangeur eau/air avec ventilateur). Ce sera particulièrement efficace la nuit et le bâtiment pourra ainsi être déchargé de la chaleur accumulée en journée.


Choisir le degré de flexibilité

La flexibilité est aujourd’hui un must, surtout si l’on est promoteur. Le bâtiment devient une boîte dans laquelle le client futur installera ce qu’il souhaite.

Cette approche génère généralement trois difficultés majeures :

  1. Les cloisons intérieures légères sont sans inertie et des faux-plafonds (et/ou faux-planchers) coupent l’accès thermique aux dalles de béton. L’espace intérieur devient très sensible aux apports solaires (effet similaire à la voiture laissée au soleil…) et une climatisation s’impose.
  2. Si le client peut intégrer où il veut une salle de réunion (apport d’air neuf hygiénique élevé) ou une salle informatique (apports thermiques élevés), le bureau d’études va devoir surdimensionner les installations de tout le bâtiment, créant des coûts d’exploitation nettement plus élevés des auxiliaires (pompes, ventilateurs).
  3. L’architecture du projet en soufre et donc la qualité des ambiances. Sans citer de marque, on peut tenter un parallèle avec des hôtels préfabriqués aux abords de nos villes… que nous acceptons pour dormir une nuit, mais pas pour vivre ou travailler.

Il apparaît important de limiter dans le programme les zones de flexibilité, réservant à certains espaces des tâches spécifiques.

Il est d’ailleurs curieux de constater que les anciens bâtiments de qualité sont toujours là, rénovés certes, mais en y adaptant un nouveau programme. À l’opposé, les bâtiments légers modulaires, pourtant très flexibles, sont abandonnés et détruits.


Une réflexion qui intègre le bureau d’études dès l’esquisse

La conception d’un bâtiment à basse énergie forme un tout : choix de l’orientation, choix de l’enveloppe, choix des équipements, … tout est lié.

Architecte et bureau d’étude doivent y travailler ensemble dès le départ. Par exemple, le free cooling naturel du bâtiment demande des taux de renouvellement d’air horaires > 4, donc des débits d’air importants, donc des sections élevées, donc des « cheminées » à intégrer dès le début du projet architectural.

Cheminées de ventilation naturelle du bâtiment du BRE.

Une des difficultés à ce niveau est créée par le principe des concours d’architecture. L’architecte y travaille seul pour limiter les frais (il travaille souvent à perte…). Il conçoit une enveloppe attractive pour gagner le concours… et se voit contraint de la respecter ensuite. C’est là que l’on voit parfois les bureaux d’études s’arracher les cheveux !

Suggestion : idéalement, le maître d’ouvrage devrait prendre en compte le coût d’exploitation du bâtiment et proposer parmi les critères d’évaluation du concours un quota de 30 %, par exemple, pour la vision globale des coûts sur la durée de vie du bâtiment. Le bureau d’études doit alors être associé au concours…


Acoustique

L’ambiance acoustique de chaque espace doit également être conçue dès la programmation tant les nuisances sonores peuvent être à l’origine de tensions ou de problèmes de concentration. Il conviendra de regrouper les espaces en fonction du niveau sonore produit et accepté dans le cadre des activités ayant cours dans cet espace et/ou, à défaut, de recourir à des dispositifs d’isolement et/ou d’absorption acoustique adéquats.

 

À gauche : dispositifs d’absorption acoustique appliqués sur un plafond à forte inertie.
À droite : paroi légère vitrée et dédoublée séparant un openspace d’une salle de réunion.

Choisir la fenêtre comme capteur de lumière naturelle [Esquisse du projet]

Favoriser l’éclairage naturel extérieur

Dans une démarche de construction ou de rénovation lourde, on privilégiera l’utilisation de la lumière naturelle à la place de l’éclairage artificiel. La qualité « spectrale » de la lumière naturelle ainsi que sa variabilité et ses nuances offrent une perception optimale des formes et des couleurs. L’éclairage artificiel devrait donc être considéré comme un complément à la lumière naturelle. Aussi, d’un point de vue énergétique, l’utilisation de l’éclairage naturel comme « source » lumineuse est gratuite ; ce qui signifie que la facture en électricité sera d’autant plus réduite que l’éclairage naturel exploité.

