Nouvelle cogénération dans la piscine du Sart-Tilman à Liège


Introduction : une cogénération dans une piscine

Une première question qui vient à l’esprit pour le gestionnaire ou le futur gestionnaire d’une chaufferie de piscine est de savoir comment faire pour minimiser le coût énergétique que va nécessairement engendrer un tel ensemble. Non seulement en termes de, besoins en chauffage pour le bâtiment, eau chaude pour les diverses activités présentées, les douches etc., mais également en termes de consommation électrique.

En termes de consommation énergétique, il n’est pas rare de rencontrer des chiffres bien supérieurs à 1 000 000 kWh annuel en gaz ou en électricité (cet ordre de grandeur peut varier fortement d’un établissement à l’autre).

Parallèlement à des chiffres purement économiques, viennent aussi à l’esprit l’intérêt environnemental et énergétique.

Afin de tenir compte de cette triple problématique, la réflexion conduit naturellement à envisager un projet comportant une unité de cogénération. Cette solution va apporter une solution énergétiquement optimisée qui, à partir d’un moteur alimenté au gaz (dans le cas présent) va produire à la fois de l’eau chaude et de l’électricité.

Cette solution aura un bilan intéressant à plusieurs niveaux : énergétiquement tout d’abord car l’énergie primaire consommée sera réduite par rapport à une production séparée de chaleur et d’électricité.

Économiquement ensuite car les kWh électriques produits le seront à un prix plus intéressant que celui acheté au réseau. De plus le législateur a prévu un incitent financier, calculé sur l’économie en CO2 émis par la cogénération (en comparaison à une production séparée de référence : centrale électrique TGV et chaudière à condensation), sur base de la génération de certificats verts qui pourront être valorisés par la suite.


Présentation du projet, d’où vient l’idée du projet

Le projet de cogénération à la piscine du Sart-Tilman a été lancé en 2008 en remplacement d’une pile à combustible expérimentale.

Inauguré en 2009, le projet a maintenant atteint un rythme de croisière dont on peut commencer à tirer un bilan technico-économique. La cogénération installée alimente la piscine du centre sportif ainsi que les divers consommateurs qui y sont liés (groupe de traitement d’air, douches). Elle est connectée de façon à prendre à sa charge une partie des besoins en chaleur de ces différents consommateurs dont la puissance totale nécessaire en période de pointe est de 1 500 kW, la cogénération a une puissance thermique installée de 202 kW soit environ 13,5 % de ces besoins. Le complément de chaleur qui n’est pas fourni pas la cogénération est fourni par le réseau de chaleur présent sur le site du Sart-Tilman.

En pratique la cogénération, d’une puissance thermique de 202 kW et d’une puissance électrique de 144 kW, est dimensionnée de façon à fonctionner un maximum de temps.
Elle fonctionne ainsi de l’ordre de 6 500 heures par an en moyenne. Ce chiffre, très intéressant afin de rentabiliser un tel projet, est rendu possible par des besoins en chaleur présents pratiquement toute l’année.

Une particularité d’une la cogénération installée pour chauffer une piscine est la possibilité d’utiliser le volume d’eau de la piscine (800 m³ dans le cas présent) comme tampon de chaleur afin de lisser le fonctionnement de cette cogénération et ainsi diminuer la fréquence des arrêts-démarrages. Ceux-ci sont en effet préjudiciables au rendement et à l’usure mécanique de cette cogénération.
Le bassin va permettre de continuer de faire fonctionner la cogénération même lorsque la demande des utilisateurs est trop faible que pour recevoir toute la chaleur produite. Cette chaleur y sera injectée dans certaines limites acceptables; en effet l’augmentation temporaire de température se traduira inévitablement par des pertes plus importantes (évaporation d’eau et déperditions calorifiques plus importantes…).
Le bassin, ainsi utilisé comme tampon de chaleur, permettra dans le cas présent de faire fonctionner la cogénération pas loin de 4,5 heures en augmentant la température de consigne de 1 °C.


Importance du dimensionnement, difficultés rencontrées

Le dimensionnement d’une unité de cogénération est quelque chose de sensible qui nécessite une évaluation la plus précise possible des besoins en chaleur de l’établissement où elle sera installée. C’est en effet principalement sur ces besoins en chaleur que la cogénération sera dimensionnée, elle devra également tenir compte de la consommation électrique de l’établissement. En effet, d’une façon générale, un maximum de l’électricité produite devra être autoconsommé par l’établissement afin de rentabiliser l’investissement.

