Choisir le système de ventilation : critères généraux

© Architecture et climat 2023.

La qualité d’air intérieur dépend notamment de :

  1. L’air extérieur ;
  2. le mobilier et matériel de bureau ;
  3. les produits et matériaux de construction ;
  4. la ventilation ;
  5. le comportement des usagers.

Les normes recommandent une ventilation de base permanente ayant pour but d’évacuer les odeurs, l’humidité et les éventuelles substances nocives. Pour ce faire, différents systèmes de ventilation existent.


Aperçu des normes

En région wallonne, depuis le 1er mai 2010, tous les bâtiments neufs et assimilés doivent répondre à des exigences particulières. Les bâtiments non résidentiels (hors habitation et appartement) doivent respecter l’Annexe C3 de la PEB (elle-même basée sur la norme européenne EN 13 779 (Ventilation dans les bâtiments non résidentiels – Spécifications des performances pour les systèmes de ventilation et de climatisation).  Celle-ci impose une qualité d’air au moins égale à la catégorie INT 3 (débit minimum de 22 m³ par heure et par personne).

De plus, elle impose un taux d’occupation minimum (m² par personne) à prendre en compte pour le dimensionnement en fonction de l’usage de la pièce.

Pour déterminer le débit d’air neuf minimal à assurer dans chaque local, il faut donc multiplier le taux d’occupation (de conception ou minimum imposé) par le débit de ventilation (INT 3 minimum).

De plus, il faut respecter un débit de conception minimal pour les sanitaires : 25m³/h par WC ou urinoir ou 15m²/h par m² de surface si le nombre de WC n’est pas connu lors du dimensionnement.

Pour les hôpitaux, selon la norme NF S90-351, dans les zones à risques 1, c’est-à-dire concrètement sans risque d’aérobiocontamination (hospitalisation sans risque d’infection, certaines consultations, radiologie, ergothérapie, …), la ventilation se traite, en principe, sans exigence particulière en terme de filtration et de pression.

Dans les autres locaux (médico-techniques par exemple), la ventilation est organisée dans le même local où l’on retrouve à la fois des bouches de pulsion et d’extraction.


Typologie des systèmes de ventilation

Différentes dénominations sont utilisées pour caractériser des systèmes de ventilation.

Relativement au flux d’air, on distingue ventilation hygiénique et intensive sur base du débit:

  • Ventilation hygiénique, ou « de base » : il s’agit de la ventilation minimale nécessaire pour garantir une qualité de l’air suffisante, pour réduire la concentration des odeurs et de l’humidité. Elle requiert des débits d’air limités, appliqués de manière permanente. Ordre de grandeur : <1 renouvellement horaire de l’air.
  • Ventilation intensive : ventilation temporaire à grand débit (ordre de grandeur : >4 renouvellements horaires de l’air) nécessaire uniquement dans des circonstances plus ou moins exceptionnelles, comme lors d’activités générant une production élevée de substances nocives ou d’humidité (travaux de peinture, de nettoyage, certains loisirs,…), lors de chaleur persistante ou d’ensoleillement intensif qui provoque une surchauffe, ou lors d’une occupation extraordinaire, par exemple une fête, un nombre de fumeurs élevé, …

On distingue également infiltrations et ventilation sur base du caractère volontaire ou fortuit du mouvement d’air :

  • Infiltration : mouvement d’air involontaire et incontrôlé au travers des faiblesses de l’enveloppe d’un bâtiment
  • Ventilation : mouvement d’air volontaire et partiellement ou totalement contrôlé au travers de dispositifs spécifiques

Dans le logement, la norme NBN D50-001 parle de systèmes A, B, C ou D selon que l’amenée et/ou l’évacuation d’air est naturelle ou mécanique. Bien qu’exclusivement réservée aux logement, ces appellations sont parfois généralisées aux systèmes mis en œuvre dans les bâtiments tertiaires. Nous parlerons ici plus largement de :

Les ventilations double flux peuvent ou non intégrer une récupération de chaleur sur l’air extrait.

Enfin, on parlera de ventilation hybride lorsqu’elle recours aux principe de la ventilation naturelle mais prévoit ponctuellement le support de ventilateurs et d’éléments réseaux de ventilation mécanique. Typiquement, il s’agit d’une ventilation naturelle dans laquelle un ventilateur d’appoint vient renforcer le tirage lorsque les forces naturelles font défaut.