Dans bien des projets de conception ou de rénovation de bâtiments tertiaires, en confort lumineux, l’objectif premier est de privilégier l’ouverture des espaces de travail vers la lumière naturelle tout en sachant qu’une trop grande ouverture des façades est souvent synonyme d’éblouissement, de surchauffe et déperditions thermiques au travers des baies vitrées. Le compromis reste de rigueur !

Bien des paramètres viennent influencer de manière plus ou moins significative la pénétration de la lumière dans les espaces de travail :

  • L’orientation des façades ;
  • La présence d’ombres reportées (bâtiments ou autres façades du bâtiment étudié faisant de l’ombre) ;
  • La taille, la forme et la position des baies vitrées dans les façades ;
  • La forme et les dimensions des trumeaux ;
  • Les caractéristiques des vitrages ;
  • La présence de protection solaire (fixe, mobile, …) ;
  •  …

Vitrage clair.           Vitrage sélectif.           Auvent.           Lamelles.           Ombre reportée.

Pour un projet de taille importante, une étude par un bureau spécialisé est toujours intéressante sachant qu’il est possible d’optimiser conjointement les conforts lumineux et thermiques par des simulations dynamiques tenant compte de l’ensoleillement et du climat à tout moment de l’année disponible sous forme de bases de données type « météonorm » par exemple.

L’éclairage naturel extérieur n’est pas uniforme

L’intensité de la lumière naturelle varie fortement en fonction du type de ciel, du moment de l’année, de l’heure dans la journée, de l’orientation de l’ouverture, de son inclinaison et de son environnement.

Les études d’éclairage naturel des locaux sont basées, conventionnellement, sur un ciel couvert donnant un niveau d’éclairement de 5 000 lux sur une surface horizontale en site dégagé (Commission Internationale de l’Énergie).

Or, en Belgique, un tel éclairement est dépassé 80 % du temps entre 8h00 et 16h00, par ciel couvert. Et ce ciel couvert ne se présente que 36 % du temps de l’année.

À l’extrême, en juin, à midi et par ciel serein, l’éclairement dépasse 100 000 lux! (Franchement, de quoi se plaint-on ?!)

Lumière solaire directe ou lumière solaire diffuse ?

La lumière solaire directe dispense un flux considérable, facile à capter et à diriger. Elle présente une dynamique intéressante (création de reliefs dans le bâtiment) et peut être utilisée en tant qu’énergie thermique. Par contre, le rayonnement solaire direct est souvent une source d’éblouissement et parfois de surchauffe du bâtiment. De plus, sa disponibilité est épisodique et dépend de l’orientation des ouvertures.

La lumière diffuse du ciel est disponible dans toutes les directions. Elle suscite peu d’éblouissement, ne provoque pas de surchauffe, mais elle peut être insuffisante dans de nombreux cas. En outre, elle crée peu d’ombres et de très faibles contrastes. Une lumière diffuse est donc idéale pour des locaux de travail où il est important d’avoir un éclairage constant, sans source d’éblouissement. La lumière du nord est assurément une lumière diffuse (depuis toujours exploitée dans les ateliers d’artistes). Mais il est possible de valoriser également la lumière directe venant des autres orientations, pour autant qu’une protection masque le disque solaire ou qu’un rideau intérieur diffuse la lumière incidente.

L’influence de l’environnement

Lors de la conception d’un bâtiment, il est donc important de mesurer l’impact de l’environnement existant sur le nouvel édifice afin de profiter au mieux des possibilités offertes par le terrain pour capter la lumière.

Le relief du terrain, les constructions voisines, … peuvent modifier fortement l’apport.

L’effet de rue est caractérisé par le masque solaire que créent les bâtiments situés de l’autre côté de la rue. Il dépend de la hauteur de ces constructions et de la distance qui sépare les deux côtés de la rue.

Des surfaces réfléchissantes placées au sol telles qu’un dallage brillant ou un plan d’eau peuvent contribuer à capter davantage de lumière. Ainsi, l’eau, en réfléchissant le ciel et l’environnement, intensifie l’impression lumineuse d’un lieu.

Mais la présence d’un bâtiment voisin équipé de vitrages réfléchissants, précisément pour se protéger de l’ensoleillement, risque de provoquer un éblouissement excessif des occupants.