Pour ce dimensionnement, l’idéal est de disposer d’un relevé quart horaire de ces besoins pendant une période de temps qui permettra d’extrapoler le profil de consommation hebdomadaire et la demande annuelle en chaleur. Sur base de cette demande, la cogénération sera dimensionnée pour maximiser sa production annuelle de chaleur.

  • Sous-dimensionnée, elle fonctionnera plus longtemps que la cogénération optimale mais produira moins que cette dernière. Elle représentera donc un manque à gagner.
  • Surdimensionnée, elle sera sujette à des cycles d’arrêt-démarrage trop fréquents qui pénaliseront son rendement de production et donc sa rentabilité. Cela grèvera également sa durée de vie et représentera un surinvestissement non justifié. De plus des cycles d’arrêt-démarrage fréquents vont provoquer une usure moteur plus importante et dès lors des frais de maintenance plus élevés.

Une fois le dimensionnement optimal effectué il restera à intégrer la cogénération dans la chaufferie et mettre en place une régulation qui la fera fonctionner à l’optimum de ses possibilités.

Ces éléments importants à rappeler permettront, une fois intégrés, de mettre en place via la cogénération un projet d’utilisation rationnelle de l’énergie (URE) efficace. Ce projet doit pour bien faire s’intégrer dans un ensemble de mesures URE dont certaines sont prioritaires ; comme par exemple la réduction des déperditions thermiques. De plus ces mesures URE déjà prises auront un impact sur le dimensionnement de la cogénération : si les besoins en chaleur sont moindres, la puissance à installer sera évidemment plus faible et le coût d’investissement moins important.


Conclusions du projet

La fiabilité de l’installation ainsi que les gains engrangés par la cogénération de la piscine du Sart-Tilman sont déterminants. D’un point de vue purement financier, pour un investissement total de près de 300 000 €, le temps de retour s’établit à 8 ans. Ce chiffre qui peut paraître élevé s’explique entre autre par le coût relativement intéressant de la chaleur achetée au réseau présent sur le site du Sart-Tilman ainsi que par le contrat d’entretien et l’omnium complète qui ont été choisis.
Dans le cas d’un site ne disposant pas de ce réseau et connecté au gaz, on trouve généralement des temps de retour proche des 5 ans.


Chiffres clés du projet (moyenne des 3 dernières années)

  • Puissance thermique : 202 kW
  • Puissance électrique : 144 kW
  • Heures de fonctionnement annuel : 6 500 heures
  • Consommation de gaz : 2 600 MWh (PCS)
  • Économies CO2 : 107 T/an
  • Certificats Verts : 246 CV/an

Contacts

Porteur de projet

Piscine du Sart-Tilman Éducation Physique
Université de Liège, Administration des Ressources immobilières
Maud LELOUTRE : Responsable Énergie
Tel : +32 (0) 4.366.37.89

Facilitateur Cogénération en Région Wallonne

Institut de Conseil et d’Études en Développement Durable asbl
Bvd Frère Orban, 4
5000 Namur
Tel : +32 (0) 81.250.480
Fax : +32 (0) 81.250.490

Crédits photos

Université de Liège : https://www.uliege.be/
Centres Sportifs du Sart-Tilman : www.rcae.ulg.ac.be/

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Nouvelle cogénération au gaz dans un home pour personnes âgées

Nouvelle cogénération au gaz dans un home pour personnes âgées


Introduction : une étude de faisabilité

En 2005, la Région de Bruxelles-Capitale a mandaté l’ICEDD pour effectuer une étude du potentiel de développement de la cogénération sur son territoire. Les résultats montrent, qu’au niveau industriel, une entreprise sur 5 pourrait installer une cogénération rentable (temps de retour inférieur à 3 ans) tandis qu’un établissement sur 2 dans le secteur tertiaire pourrait installer une unité de cogénération rentable (temps de retour inférieur à 5 ans).

Un home de la commune d’Anderlecht figure parmi ces établissements propices à la cogénération. Suite à ces bons résultats, le home a été invité à fournir des données plus précises pour réaliser une étude dite « de pertinence ». L’étude de pertinence permet, suite au pré-dimensionnement et aux calculs de rentabilité « à la grosse louche » de savoir s’il est pertinent d’installer une cogénération ou non dans le bâtiment étudié.

Cette étude de pertinence, remise en décembre 2005, a confirmé l’intérêt d’une cogénération, mais elle n’est cependant pas suffisamment précise pour que les gestionnaires puissent décider, en connaissance de cause, l’achat d’un tel équipement.