Le premier choix à réaliser est donc, pour faire simple, entre une ventilation naturelle ou mécanique simple ou double flux. en conception neuve ou rénovation, c’est très souvent une ventilation mécanique qui sera choisie. Se posent alors deux autres questions :

  • faut-il créer un réseau de ventilation unique desservant tout le bâtiment (système de ventilation centralisé) ou distinguer les équipements de chaque local ou groupe de locaux (système de ventilation décentralisé) ?
  • A-t-on intérêt à utiliser ce système de ventilation pour traiter l’air neuf et/ou climatiser le local?

Concevoir

Pour départager les ventilation naturelles et mécaniques, cliquez ici !

Concevoir

Pour départager les systèmes de ventilation centralisés ou décentralisés, cliquez ici!

Concevoir

Pour examiner l’intérêt d’une combinaison de la ventilation avec le traitement thermique des locaux, cliquez ici

Repérer les fuites de fluides frigorigènes

Repérer les fuites de fluides frigorigènes

Les fluides frigorigènes ont un impact non négligeable sur l’environnement. Les réglementations outre le fait d’interdire l’utilisation de certains fluides imposent le contrôle de l’étanchéité des installations.

Pour le repérage des fuites, on retrouve principalement deux méthodes :

  • la méthode directe ;
  • la méthode indirecte.

Méthode directe

Détecteur de fuite.

Détecteur de fuite R22, R134A… Cette méthode consiste en l’utilisation d’un détecteur de fuite manuel placé devant chaque source potentielle de fuite. Dans les installations existantes, une fuite est souvent difficile à détecter :

  • En détente directe (le fluide frigorigène alimente directement les évaporateurs des meubles frigorifiques, des chambres froides, des ateliers de boucherie, …), les conduites passent régulièrement dans des faux-plafonds, des gaines techniques, … difficiles d’accès.
  • Pour les installations à boucle secondaire par fluide caloporteur (le fluide frigorigène alimente les évaporateurs « utiles » via un fluide caloporteur comme l’eau glycolée, le CO2, …), les fuites potentielles sont circonscrites au local technique; ce qui en soi, simplifie la détection d’une fuite éventuelle.

L’idéal est de faire appel dans n’importe quel cas à des frigoristes spécialisés.

Méthode indirecte

Cette méthode se base sur une estimation des pertes relatives annuelles. Elle peut être mise en œuvre par le maître d’ouvrage ou par la société de maintenance sur base de relevés effectués sur le circuit frigorifique par du personnel qualifié (prise de pression, monitoring permanent, …).

En fonction des impositions réglementaires, il est nécessaire, suivant la charge frigorifique, de comptabiliser les relevés intermédiaires imposés.

Fluides frigorigènes [Chauffage – PAC]

Fluides frigorigènes [Chauffage - PAC]


L’impact environnemental

Depuis quelques décennies, l’impact des fluides frigorigènes sur l’environnement est devenu un enjeu majeur. En effet, de par la présence de fuites au niveau du circuit frigorifique, la responsabilité de ces fluides dans la destruction de la couche d’ozone et l’augmentation de l’effet de serre n’est plus à démontrer.

Trou d’ozone au pôle sud.

Que ce soit en conception, en rénovation ou même en maintenance, les fuites de fluides sont donc à éviter. Elles dépendent essentiellement de la qualité :

  • du choix et de la mise en œuvre des équipements (soudures et connexions des conduites de distribution par exemple);
  • de l’optimisation du cycle frigorifique;
  • de la maintenance;

En France, en 1997, une étude a montré que le taux de fuites annuelles pouvait atteindre 30 % de la quantité totale en poids (ou en masse) de fluides frigorigènes présent dans les installations frigorifiques des grandes surfaces (Réf.: Zéro fuite – Limitation des émissions de fluides frigorigènes, D. Clodic, Pyc Éditions, 1997).

