Synchronisation au réseau [cogen]


Principe

Dans la plupart des cas, la cogénération comme la plupart des installations décentralisées de production d’électricité est connectée au réseau pour y injecter l’excédent.
Afin de pouvoir réaliser cette connexion, il est indispensable de synchroniser le cogénérateur au réseau.

Préalablement au couplage réseau, la production décentralisée doit être mise en route avec une fréquence de rotation aussi proche possible que celle du réseau (f = 50 Hz) et une tension entre deux phases de la machine qui ait une valeur voisine de la tension entre deux phases du réseau.

Les conditions de couplage de l’alternateur sur le réseau doivent être impérativement respectées. Sans le respect des conditions de couplage, la destruction de l’alternateur est presque inéluctable.

Les conditions sont :

  • La fréquence de l’alternateur est la même que celle du réseau (ω ~ ω’). Une non-concordance des fréquences peut provoquer des retours de puissance de la part du réseau ou des couplages en opposition de phases.
  • La tension de toutes les phases de l’alternateur est identique à celle des phases du réseau (U ~ U’). Des différences de potentiel entre les phases de l’alternateur et celles correspondantes du réseau entraineraient la création de courants de circulation très élevés dans les enroulements de l’alternateur.
  • la concordance des phases est la même. En d’autres termes : « le fil rouge sur le bouton rouge … » ou, plus sérieux, les phases L1, L2, L3 (R, S, T) de l’alternateur doivent correspondre aux phases L1, L2, L3 (R, S, T) du réseau. Comme pour l’égalité des phases, la non-concordance des phases engendre des courants de circulation très élevés.

Sur le schéma présenté, les deux triades présentent une succession identique des tensions, les triades ont des fréquences proches, mais légèrement différentes représentées par la vitesse angulaire de glissement ωg. Les tensions entre les bornes 11’ ; 22’ ; 33’ s’annulent (presque) et sont au maximum simultanément (~2U).
Le couplage sera réalisé lorsque la tension 11’ est minimum. L’alternateur se synchronisera automatiquement au réseau en reprenant sa vitesse et tension.


En pratique … appareils de synchronisation

Schéma de principe de  montage des appareils de synchronisation.


Synchronoscope

Photo synchronoscope.

Cet appareil est muni d’un moteur dont la vitesse de rotation dépend de la différence entre les fréquences du réseau et de l’alternateur. La mise en parallèle s’effectue au passage à l’équilibre. Deux cas peuvent se présenter :

  • La partie gauche du cadran : il faut augmenter la vitesse de l’alternateur.
  • La partie droite du cadran : il faut réduire la vitesse de l’alternateur.

La méthode des 3 lampes

Auparavant, pour s’assurer de la concordance des phases lors de l’installation d’un nouvel alternateur, 3 lampes étaient montées de part et d’autre de l’interrupteur de couplage (voir le schéma de principe ci-dessus) :

  • Lorsque la concordance des phases est respectée, les 3 lampes s’éteignent et s’allument ensemble quand le synchronisme est proche.
  • À l’inverse, les 3 lampes s’allument et s’éteignent les unes à la suite des autres. Il est nécessaire de changer l’ordre des phases au niveau de l’interrupteur de couplage.

Le voltmètre différentiel

Photo voltmètre différentiel.

Il mesure la différence de tension de part et d’autre de l’interrupteur de couplage.
Le couplage se fait lorsque le voltmètre passe par 0 :

  • En négatif, la tension de l’alternateur est inférieure à celle du réseau.
  • À l’inverse, en positif, la tension de l’alternateur est supérieure à celle du réseau.

Le fréquencemètre

Photo fréquencemètre.

Des fréquencemètres branchés au niveau du réseau et du circuit de l’alternateur permettent de comparer si les fréquences sont proches.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Monotone de chaleur [cogen]


Principe

La monotone de chaleur est le graphique de la demande de chaleur mesurée heure par heure sur une année et classée par ordre décroissant.

Établissement d’une monotone de chaleur sur base du profil de consommation de chaleur. La courbe donne le nombre d’heures où le besoin en chaleur correspond à la puissance définie en ordonnée.