Des éléments liés au bâtiment lui-même, tel que des murs de refends, des surplombs, des light shelves, … peuvent aussi provoquer un ombrage en fonction de leur taille, de leur réflectivité et de leur orientation.

La végétation se distingue des autres écrans parce qu’elle peut être saisonnière, ce qui est le cas des arbres à feuilles caduques, et que par ailleurs elle ne possède qu’une opacité partielle. Elle se contente de filtrer la radiation lumineuse plutôt que de l’arrêter.


Sélectionner la fenêtre comme espace capteur de lumière

Pour quels locaux ?

A priori, tous les locaux devraient disposer d’un éclairage naturel (sauf archives et locaux techniques). On peut parler de nécessité pour les « locaux de vie » (où les occupants séjournent plusieurs heures par jour) et de souhait pour les sanitaires et les circulations (où les occupants ne font que passer).

Voici deux couloirs du même bâtiment, avec les mêmes orientations.
Dans le premier cas, l’architecte a introduit une dissymétrie dans la distribution des locaux, et des ouvertures vers l’extérieur pour introduire de la lumière naturelle.
Faut-il préciser que la première mise en œuvre est plus chère ?..
On parle ici de qualité de l’ambiance intérieure dans un lieu de travail.

Ouverture latérale ou zénithale ?

Ouverture latérale et ouverture zénithale.

Au niveau de l’apport de lumière naturelle, une ouverture zénithale s’ouvre sur la totalité de la voûte céleste. Elle induit une meilleure pénétration de lumière, particulièrement par temps nuageux. La distribution lumineuse obtenue par une ouverture zénithale est aussi beaucoup plus homogène que celle produite par une fenêtre latérale. De plus, la lumière entre dans les locaux par le plafond, ce qui limite a priori les phénomènes d’éblouissement. L’éclairage zénithal convient spécialement à la pénétration de la lumière naturelle dans les bâtiments bas et profonds.

Distribution de lumière très homogène,
mais défavorable à la perception du relief.

Mise en évidence du relief par l’éclairage latéral,
malgré un couloir rectiligne.

Par contre, la lumière latérale est favorable à la perception du relief. L’entretien est également plus facile que pour une ouverture zénithale. De plus, le bilan thermique est en faveur d’une ouverture verticale. En été, les apports peuvent être limités (particulièrement au sud, via une « casquette » architecturale).

Tandis que les apports d’été sont toujours excédentaires au niveau d’une ouverture en toiture.

Seule solution : la décapotable ! Si la coupole ou la verrière peut être largement ouverte en été, le problème peut être résolu. Reste la gestion de la pluie et du vent…

Quelle orientation de la fenêtre latérale ?

Les pièces orientées au nord bénéficient toute l’année d’une lumière égale et du rayonnement solaire diffus. Il est judicieux de placer des ouvertures vers le nord lorsque le local nécessite une lumière homogène, peu variable ou diffuse, et lorsque les apports internes sont élevés.

Les pièces orientées à l’est profitent du soleil le matin, mais le rayonnement solaire est alors difficile à maîtriser, car les rayons sont bas sur l’horizon. L’exposition solaire y est faible en hiver, mais elle permet d’apporter des gains solaires au moment où le bâtiment en a le plus besoin. Par contre, en été, l’orientation est présente une exposition solaire supérieure à l’orientation sud, ce qui est peu intéressant.

Une orientation ouest présente un risque réel d’éblouissement et les gains solaires ont tendance à induire des surchauffes. En effet, les vitrages tournés vers l’ouest apportent des gains solaires l’après-midi, au moment où le bâtiment est depuis longtemps en régime.

Une orientation sud entraîne un éclairement important. De plus, les pièces orientées au sud bénéficient d’une lumière plus facile à contrôler. En effet, en hiver, le soleil bas (environ 17°) pénètre profondément dans le bâtiment, tandis qu’en été, la hauteur solaire est plus élevée (60°) et la pénétration du soleil est donc moins profonde. En été, les apports solaires sur une surface verticale sont également nettement inférieurs au sud qu’à l’est ou à l’ouest, car ils sont diminués par un facteur égal au cosinus de l’angle d’incidence.

Les dimensions de l’ouverture

On peut quantifier l’apport de lumière naturelle dans un local par le facteur de lumière du jour (FLJ). Exprimé en %, il exprime le rapport entre l’éclairement intérieur sur le plan de travail dans le local, et l’éclairement extérieur sur le plan horizontal, en site dégagé, par ciel couvert.