Depuis lors, les réglementations se sont attaquées à ces problèmes :

  • Suite au protocole de Montréal (1987) les fluides frigorigènes CFC (chlorofluorocarbures, principaux responsables de la destruction de la couche d’ozone) ont été définitivement abandonnés et remplacés progressivement par les HCFC.
  • Les réglementations européennes 2037/2000, 842/2006 et 517/2014 ont notamment imposé :
    •  l’interdiction d’utilisation des HCFC à fort impact sur l’effet de serre (GWP ou global Warming Potential);
    • le remplacement progressif des HFC à haut GWP;
    • le confinement des installations frigorifiques permettant de réduire la quantité de fluide frigorigène;
    • des contrôles réguliers d’étanchéité des installations;
    •  …

Indices d’impact

Pour établir l’impact des fluides frigorigènes sur la couche d’ozone et l’effet de serre, trois indices principaux ont été définis :

  • ODP : Ozone Depletion Potential;
  • GWP : Global Warning Potential;
  • TEWI : Total Equivalent Warning Impact.

ODP (Ozone Depletion Potential)

C’est un indice qui caractérise la participation de la molécule à l’appauvrissement de la couche d’ozone. On calcule la valeur de cet indice par rapport à une molécule de référence, à savoir soit R11 ou R12 qui ont un ODP = 1.

GWP (Global Warning Potential)

C’est un indice qui caractérise la participation de la molécule à l’effet de serre. On calcul la valeur de cet indice par rapport à une molécule de référence, à savoir le CO2, et pour des durées bien déterminées (20, 100, 500 ans). Le CO2 à un GWP = 1.

TEWI (Total Equivalent Warning Impact)

Le TEWI est un concept permettant de valoriser le réchauffement planétaire (global warming) durant la vie opérationnelle d’un système de réfrigération par exemple, utilisant un fluide frigorigène déterminé en tenant compte de l’effet direct dû aux émissions de fluide frigorigène et à l’effet indirect dû à l’énergie requise pour faire fonctionner le système.

À titre indicatif, il est donné par la formule :

TEWI = (GWP x L x n) + (GWP x m[1-C]) + n x E x β

Où :

  • GWP : global warming potential;
  • L : émissions annuelles de fluide en kg;
  • n : durée de vie du système en années;
  • m : charge en fluide frigorigène en kg;
  • C : facteur de récupération / recyclage compris entre 0 et 1;
  • E : consommation annuelle d’énergie en kWh;
  • β : émission de CO2 en kg / kWh.

Voici, pour chaque fluide frigorigène, le Ozone Depletion Potential (potentiel de destruction de la couche d’ozone) et le Global Warming Potential (potentiel de participation au réchauffement climatique) sur 100 ans :

ODP GWP100
R717 Amoniac 0 0
R744 CO2 0 1
R290 Propane 0 20
R32 HFC, fluide pur 0 675
R134a HFC, fluide pur 0 1 430
R407C HFC, mélange 0 1 800
R22 HCFC 0,05 1 810
R410A HFC, mélange 0 2 100
R427A HFC, mélange 0 2 100
R417A HFC, mélange 0 2 300
R422D HFC, mélange 0 2 700
R125 HFC, fluide pur 0 3 500
R404A HFC, mélange 0 3 900
R12 CFC 0,82 10 900

Source : 4ème rapport de l’IPCC (Intergovernmental Panel on Climate Change).


Les fluides frigorigènes fluorés

Fluides frigorigènes fluorés

Les fluides frigorigènes fluorés sont en grande partie responsables de la destruction de la couche d’ozone et contribuent à augmenter l’effet de serre. Les interactions entre les deux phénomènes sont réelles mais d’une grande complexité.

On en distingue plusieurs types :

  • CFC;
  • HCFC;
  • HFC.

CFC (chlorofluorocarbures) (interdits de production depuis janvier 1995)

Ce sont des molécules composées de carbone, de chlore et de fluor. Elles sont stables; ce qui leur permet d’atteindre la stratosphère sans trop de problèmes. À ce stade, en se transformant elles contribuent à la destruction de la couche d’ozone.

R-11 Groupes centrifuges « basse pression ».
R-12 Essentiellement froid domestique et climatisation automobile, mais aussi dans les groupes refroidisseurs d’eau centrifuges.
R-13 Rares utilisations en froid très basse température.
R-14 Rares utilisations en froid très basse température.
R-113 Abandonné avant son interdiction.
R-114 Pompes à chaleur et climatisation de sous-marin.
R-115 Fluide pas utilisé seul, mais dans le R-502, mélange azéotropique très utilisé en froid commercial basse température.

HCFC (hydrochlorofluorocarbures) (utilisation interdite au Ier Janvier 2015)

Ce sont des molécules composées de carbone, de chlore, de fluor et d’hydrogène. Elles sont moins stables que les CFC et détruisent l’ozone dans une moindre mesure. Elles sont appelées substances de transition.