Il est nécessaire de savoir s’il y a de la place disponible et si l’acheminement du module de cogénération est possible. Il est également indispensable de pouvoir simuler le fonctionnement de cette cogénération selon les profils des besoins thermiques et électriques tel que mesurés dans le bâtiment étudié. Des simulations qui permettent d’optimiser et de fiabiliser les résultats du dimensionnement et de la rentabilité.

Ces réponses sont apportées par l’étude de faisabilité, étape ultime avant la décision d’investir. Vu l’intérêt et la motivation des gestionnaires des bâtiments, la Région de Bruxelles-Capitale a offert une étude de faisabilité gratuite, objet du présent rapport.

L’étude de faisabilité a été effectuée par le Facilitateur en Cogénération financé par la Région de Bruxelles Capitale. Pour toute information complémentaire, n’hésitez pas à contacter le Facilitateur en Cogénération.

Le document complet est disponible au téléchargement : Installation d’une cogénération dans un home pour personnes âgées (PDF).


Présentation du home

Le home est une maison de repos et de soins avec 209 places.

Installation de chauffage

Le chauffage des bâtiments est assuré actuellement par 3 chaudières au gaz naturel avec des puissances thermique de 466 kWth, 494 kWth et 494 kWth respectivement.

Dans le cadre de cette étude de faisabilité, une mesure des besoins thermiques à été effectuée en mesurant les temps de fonctionnement (à chaque demi-heure) des chaudières durant deux semaines, permettant d’obtenir un profil des besoins thermiques du bâtiment. Cette étape est en effet indispensable pour pouvoir dimensionner le plus judicieusement possible l’unité de cogénération.

Installation électrique

Le home est alimenté en électricité par une cabine haute tension (11 000 V) et alimente un transformateur. La consommation électrique est télé-relevée par Sibelga tous les quarts d’heure. Ce profil quart horaire a généreusement été transmis par Sibelga pour l’année 2005. Cette donnée est indispensable pour connaître la quantité d’électricité produite par la cogénération qui sera effectivement auto-consommée par le home ainsi que la part qui sera revendue sur le réseau électrique.

Le TGBT électrique, en aval de la cabine haute tension, est situé juste à côté de la chaufferie. La distance de câble entre le TGBT et la chaufferie où serait située la cogénération a été estimée à 15 mètres.


Synthèse des résultats

L’objectif de cette étude de faisabilité est d’évaluer l’intégration technique de la cogénération dans l’installation existante, de proposer la meilleure solution technologique et d’établir le bilan d’un projet de cogénération au gaz naturel pour le home. C’est au terme de cette étude que le décideur pourra choisir d’investir ou non dans une unité de cogénération.

Le résultat montre qu’une unité de cogénération au gaz naturel de 230 kWth et 150 kWé est économiquement intéressante, surtout couplée à un stockage de chaleur de 10 m3. Par ailleurs, elle présente de nombreux avantages énergétiques et environnementaux.

Résultats Valeurs

Techniques : Moteur au gaz naturel

Puissance « optimale »

230 kWth et 150 kWé
Nombre d’heure de fonctionnement 6 888 heures/an
Volume du ballon de stockage 10 m³
Énergétiques
Situation « avant » cogénération (factures 2005)
Consommation de gaz naturel (avec 10 % URE) 3 176 401 kWhprimaire PCI/an
Consommation d’électricité 845 996 kWé/an
Situation « après » cogénération (simulations COGENsim)
Consommation de gaz naturel de la cogénération 2 899 826 kWhprimaire PCI/an
Consommation de gaz naturel des chaudières 1 382 468 kWhprimaire PCI/an
Production de chaleur par cogénération 1 524 843 kWhth/an
Production d’électricité par cogénération 983 123 kWé/an
Économiques (montants HTVA)
Situation « avant » cogénération (factures 2005) 188 094 €/an
Facture combustible 109 585 €/an €/an
Facture électrique 78 508 €/an
Situation « après » cogénération (simulations COGENsim) 133 192 €/an
Facture combustible 147 740 €/an
facture électrique (dont revente d’électricité) 30 712 €/an (10 161 €/an)
Facture des entretiens et d’assurance 17 276 €/an
Gain de la vente des certificats verts 52 375 €/an
Gain annuel 54 902 €/an
Investissement net (tout compris) 173 720 €
Temps de retour simple (TRS) 3,2 années
Taux de rentabilité interne (TRI) 22 %/an
Environnementaux
Émissions de CO2 évitées 126 294 kg CO2/an
Objectif Kyoto satisfait pour 405 bruxellois (312 kg CO2/bruxellois)
Nombre de certificat vert (1 CV = 217 kg CO2) 582 CV/an
Économie en gaz naturel 582 540 kWh/an (16 %)


Synthèse des hypothèses

Outre les résultats, il est important de présenter, de manière synthétique, les hypothèses prises lors de l’étude. Dans le choix des hypothèses, nous avons tâché de nous situer du côté de la « sécurité », afin que le home puisse prendre la décision d’investir avec le maximum de garanties.