Plus le facteur de lumière du jour est élevé, plus le temps d’utilisation des locaux avec la lumière naturelle est élevé, limitant ainsi la consommation d’éclairage artificiel.

Un objectif raisonnable est d’arriver à un temps d’utilisation de l’éclairage naturel d’au moins 60 %. Ceci entraîne un facteur de lumière du jour de 2,5 (exigence de 300 lux) à 4 % (exigence de 500 lux) dans les locaux de vie, et de 1,5 % dans les circulations et sanitaires (exigence de 100 lux).

Une méthode approchée permet d’évaluer le Facteur de Lumière du Jour moyen d’un local donné, en fonction de sa surface vitrée.

L’emplacement de l’ouverture

Bien sûr, plus la surface est importante, plus l’éclairage naturel est élevé. Mais on sait que les apports solaires augmenteront eux aussi et donc le risque de surchauffe du local. Il nous faut donc optimiser l’efficacité lumineuse de la fenêtre.

Pour évaluer l’influence de l’emplacement de la fenêtre sur la répartition de la lumière dans un local, nous comparons trois fenêtres identiques, situées à 3 hauteurs différentes.

Plus la fenêtre est élevée, mieux le fond du local est éclairé et plus la zone éclairée naturellement est profonde. Si le fond du local (situé à 7 m de la façade dans notre test) reçoit une valeur de référence 100 pour la fenêtre basse, il recevra 128 pour la fenêtre à mi-hauteur et 143 pour la fenêtre haute.

A surface égale, l’efficacité lumineuse d’une fenêtre est donc maximale au niveau d’un bandeau horizontal, situé en partie supérieure de la paroi.

Une telle fenêtre en hauteur procure les avantages suivants :

  • Une répartition très uniforme de la lumière dans l’espace ainsi qu’un bon éclairage du fond du local.

 

  • Une source de lumière au-dessus de la ligne de vision, ce qui réduit les risques d’éblouissement direct.

Cependant, le seuil se trouve au-dessus du niveau de l’oeil, la vue sur l’extérieur est impossible. La fenêtre ne peut jouer son rôle de lien entre un local et son environnement. De plus, une zone d’ombre est formée à proximité du mur de fenêtre. En général, il est préférable de coupler une telle fenêtre avec une fenêtre classique, équipée de protections solaires.

Pour maximiser les apports de lumière naturelle, on peut également interrompre un faux plafond à proximité de la fenêtre pour favoriser la pénétration de la lumière naturelle par cette ouverture. Ce procédé est connu sous le nom de « plafond biaisé ».

De cette étude, on peut déduire une autre conclusion très intéressante : c’est la zone inférieure d’une fenêtre qui est la moins efficace en matière d’éclairage naturel. La présence d’une allège opaque est donc thermiquement préférable (présence d’une isolation pour diminuer les pertes en hiver et opacité vis-à-vis des apports solaires).

La forme de la fenêtre

Analysons l’influence de la forme de la fenêtre en comparant la répartition lumineuse fournie par trois fenêtres de proportions différentes, pour une surface vitrée identique et une hauteur de l’allège constante.

Lorsque la largeur de la fenêtre diminue, la répartition devient moins uniforme, bien que l’éclairement moyen soit pratiquement le même dans les trois cas étudiés. Par contre, l’éclairement du fond du local augmente avec la hauteur de la fenêtre. Pour une même surface vitrée, une fenêtre haute éclaire davantage en profondeur. L’idéal réside donc dans une fenêtre horizontale, mais dont le linteau est élevé. En première approximation, une pièce est convenablement éclairée jusqu’à une profondeur de 2 à 2,5 fois la hauteur du linteau de la fenêtre par rapport au plancher.

Analysons l’influence de la répartition des ouvertures dans une façade : comparons la grande fenêtre centrée et deux fenêtres plus petites, placées symétriquement.

Dans les deux cas, les fenêtres ont une superficie vitrée totale identique et la même hauteur; leur allège est située au même niveau par rapport au sol. La moyenne des éclairements varie peu, mais la répartition de la lumière dans la partie du local avoisinant les fenêtres est différente. Dans le cas de deux fenêtres séparées, une zone d’ombre apparaît entre celles-ci, ce qui peut créer des problèmes de confort visuel pour les occupants.