R-22 Fluide frigorigène le plus souvent utilisé, aussi bien en froid industriel qu’en climatisation.
R-123 Remplace le R-11 dans les groupes centrifuges.
R-124 Essentiellement utilisé dans certains mélanges.

HFC (hydrofluorocarbures) (utilisation réduite progressivement jusqu’en 2030)

Ce sont des molécules composées de carbone, de fluor et d’hydrogène. Elles ne contiennent pas de chlore et donc ne participent pas à la destruction de la couche d’ozone. Par contre, les HFC présentent un Global Warming Potential (contribution à l’effet de serre) sur 100 ans élevé.

R-134a

(Solkane)

Fluide frigorigène qui a remplacé le R-12 en froid domestique et en climatisation automobile.

En application « chauffage », il présente l’avantage de faire fonctionner les pompes à chaleur à haute température (généralement jusqu’à 65 °C) et à relativement basse pression. Son utilisation est compatible avec une production d’eau chaude pour radiateurs en lieu et place d’une chaudière.

C’est également un composant majeur de la plupart des mélanges de remplacement.

R-125 N’est jamais utilisé pur en raison de sa pression critique trop faible (66°C). Il entre dans la composition de nombreux mélanges compte tenu de son pouvoir « extincteur ».
R-32,
R-152a
R-143a
Inflammables et donc utilisés uniquement en mélange avec d’autres composants qui « neutralisent » leur inflammabilité.

Mélange de fluides frigorigènes

On peut les classer en fonction du type de composants fluorés qu’ils contiennent.
Ils se distinguent également par le fait que certains mélanges sont :

  • Zéotropes : au cours d’un changement d’état (condensation, évaporation), leur température varie.
  • Azéotropes : ils se comportent comme des corps purs, sans variation de température lors du changement d’état.

Il va de soi que les frigoristes apprécient cette propriété d’azéotropie pour le fonctionnement de la machine frigorifique.

Le R407C (R134a : 52 % + R125 : 25 % + R32 : 23 %)

Le R407C est un fluide non azéotrope (il est composé de plusieurs fluides) afin d’obtenir sa température de changement d’état.

Ce fluide frigorigène présente les particularités suivantes :

  • Il est ininflammable.
  • Lors des changements de phase, la température « glisse » d’environ 5 K car les températures d’évaporation et de condensation des fluides frigorigènes qui le constituent sont différentes. Ceci rend les réglages plus difficiles et impose des échangeurs à contre-courant pour tirer le meilleur parti de ce fluide.
  • En cas de micro-fuite, le composé ayant les molécules les plus volatiles s’échappe préférentiellement. Il en résulte un fluide frigorigène déséquilibré. Il est dès lors nécessaire de vider entièrement l’installation avant de la recharger, le gaz retiré étant recyclé.
  • Les pressions sont moindres avec ce fluide frigorigène.
  • Il est moins performant que le R410A …
Le R410A (R32 : 50 % + R125 : 50 %)

Le R410A présente de meilleures qualités thermodynamiques que le R407C et le R22. D’autre part, l’étanchéité des installations est plus élevée avec le R410A, les pertes de pression sont donc faibles et les vitesses de fonctionnement peuvent être élevées. Les composants sont dès lors plus compacts.

Le R410A est cependant toxique ! De plus, il se comporte comme un réfrigérant mono-moléculaire lorsqu’il change de phase : le passage d’un état à un autre se produit à température quasiment constante (le glissement de température est négligeable). On ne doit donc pas vider complètement l’installation avant de la recharger.Pour terminer, les pressions de fonctionnement sont 60 % plus élevées que dans le cas du R22. Ceci limite donc son utilisation aux températures de condensation moyennes : maximum 45 °C.

Le R404A (R143a : 52 % + R125 : 44 % + R134a : 4 %)

Le R404A présente des caractéristiques communes avec le R410A (il se comporte aussi comme un fluide quasi-azéotropique) mais sa pression de fonctionnement est plus basse. Sa particularité est de ne pas beaucoup s’échauffer pendant la compression. La température des vapeurs surchauffées en sortie de compresseur reste donc modérée, ce qui convient parfaitement à la mise en œuvre des PAC fluide/fluide.