Intérêt

La monotone de chaleur sur une année permet de sélectionner le meilleur compromis entre une puissance thermique plus ou moins importante et le nombre d’heures de fonctionnement auquel cette puissance pourra fonctionner. Une faible puissance fonctionnera longtemps et de façon continue, alors qu’une grande puissance fonctionnera moins longtemps et de façon plus discontinue.
La monotone de chaleur traduit aussi une image fidèle du profil énergétique d’un bâtiment. Elle intervient, entre autres, dans l’évaluation de la puissance d’un cogénérateur. En effet, l’objectif d’une étude de faisabilité pour un système de cogénération est de maximiser la production d’énergie thermique. En d’autres termes, l’optimum énergétique d’un cogénérateur est matérialisé par la plus grande surface sous la monotone de chaleur.

Exemples

La comparaison des trois aires nous donne une indication à la fois au niveau énergétique et de la puissance thermique à prévoir pour le cogénérateur.

 

Données

Les monotones de chaleur relatives aux « profils types de consommation.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be.

Modulation de puissance [cogen]

Modulation de puissance [cogen]


Principe

Lorsqu’on parle de la modulation de puissance d’un groupe électrogène, on parle bien de la puissance électrique. Paradoxalement, la modulation de puissance d’un cogénérateur est basée sur la variation de la puissance thermique. Bien qu’il entraine aussi un alternateur comme le groupe électrogène, le cogénérateur est avant tout un générateur de chaleur et accessoirement d’électricité. Vu qu’ils sont « tous les deux unis pour le meilleur et pour le pire », la modulation de puissance thermique est intimement liée à celle de la puissance électrique.

Quel que soit le type d’alternateur, la modulation de puissance passe essentiellement :

  • Par la variation de la vitesse du cogénérateur équipé d’un alternateur asynchrone.
  • Par la variation du couple mécanique du cogénérateur équipé d’un alternateur synchrone.


L’intérêt de la modulation de puissance

La modulation de puissance est intéressante surtout pour maintenir une production électrique lorsque les besoins thermiques du circuit de chauffage connecté au cogénérateur diminuent, mais aussi pour réduire les séquences de démarrages/arrêts nuisibles à l’intégrité mécanique du moteur.

Par exemple, lorsque le cogénérateur injecte sa chaleur dans un ballon tampon qui est proche de sa consigne de température, le système de régulation du cogénérateur peut être prévu pour réduire la charge thermique de ce dernier. Dans ce cas, le cogénérateur continue à fonctionner à taux de charge partiel tout en maintenant une production d’électricité.

Attention cependant qu’à charge partielle, le rendement électrique se dégrade rapidement. En pratique, lorsque le cogénérateur est prévu pour travailler en modulation de puissance, les constructeurs proposent de ne pas descendre sous les 60 % de la puissance électrique nominale.

Le cas des alternateurs asynchrones

La modulation du taux de charge d’un cogénérateur est assez particulière lorsque l’alternateur est de type asynchrone. Pour rappel, la machine asynchrone en mode générateur doit fonctionner en « survitesse » par rapport à la vitesse du champ tournant du stator fourni par le réseau. Un glissement g négatif de quelques % suffit à l’alternateur pour atteindre sa puissance nominale. La survitesse est générée en « appuyant sur la pédale de gaz » du moteur d’entrainement et, par conséquent, en augmentant la vitesse de l’alternateur. Pour rester dans l’analogie de la voiture, l’augmentation du glissement peut être matérialisée par le comportement d’un conducteur qui, à la fois, appuie sur l’accélérateur tout en débrayant légèrement : « il fait patiner l’embrayage ». Le résultat est comparable dans le sens où les roues tournent à la même vitesse, mais que le moteur « monte légèrement dans les tours ».

Allure des courbes du couple et du courant « statorique » de la machine asynchrone fonctionnant dans les deux modes (moteur/alternateur)  en fonction d’un glissement positif ou négatif (survitesse ou sous-vitesse).

Pour une tension de réseau constante, la puissance disponible aux bornes du générateur suit la courbe du courant statorique lorsque la survitesse (ou le glissement) augmente.


Le cas des alternateurs synchrones

La variation de la puissance d’un cogénérateur équipé d’un alternateur synchrone est différente de celle d’un cogénérateur avec générateur asynchrone : il n’y a pas de glissement g ou de différence de vitesse angulaire entre le rotor de l’alternateur et le champ tournant du stator généré par le réseau.

L’action sur la « pédale de gaz » du moteur à combustion engendre juste une augmentation du couple du moteur et de la puissance électrique de l’alternateur. L’analogique de la voiture se prête bien aussi dans ce cas-ci : « pour maintenir la même vitesse d’un véhicule dans une côte, il est nécessaire  « d’appuyer sur le champignon », la vitesse des roues étant dans ce cas-ci celle du synchronisme ».