Le type de châssis

Le type et la taille du châssis modifient la vue vers l’extérieur et la quantité de lumière admise dans un édifice.

Le châssis fixe sera sans conteste le plus mince mais il empêche le plaisir du contact direct avec l’air extérieur…

Le matériau utilisé pour le châssis détermine également son encombrement : en général, un châssis en bois est plus mince qu’un cadre en aluminium à coupure thermique. Les châssis en PVC sont les plus larges.

Mais les innovations récentes permettent de plus en plus de diminuer l’impact visuel des châssis et d’augmenter ainsi la quantité de lumière captée.

Cafétéria dans un lycée.


Valoriser l’éclairage naturel capté

Les dimensions du local

La profondeur du local ne devra pas dépasser le double de la hauteur du linteau de la fenêtre, puisque l’intensité de la lumière naturelle décroît très rapidement en fonction de l’éloignement de la fenêtre.

Ainsi, la profondeur des bureaux devrait être limitée à 6 mètres.

À noter qu’une variation de la hauteur sous plafond (pour une même baie vitrée et une surface de plancher identique) induit une très faible différence dans la répartition lumineuse du local. Le niveau d’éclairement est cependant un petit peu plus élevé dans les pièces ayant un plafond plus bas.

La réflexion sur les parois

La nature et la couleur des surfaces intérieures influencent directement l’éclairage naturel dû aux réflexions intérieures. Une bonne distribution de la lumière nécessite des parois et du mobilier de couleurs claires.

L’importance de la clarté des surfaces est due à un double effet

  • les facteurs de réflexion plus élevés permettent à la lumière d’être davantage réfléchie.

 

  • l’œil humain analyse des niveaux de luminance : sous les mêmes conditions d’éclairage, une surface claire est donc subjectivement perçue comme mieux éclairée qu’une surface foncée.

On peut dire que si le facteur de réflexion moyen des murs d’un volume quelconque est inférieur à 50 %, la lumière pénétrera difficilement en profondeur dans cet espace. Or la plupart des matériaux architecturaux ont de faibles facteurs de réflexion. Un plancher clair peut avoir un facteur de réflexion de 30 %, mais pas beaucoup plus, ce qui est nettement plus bas que les murs (~ 50 % ) et que les plafonds (~ 70 %).

Dès lors, pour favoriser la pénétration de la lumière dans un local, on adoptera un revêtement du sol et du mobilier relativement clair, possédant donc un facteur de réflexion élevé. De plus, la clarté des tables de travail s’avère un élément favorable au confort visuel dans la mesure où la réduction du contraste entre le papier et le support de la table induit une diminution des efforts d’accommodation que l’œil doit effectuer à chacun de ses mouvements.

En revanche, les sols sont souvent de couleur relativement sombre afin de faciliter leur entretien. Il faut donc envisager un compromis susceptible de satisfaire simultanément les exigences de confort et de maintenance.

Comme le plafond ne reçoit la lumière naturelle que de manière indirecte, son influence sur la répartition de la lumière est relativement faible. En revanche, lorsqu’un dispositif de distribution lumineuse dévie la lumière vers le haut, par exemple à l’aide d’un  light shelf, le plafond reçoit une grande quantité de lumière qu’il doit répartir dans toute la pièce; le facteur de réflexion de cette surface doit alors être élevé (> 70 %), valeur correspondant à celle du plâtre blanc propre.

Lorsque les matériaux de revêtement présentent une certaine brillance, la lumière arrive plus facilement en fond de pièce.

En contrepartie, les surfaces en question acquièrent une luminance élevée et peuvent donc devenir des sources d’éblouissement.

De manière générale, les surfaces brillantes sont donc à conseiller comme moyen de transmission de la lumière naturelle, mais elles sont à éviter dans les locaux de travail, dans la mesure où les activités (lecture, écriture,…) peuvent être perturbées lorsque l’environnement lumineux est fort contrasté.

Distribuer l’éclairage dans les locaux

L’inconvénient de la lumière naturelle par rapport à la lumière artificielle réside dans la grande inhomogénéité des éclairements qu’elle induit. La répartition de la lumière représente donc un facteur clef pour assurer un éclairage de qualité.