Les fluides à bas « effet de serre »

Ils sont considérés comme moins inquiétants pour l’environnement, car à la fois sans action sur l’ozone stratosphérique et d’un faible impact sur l’effet de serre.

Ils présentent tous des inconvénients, soit au niveau sécurité, soit au niveau thermodynamique.

L’ammoniac (NH3) ou R-717

L’ammoniac présente de nombreux avantages en tant que fluide frigorigène :

  • Impact environnemental nul (ODP et GWP100 nuls);
  • très bon coefficient de transfert de chaleur;
  • efficacité énergétique élevée (au moins aussi bonne que le R22, meilleure dans certaines conditions);
  • le gaz ammoniac est plus léger que l’air;
  • faibles pertes de charge;
  • fuites aisément détectables;
  • faible prix de revient et faibles frais d’entretien des installations;
  • très difficilement inflammable, limite d’explosion élevée et petits champs d’explosion;
  • chimiquement stable;
  • aisément absorbable dans l’eau;
  • pas très sensible à l’humidité dans le circuit;
  • naturel donc biodégradable;
  • grâce à sa haute température critique, il permet de réaliser des températures de condensation très élevées et de concevoir des PAC à haute température.

Les COP obtenus avec ce fluide frigorigène peuvent être équivalents à ceux obtenus avec des HFC.

L’ammoniac est par contre toxique (mais pas cumulativement dans le temps) et irritable. Il peut être explosif dans des cas exceptionnels (les limites inférieure et supérieure d’inflammabilité doivent être très proches l’une de l’autre). Il sera également explosif dans des locaux non aérés où il se crée un mélange d’air, d’azote et d’ammoniac. Les locaux doivent donc absolument être ventilés et le passage de l’air doit également être totalement libre. De plus, le NH3 corrode facilement le cuivre et ses alliages ainsi que le zinc. Les installateurs sont donc obligés d’utiliser de l’acier. Pour terminer, l’ammoniac n’étant pas miscible et soluble dans les huiles minérales, il faut prévoir un séparateur d’huile après le compresseur.

Les installations à l’ammoniac l’utilisent liquide et sa quantité est réduite : la quantité de gaz perdu par fuites est donc faible.

Il est à l’heure actuelle principalement utilisé dans le froid industriel.

Les hydrocarbures (HC) comme R-290 R-600a

Il s’agit essentiellement du propane (R-290), du butane (R-600) et de l’isobutane (R-600a).

Ces fluides organiques présentent de bonnes propriétés thermodynamiques, mais sont dangereux par leur inflammabilité. Le monde du froid s’est toujours méfié de ces fluides, même s’ils sont réapparus récemment dans des réfrigérateurs et des mousses isolantes. Leur utilisation future paraît peu probable en climatisation, vu le coût de la mise en sécurité aussi bien mécanique qu’électrique. En PAC, on l’utilise donc dans des quantités les plus faibles possible (maximum 3 kg pour les applications résidentielles), de préférence à l’extérieur des bâtiments.

Le dioxyde de carbone (CO2) ou R-744

Fluide inorganique, non toxique, non inflammable, mais moins performant au niveau thermodynamique. Son usage implique des pressions élevées et des compresseurs spéciaux.

Il possède cependant de bonnes qualités en application PAC pour le chauffage ou l’eau chaude sanitaire. Il est peu coûteux, et sa récupération et son recyclage sont simples à mettre en œuvre.

Actuellement, les spécialistes s’y intéressent à nouveau de par :

  • son faible impact sur l’environnement (ODP = 0, GWP = 1);
  • son faible volume massique entraînant des installations à faible volume (fuites réduites);

Il a la particularité de posséder une température critique basse à 31 °C  pour une pression de 73,6 bar.

À noter que l’utilisation de ce type de réfrigérant entraîne aussi des contraintes non négligeables telles que la nécessité de travailler :

  • à des pressions élevées (80 voire plus de 100 bar);
  • en transcritique qui demande une maîtrise de la condensation en phase gazeuse (gaz cooler);

L’eau (H2O)

Fluide inorganique, bien entendu sans toxicité. Même si sa grande enthalpie de vaporisation est intéressante, il ne se prête pas à la production de froid sous 0°C. Il est peu adapté au cycle à compression et ses applications sont rares.