On distingue 4 types d’hypothèses : techniques, énergétiques, économiques et environnementales.

Il est important de préciser que ces hypothèses n’ont un impact que sur le calcul de la rentabilité du projet de cogénération et non sur son dimensionnement.

Techniques

  • Rendements de l’unité de cogénération : Évolution en fonction de la charge
  • Charge du moteur : Fonctionnement jusqu’à 75 % de sa charge nominale

Énergétiques

  • Besoins thermiques : 100 % du combustible pour la production de chaleur
  • Rendement annuel de la chaufferie : 85 % pour la chaufferie actuelle au mazout (estimation)
  • Réductions pour futures actions URE : 10%
  • Année de référence : 2005 (année chaude de + 12,4 % que l’année normale)
  • Type de combustible : Gaz naturel – PCI = 10.8 kWh PCI/m3
  • Isolation du ballon de stockage : 15 cm de laine de roche soit diminution de 1.01°C/24h

Économiques

  • Durée de vie économique : 50 000 h (env 10 ans)
  • Investissement : Tout compris (moteur, échangeurs, connexion électrique, conteneur acoustique, régulation, génie civil)
  • Investissement supplémentaire : Ballon de stockage de 10 m3 tout compris (cuve, isolation, jaquette, supports, pompes, vannes)
  • Prix mentionnés : HTVA
  • Facteur de sur-investissement : 10 % (pour éventuels imprévus)
  • Taux de subside : 20 %
  • Prix du gaz et évolution : Prix décembre 2005 (30,9 €/MWh) & + 5 %/an
  • Prix de l’électricité : Prix 2005 (92,76 €/MWh) & + 2 %/an
  • Gain sur la facture d’électricité : Réduction de puissance quart horaire non considérée
  • Régime « heures pleines » : de 7 heures à 22 heures, les jours ouvrables
  • Prix des entretiens : Contrat tout compris (huile, assurance bris de machine et dépannage) hors inspection journalière visuelle
  • Taux d’actualisation (= taux d’emprunt) : + 5 % / an
  • Prix de vente du certificat vert : 90 € / CV pendant 10 ans

Environnementales

  • Coefficient d’émission en CO2 : 217 kg CO2 / MWh de gaz naturel


Synthèse du dimensionnement

L’utilisateur d’une cogénération, pour qu’elle soit de qualité ou à haut rendement, doit valoriser toute la chaleur et toute l’électricité produites. Si la production d’électricité est supérieure aux besoins, il y aura revente sur le réseau électrique. Par contre, il est plus difficile de le faire pour la chaleur excédentaire.

C’est pourquoi, une cogénération est dimensionnée sur les besoins thermiques des bâtiments. C’est lors de l’optimisation économique de la taille que l’on tient compte des besoins électriques, en évaluant la part d’électricité auto-consommée et celle qui est revendue.

Afin de connaître avec précisions l’évolution dans le temps des besoins thermiques et électriques, des compteurs ont été placés durant le mois de janvier. Ensuite, pour la partie thermique, grâce aux degrés jours de la station météo d’Uccle, une extrapolation du profil a été réalisée.

Pour la partie électrique, Sibelga nous a fourni gracieusement les puissances ¼ heure par ¼ heure pour toute l’année 2005, l’extrapolation n’était pas nécessaire. La mesure électrique a permis de valider les données reçues. Ainsi, les profils thermique et électrique sont connus pour une année entière.

Ensuite, grâce au logiciel COGENsim, nous avons simulé le fonctionnement de plusieurs tailles de cogénération pour finalement choisir la plus rentable : une cogénération par moteur au gaz naturel de 230 kWth et 150 kWé.

Optimisation économique de la taille de cogénération à installer au home

En outre, différents scénarios de fonctionnement ont été testés. Celui qui est le mieux adapté au home consiste à faire fonctionner la cogénération 24h/24, 12 mois par an et d’y accoupler un ballon de stockage de chaleur de 10 m3.

L’intégration de la cogénération et de son ballon de stockage de chaleur est aisé, vu la place disponible dans la chaufferie et la facilité d’acheminement.


Contacts

Facilitateur Cogénération en Région de Bruxelles-Capitale

Institut de Conseil et d’Études en Développement Durable asbl
Bvd Frère Orban, 4
5000 Namur
Tel : +32 (0) 81.250.480
Fax : +32 (0) 81.250.490

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be