Un éclairage naturel direct engendre des risques importants d’éblouissement et entraîne une répartition des luminances très irrégulière dans le local.

L’éclairage naturel indirect utilise les réflexions des rayons lumineux sur une paroi pour obtenir une distribution lumineuse plus homogène. Cependant, le niveau d’éclairement assuré dépend fortement du coefficient de réflexion de la paroi et donc de sa maintenance régulière.

Le Kimbell Art Museum, conçu par L. Kahn, renferme un exemple d’éclairage naturel indirect fabuleux.

De longs plafonds cylindriques laissent pénétrer la lumière naturelle en leur centre grâce à un système filtrant et réfléchissant, qui redirige la lumière solaire éclatante du Texas sur les voûtes du musée.

L’aménagement des parois intérieures

La distribution de l’éclairage dépend aussi de l’organisation des espaces intérieurs. Utiliser des cloisons transparentes ou translucides permet à la lumière de se répandre dans les deux pièces séparées par la surface vitrée. À l’intérieur d’un bâtiment, l’architecte est tributaire des effets de lumière qui se créent : il dote les espaces intérieurs de l’atmosphère désirée par une disposition étudiée des ouvertures et des obstacles à la lumière. Par exemple, un local disposé à l’est peut, par le truchement des baies intérieures, recevoir un peu de lumière de l’ouest.

Dans un long couloir, la présence de fenêtres translucides donne un relief agréable et permet d’éviter l’éclairage artificiel (bandes verticales à côté des portes ou impostes au-dessus des portes).

Les meubles sont parfois de réels obstacles qui empêchent la transmission de la lumière vers certaines parties de la pièce. Il est donc essentiel de réfléchir au type de meubles, ainsi qu’à leur emplacement, de manière à favoriser la pénétration de la lumière naturelle.

Ces deux modes d’éclairage peuvent aussi être combinés pour créer un éclairage direct/indirect, alliant une ouverture directe à la lumière naturelle à un système d’éclairage indirect. Un exemple de ce type d’éclairage est une façade qui unit une fenêtre normale et un light shelf. Ce mode d’éclairage possède, en général, les avantages de l’éclairage indirect, mais la partie directe permet en plus de créer des ombres, qui mettent en valeur le relief des objets. D’autre part, la maintenance des coefficients de réflexion des parois est un peu moins critique vu qu’une partie de l’éclairage entre de manière directe dans l’espace.

Gérer l’éclairage artificiel en fonction de l’éclairage naturel

Force est de constater que les occupants d’un bâtiment tertiaire sont peu motivés à éteindre leurs luminaires, même si l’éclairage naturel est suffisant. De plus, la modulation ON-OFF n’est pas souple et provoque un choc psychologique lors de l’extinction.

      

Par exemple, il est possible aujourd’hui de placer une cellule sensible à l’intensité lumineuse en dessous du luminaire. Si, en présence de soleil, celle-ci dépasse les 500 Lux souhaités, l’alimentation électrique du luminaire est automatiquement réduite. Sans que l’occupant ne s’en rende compte, l’éclairage naturel est directement valorisé. C’est « la vanne thermostatique » du luminaire !

Concevoir

Pour plus d’informations sur la mise en place d’une technique de gestion de l’éclairage artificiel.

Renforcer l’éclairage naturel à l’intérieur du bâtiment

Le puits de lumière

Certaines zones centrales dans un bâtiment n’ont pas d’accès direct à la lumière du jour. Dès lors, un conduit de lumière, passant à travers différentes pièces, permet de répandre la lumière naturelle captée en toiture ou en façade dans ces locaux aveugles.

Signalons toutefois que les puits de lumière risquent d’occuper un assez grand volume dans le bâtiment. Leur surface interne doit être d’autant plus réfléchissante que la lumière naturelle doit être amenée profondément dans le bâtiment. Pour limiter au maximum les pertes par absorption, il faut utiliser des matériaux très performants au niveau photométrique.

Architecte : M. Botta.

Utilisation du verre
dans des éléments de sol ou d’escalier.

Si le puits de lumière prend de plus larges dimensions, on parle d’atrium. Sa gestion thermique est souvent difficile (refroidissement par la surface vitrée en hiver, surchauffe par l’excès d’apports solaires en été). Un équilibre dans le degré d’ouverture doit donc être trouvé pour favoriser l’éclairage des pièces centrales, tout en évitant un déséquilibre thermique … coûteux en climatisation !