Synthèse

Frigorigène Fluide naturel ODP3 GWP (100ans) valeurs IPCC 3 GWP (100ans) valeurs WMO 4 Temp. critique (°C) Pression critique (MPa) Inflammabilité Toxicité Coût relatif Puissance volumétrique
R290

(HC) CH3CH2CH3

Oui 0 20 20 96,7 4,25 Oui Non 0,3 1,4
R717 (Ammoniac NH3) Oui 0 <1 <1 132,3 11,27 Oui Oui 0,2 1,6
R 744 (CO2) Oui 0 1 1 31,1 7,38 Non Non 0,1 8,4
R718 (H2O) Oui 0 0

Caractéristiques environnementales des fluides frigorigènes naturels.


Nomenclature

Les fluides frigorigènes sont soumis à une nomenclature qui se veut internationale. L’ASHRAE, une des plus utilisées, désigne les fluides frigorigènes par la lettre R associée à 2,3 ou 4 chiffre + une lettre (R134a par exemple).

Le tableau ci-dessous montre la méthode de désignation des fluides réfrigérants :

R-WXYZ§

Nomenclature

Appellation courante

R12

R134a

R1270

Appellation pour la détermination de la formule

R-0012

R-0134a

R-1270

CFC

W = Nombre d’insaturation

Carbone = Carbone (C=C)

C=C (double liaison)

0

0

1

X = nombre de Carbone -1

nombre d’atomes de Carbone C = X + 1

1

2

3

Y = nombre de Hydrogène +1

nombre d’atomes d’Hydrogène H = Y – 1

0

2

6

Z = nombre de Fluor

nombre d’atomes de Fluor F = Z

2

4

0

R401A

nombre d’atomes de Chlore Cl*

2

0

0

Formule chimique

C Cl2F2

C2H2F4

CH3 CH=CH2

Si § = A-E => symétrie

Si § = a-b => asymétrie (avec a moins asymétrique que b)

symétrie de la molécule

symétrique

asymétrique

symétrique

Calcul du nombre d’atomes de chlore : Pour les molécules saturées (w = 0), Le nombre d’atomes de chlore s’obtient à partir de la formule suivante : Cl = 2.(C = 1) – H – F.

Comparer les performances des fluides frigorigènes

Comparer les performances des fluides frigorigènes


Principes

Les différents fluides frigorigènes ne sont pas égaux devant le froid. Certains ont une meilleure efficacité frigorifique que d’autres; c’est pourquoi il est important d’évaluer leurs différences.

Coefficient de performance instantané COP

Cycle frigorifique classique.

L’effet frigorifique ou COP est défini par la relation suivante :

COP = Puissance frigorifique / Puissance électrique absorbée

Où :

  • Puissance frigorifique : puissance utile à l’évaporateur [kWf];
  • Puissance électrique absorbée : puissance électrique par le compresseur [kWe].

Production frigorifique spécifique

Le type de fluide frigorigène influence le COP. La recherche d’un fluide frigorigène à forte production frigorifique par volume de gaz aspiré au niveau du compresseur est primordiale. Un fluide frigorigène est d’autant plus performant que sa chaleur latente d’ébullition (ou d’évaporation) à l’évaporateur et un faible volume spécifique des vapeurs à l’aspiration.

La production par m³ de fluide aspiré sous forme de gaz au compresseur est donnée par la relation suivante :

Production frigorifique spécifique = Chaleur latente d’ébullition / Volume spécifique des vapeurs à l’aspiration

[kJ/m³]

Où :

  • La chaleur latente d’ébullition est exprimée en kJ/kg ;
  • Et le volume spécifique des vapeurs en m³/kg.

Cette production frigorique par m³ de gaz aspiré est donc inversement proportionnelle à la cylindrée des compresseurs et donc de leurs coûts. Il en résulte que les quantités de fluides frigorigènes, pour une même puissance frigorifique, peuvent être plus importantes d’un type à l’autre de fluide.


Comparaison

L’exercice consiste à comparer plusieurs fluides frigorigènes entre eux afin de déterminer leur production frigorifique spécifique et leur COP.

Pour ce faire, on se propose d’étudier, à travers d’un exemple et succinctement, les fluides suivants :

  • Le R22 ou fluide pur HCFC encore présent dans beaucoup d’installations existantes à faible ODP (ODP = 0,055) mais à GWP important (GWP = 1700) ;
  • Le R404A ou mélange de HCFC majoritairement utilisé dans les nouvelles installations de froid commercial sans impact sur la couche d’ozone (ODP = 0) mais à GWP important (GWP = 3260) ;
  • Le R507 ou autre mélange de HFC utilisé régulièrement dans les nouvelles installations.