Attention, cependant, au décrochage d’un alternateur synchrone lorsque le couple résistif est trop important. Celui-ci dépend du décalage, c’est-à-dire du retard qui existe entre la force électromotrice (fem) générée par le rotor et la tension au stator. On appelle ce décalage, l’angle électrique. Si l’angle correspondant à ce déphasage dépasse 90°, on a phénomène dit de décrochage où le rotor s’emballe et la génératrice ne parvient plus à le freiner.

Courbe caractéristique du couple électrique en fonction de l’angle électrique pour une machine synchrone.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be.

Turbine

Turbine


Définition et principe

Une turbine est une machine tournante qui récupère l’énergie cinétique d’un fluide pour mettre en mouvement l’arbre de transmission.

Schéma définition et principe de la turbine.

La turbine est constituée :

  • D’une partie mobile comprenant un arbre sur lequel sont fixées les roues à aubes du compresseur et de la turbine.
  • D’une partie fixe couramment appelée « carter de la turbine » et dans lequel on retrouve les chambres de combustion, les déflecteurs pour correctement diriger le fluide sur les aubes de la turbine.

La turbine montée sur l’arbre de transmission est mise en rotation par la force exercée sur le fluide (liquide, gaz) sur les aubes. Cette action engendre une diminution de la pression du fluide ou détente. Dans le cas de la cogénération, l’arbre est couplé à un alternateur pour la production d’électricité.
La turbine est une machine qui nécessite un fonctionnement idéalement en continu. Ce type d’équipement présente, entre autres comme avantage, de demander moins d’entretien que les moteurs.


La turbine à vapeur

Une turbine à vapeur utilise, comme son nom l’indique, la vapeur comme fluide de propulsion. Elle est produite, par exemple, à partir d’une chaudière ou disponible en sortie d’un processus industriel. La vapeur produite à haute pression est injectée à l’entrée de la turbine. À ce niveau, elle subit une série de détente au travers de plusieurs étages de roue à aubes, en générant l’énergie mécanique nécessaire à mettre l’arbre en rotation.

Photo turbine à vapeur.

Turbine à Vapeur (source : General Electric).

Le schéma ci-dessous montre une turbine vapeur alimentée par une chaudière. La chaleur résiduelle comprise dans la vapeur basse pression (BP) et dans les quelques pourcents de condensats non récupérés par la chaudière vapeur,  peut servir à alimenter un système de chauffage (principe de récupération de la chaleur fatale).

Schéma principe turbine à vapeur.

La turbine vapeur conviendra particulièrement bien pour des puissances pouvant aller de 10 MWé à 50 MWé.

Elle nécessite un grand débit de vapeur d’entrée.


La turbine à gaz

Photo turbine à gaz.

Turbine à gaz (source Siemens).

La turbine à gaz fonctionne sur le principe de la détente d’un fluide gazeux dans une turbine issu de la combustion d’un mélange d’air comprimé au niveau du compresseur et de gaz dans une chambre dite « de combustion ». C’est le principe du réacteur d’avion !

La partie mobile est composée d’un arbre sur lequel sont montés le compresseur et la turbine. La partie fixe, quant à elle, accueille principalement la chambre de combustion.

Les gaz en sortie de turbine possèdent un niveau d’énergie suffisant qui peut être exploité dans une chaudière de post combustion en produisant de la vapeur.

Schéma principe turbine à gaz.

La gamme de puissances électriques des turbines à gaz est large. Le rendement électrique des turbines gaz est lié à la qualité de l’alternateur. Un ordre de grandeur courant de rendement électrique est de l’ordre de 20 à 25 %.

Le rendement thermique, lui, peut être amélioré par la qualité de l’échangeur, l’exploitation des différentes sources de chaleur, la qualité de la combustion, etc. Un ordre de grandeur de rendement thermique se situe entre 55 et 70 % (avec postcombustion).


La micro-turbine à gaz

La micro-turbine à gaz est la petite sœur de la turbine à gaz. Cependant, elle délivre de plus petites puissances (à partir de 25 kWé).

Photo micro-turbine à gaz.

Microturbine 30 kWé – Capstone.

La micro-turbine est souvent pourvue d’un échangeur complémentaire pour préchauffer l’air comprimé de la chambre de combustion. Enfin, la micro-turbine domestique existe sur certains marchés.

Schéma principe micro-turbine à gaz.

Principe de la turbine.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be