   

Exemple d’un atrium bien dimensionné.

Au Lycée Vinci de Calais, une dynamique est donnée par les 3 ouvertures : bandeau lumineux sur toute la longueur, coupole en toiture, pignons vitrés aux deux extrémités.

Si toute la toiture avait été ouverte, l’énergie incidente aurait entraîné des surchauffes en été.

Le conduit solaire

Un conduit solaire transmet la lumière solaire directe au cœur même du bâtiment. Le rayonnement solaire est capté au moyen d’un système de miroirs et de lentilles ou de capteurs paraboliques, éléments qui se meuvent en fonction de la trajectoire du soleil. La transmission du rayonnement solaire se fait par des systèmes de miroirs, de lentilles, de prismes réflecteurs, de fibres optiques, de baguettes acryliques, de fluides de cristaux liquides ou des conduits creux, dont les faces intérieures sont recouvertes de métaux polis. Les faisceaux lumineux ainsi obtenus peuvent alors être dirigés sur une surface précise ou diffusés dans l’espace.

Ce conduit, beaucoup moins volumineux qu’un puits de lumière, peut facilement atteindre une longueur de 15  mètres. Il est parfois associé à un puits de lumière.

Le conduit solaire apporte un flux lumineux nettement plus important et plus concentré que le puits de lumière. Cependant, tous ces systèmes de gestion du rayonnement solaire direct sont relativement chers à installer et s’appliquent donc plus particulièrement aux régions fortement ensoleillées.

Le « light shelf »

Un light shelf est un auvent, dont la surface supérieure est réfléchissante.

L’objectif est double

  1. Rediriger la lumière naturelle vers le plafond, ce qui permet de faire pénétrer la lumière profondément dans la pièce.
  2. Protéger l’occupant des pénétrations directes du soleil (éblouissement et rayonnement direct).

La surface du light shelf doit être aussi réfléchissante que possible, mais peut-être mate, brillante ou spéculaire. Une surface spéculaire renvoie théoriquement plus de lumière, mais il faut pour cela qu’elle soit nettoyée très régulièrement, ce qui n’est pas toujours aisé. En pratique, un light shelf brillant (semi-spéculaire) est sans doute le meilleur choix.

La couleur du plafond doit être aussi claire que possible, car il joue le rôle de distributeur de la lumière naturelle réfléchie par le light shelf. Sa pente a également de l’importance : un plafond incliné vers le fond du local ou de forme arrondie incurvée vers l’intérieur de l’espace augmentera fortement la profondeur de pénétration de la lumière dans le local.

Architecte : Michael Hopkins and Partners.

Dans nos régions, il est surtout applicable pour des locaux profonds d’orientation sud. Ses performances sont fortement réduites pour des orientations est et ouest, pour lesquelles le rayonnement solaire a un angle d’incidence plus faible.

De manière relative, plus le local est sombre, plus l’apport d’un light shelf peut être intéressant. Si la composante réfléchie interne est déjà grande dans un local, le même système sera proportionnellement moins efficace. L’emploi d’un light shelf en rénovation sera particulièrement profitable dans les pièces dont les murs ont des coefficients de réflexion faibles et un mobilier foncé (à noter qu’il sera moins cher de commencer par repeindre les murs !).

Le choix de la meilleure configuration de light shelf résulte d’un équilibre entre les demandes d’éclairage naturel et les besoins d’ombrage d’un local.

Un light shelf est habituellement situé à environ deux mètres de hauteur, divisant la fenêtre de façade en deux parties. Sa position dépend de la configuration de la pièce, du niveau des yeux et de la hauteur sous plafond pour permettre une vue vers l’extérieur et ne pas causer d’éblouissement. Une position basse augmente la quantité de lumière réfléchie vers le plafond … mais accroît les risques d’éblouissement.

L’augmentation de la profondeur du light shelf limite l’éblouissement, mais diminue aussi la pénétration de la lumière et la vue vers l’extérieur. Le light shelf, affectant la conception architecturale et structurelle d’un édifice, est de préférence introduit au début de la phase de conception puisqu’il nécessite un plafond relativement haut pour être efficace.