Hypothèses :

  • Puissance frigorifique utile nécessaire : Pfrigorifique = 100 kW;
  • Température de condensation = 40°C;
  • Température d’évaporation ou d’ébullition -10°C;
  • Sous-refroidissement = 5°C;
  • Surchauffe = 5°C;
  • rendement du compresseur ηcomp = 0,85;
  • rendement du moteur électrique ηmoteur_élec = 0,85;
  • pas de pertes de charge ni d’échange thermique au niveau des conduites;

Cycle théorique :

R22

En fonction des hypothèses prises, on peut établir le graphique suivant qui permet de déterminer les valeurs :

  • d’enthalpie au niveau de l’évaporateur : soit Δhévaporateur = 405 – 244 = 161 kJ/kg;
  • énergie théorique de compression : soit Δhcompression = 443 – 405 = 38 kJ/kg;
  • de volume massique à l’aspiration : soit Vmassique_aspiration = 0,067 m³/kg.

Calculs :

  • Pour une puissance frigorifique demandée de 100 kW, le débit massique de R22 est de :

débitmassique = Pfr / hévaporateur [kg/s]

débitmassique = 100 [kJ/kg] / 161 [kW] = 0,62 kg/s ou 2 236 kg/h

  • Le volume réel à aspirer par le compresseur est de :

Volumeréel = débitmassique * volumemassique_aspiration

Volumeréel  = 0,62  [kg/s] / 0,067  [m³/kg] = 0,04 m³/s

soit en une heure un volume aspiré au niveau du compresseur de 0,04 x 3 600 = 150 m³/h

  • Le rendement volumétrique du compresseur est de :

ηVolume = 1 – (0,05 x τ)

Où :

τ  = HP / BP (en pression absolue)

ηVolume  = 1 – (0,05 x HP / BP)

ηVolume  = 1 – (0,05 x 15,3 / 3,55) = 0,78

  • Le débit théorique nécessaire est de :

Débitcompresseur = Volumeréel / ηVolume

Débitcompresseur = 150 / 0,78

Débitcompresseur = 190 m³/h

  • La puissance électrique du moteur du compresseur est de :

Pelectr_absorbée = débitmassiqueΔhcompression x (1 /  ( ηcomp x ηmoteur_elec x ηVolume))

Pelectr_absorbée = 0,62 x 38 x (1 / (0,85 x 0,85 x 0,785))

Pelectr_absorbée = 41 kW

  • Enfin, la performance énergétique (ou effet frigorifique) de la machine est de :

COP = Pfrigorifique / Pelectr_absorbée

COP = 100 / 41 = 2,4

R404A

Comme pour le R22, avec les mêmes hypothèses, on effectue les calculs amenant à déterminer le COP de l’installation. Le tout est consigné dans le tableau de synthèse ci-dessous.

R507

Comme pour le R22, avec les mêmes hypothèses, on effectue les calculs amenant à déterminer le COP de l’installation. Le tout est consigné dans le tableau de synthèse ci-dessous.

Synthèse

Pour les 3 fluides étudiés ci-dessus, on établit un tableau synthétique qui nous permet une comparaison des principales caractéristiques et performances des fluides réfrigérants :

Caractéristiques et performances des fluides frigorigènes

R22

R404A

R507

Haute pression [bar]

15

18,2

18,8

Basse pression [bar]

3,6

4,3

4,5

Taux de compression (τ = HP / BP)

4,3

4,2

4,2

Rendement volumétrique ηVolume

0,78

0,79

0,79

Température de fin de compression [°C]

70

50

53

Volume spécifique à l’aspiration du compresseur [m³/kg]

0,067

0,048

0,046

Débit massique du fluide réfrigérant [kg/s]

0,62

0,85

0,88

Volume réellement aspiré [m³/s]

0,04

0,04

0,04

Volume théorique [m³/h]

191

185,3

185,5

Puissance électrique [kW]

41

39

50

COP

2,4

2,6

2

Diminution des performances

– 8 %

– 23 %

Conclusion

Les fluides frigorigènes étudiés présentent beaucoup de similitudes. On voit néanmoins que le COP du R404A est meilleur; ce qui signifie que dans des conditions idéales et identiques (en régime permanent et stable par exemple), pour une période de temps identique, la consommation d’une machine :

  • au R22 est 8 % plus élevée;
  • au R507 est 23 % plus élevée.