Les light shelves horizontaux sont un bon compromis entre une inclinaison du système vers le centre de la pièce ou vers l’extérieur. Tournée vers l’extérieur, le light shelf crée un plus grand ombrage, mais tournée vers l’intérieur il éclaire mieux le fond de la pièce.
On peut classer un light shelf selon sa position : intérieur, extérieur ou combiné.

Ainsi que le montre les simulations de l’éclairage d’un local, sans et avec light shelf,

  • Le light shelf extérieur donne les meilleurs résultats du point de vue du niveau d’éclairement en fond de pièce, tout en ombrant la grande fenêtre.

 

  • Placé à l’intérieur, il réduit le niveau d’éclairement moyen du local, mais offre toutefois un ombrage pour la partie supérieure du vitrage.

 

  • Enfin, le light shelf combiné assure la distribution lumineuse la plus uniforme dans le local; il se révèle également la meilleure protection solaire.

Choisir le lieu d’implantation

Suivant le lieu d’implantation, la consommation liée au transport des occupants
risque de dépasser la consommation de l’immeuble de bureaux …


Valoriser les réseaux de transport en commun

 

Dans un immeuble de bureaux, la consommation journalière des 12 m² occupés par une personne correspond à un parcours aller/retour en voiture de 30 km.

La consommation liée au transport des occupants du bâtiment est donc souvent plus élevée que la consommation du bâtiment lui-même !

Lors du choix d’implantation, parmi les autres critères, on prendra en compte l’intégration dans un réseau de transport en commun.

Pour plus d’info sur ce thème, vous pouvez consulter le site ouverture d'une nouvelle fenêtre ! http://mobilite.wallonie.be de la Région Wallonne.


Favoriser le transport à pied ou à vélo

L’accessibilité des piétons et des cyclistes est essentiellement du ressort de l’urbanisme. Cependant, localement, il est possible de favoriser cette politique, par la réservation d’une zone de parkings pour les vélos, par exemple. Ou l’insertion au programme du bâtiment d’une salle de douches pour les occupants cyclistes.


Valoriser les services de proximité

Dans un zoning industriel, les repas de midi, les courses durant la pause, … génèrent des déplacements énergivores.

On peut donc penser au contraire à une implantation qui limite cet usage :

  • présence de restaurants, de commerces,
  • présence de sociétés de services à proximité,

Valoriser les ressources locales

Les matériaux qui entreront dans le projet représenteront chacun un investissement énergétique.

On privilégiera donc le choix de matériaux de construction locaux, l’utilisation de matériaux recyclables ou recyclés,…

Plus largement encore, une réflexion peut être menée sur la valorisation de la main-d’œuvre locale, voire sur l’appel à des organismes locaux d’insertion professionnelle.


Intégrer le bâtiment au sein d’un projet urbain global

Est-il normal de concevoir des immeubles similaires dans nos régions et sous les tropiques… ?

Ceci dépasse le seul critère énergétique, mais peut être porteur d’une réflexion intéressante :

  • Intégrer le bâtiment dans son contexte topographique, architectural, urbanistique, culturel, …
  • Apporter de la mixité dans les affectations urbaines (bureaux, logements, écoles, commerces, …).
  • Proposer un aménagement local dont la logique s’intègre au projet urbain existant ou peut s’étendre ultérieurement au voisinage futur.
  • Valoriser les espaces publics et semi-publics.

Plus localement, il est aussi utile de réintroduire le contact avec l’environnement grâce aux espaces extérieurs qui environnent le bâtiment.

 

Les fontaines, les bassins,… créent un rapport ludique et symbolique avec l’eau.
Ils favorisent la diversité biologique.

Mais aussi, ils modifient le microclimat dans l’espace environnant, réduisant en été la température de l’air extérieur par évaporation (chaleur latente).

 

Concevoir l’esquisse du projet – généralité

Concevoir l'esquisse du projet

Préalable, un document de synthèse peut être imprimé à destination du Maître d’Ouvrage.

Avertissement : l’esquisse décrite ici ne prend en compte que des considérations énergétiques et de confort s’adressant aux bâtiments du tertiaire de manière générale. La prudence est de mise lorsqu’on aborde certaines zones à risque de l’hôpital.

Conception énergétique d’un bâtiment tertiaire :

>  version PDF