Caractéristiques thermiques des sols

Caractéristiques thermiques des sols

Type de roche

Conductivité thermique
λ (W/mK)

Capacité thermique volumétrique
ρC (MJ/m³K)

min

valeur typique

max

Roches magmatiques

Basalte

1.3

1.7

2.3

2.3 – 2.6

Diorite

2.0

2.6

2.9

2.9

Gabbro

1.7

1.9

2.5

2.6

Granit

2.1

3.4

4.1

2.1 – 3.0

Péridotite

3.8

4.0

5.3

2.7

Rhyolithe

3.1

3.3

3.4

2.1

Roches métamorphiques

Gneiss

1.9

2.9

4.0

1.8 – 2.4

Marbre

1.3

2.1

3.1

2.0

Métaquartzite

env. 5.8

2.1

Mécaschistes

1.5

2.0

3.1

2.2

Schistes argileux

1.5

2.1

2.1

2.2 – 2.5

Roches sédimentaires

Calcaire

2.5

2.8

4.0

2.1 – 2.4

Marne

1.5

2.1

3.5

2.2 – 2.3

Quartzite

3.6

6.0

6.6

2.1 – 2.2

Sel

5.3

5.4

6.4

1.2

Grès

1.3

2.3

5.1

1.6 – 2.8

Roches argileuses limoneuses

1.1

2.2

3.5

2.1 – 2.4

Roches non consolidées

Gravier sec

0.4

0.4

0.5

1.4 – 1.6

Gravier saturé d’eau

env. 1.8

env. 2.4

Moraine

1.0

2.0

2.5

1.5 – 2.5

Sable sec

0.3

0.4

0.8

1.3 – 1.6

Sable saturé d’eau

1.7

2.4

5.0

2.2 – 2.9

Argile/limon sec

0.4

0.5

1.0

1.5 – 1.6

Argile/limon saturé d’eau

0.9

1.7

2.3

1.6 – 3.4

Tourbe

0.2

0.4

0.7

0.5 – 3.8

Autres substances

Bentonite

0.5

0.6

0.8

env. 3.9

Béton

0.9

1.6

2.0

env. 1.8

Glace (-10°C)

2.32

1.87

Plastique (PE)

0.39

Air (0-20°C, sec)

0.02

0.0012

Acier

60

3.12

Eau (+10°C)

0.58

4.19

Choisir le CO2 comme fluide réfrigérant ou caloporteur

Image par défaut pour la partie Concevoir

Le grand retour du CO2 ?

Le CO2 (R 744) revient à la charge ses derniers temps comme fluide frigorigène. Autrefois remplacé par les CFC, HCFC, HFC, il doit son retour :

  • À son faible impact sur l’environnement (ODP = 0, GWP = 1) par rapport aux autres fluides frigorigènes utilisés actuellement (jusqu’à 3 800 fois moins d’impact sur l’environnement que les HFC).
  • À  l’avancée des technologies dans le domaine de la réfrigération et de la climatisation. En effet, le problème du confinement des gaz sous haute pression semble partiellement résolu grâce, et c’est paradoxal, à la maîtrise de la climatisation dans les véhicules avec la nécessité de trouver :
    • un fluide réfrigérant propre;
    • un faible volume massique permettant des installations compactes (faible poids des équipements et volume réduit de fluide frigorigène);

Les avantages et inconvénients de l’utilisation du CO2 comme fluide frigorigène sont les suivants :

Avantages

Inconvénients

  • pas d’action sur l’ozone (ODP = 0);
  • peu d’impact direct sur l’effet de serre (GWP = 1) sachant par exemple que le R404A a un GWP de 3 800;
  • fluide naturel et largement disponible;
  • ininflammable (utilisation comme gaz dans les extincteurs);
  • non corrosif, compatible avec tous les matériaux;
  • non toxique;
  • alimentaire (notamment nos voisins hollandais l’utilise dans la conservation des repas dans les hôpitaux);
  • production frigorifique volumétrique élevée, permettant à l’heure actuelle des compresseurs de faible cylindrée et des circuits à faible quantité de fluide;
  • miscible à l’huile des compresseurs;
  • peu descendre jusqu’à -54°C;
  • taux de compression faible par rapport aux autres réfrigérants (COP intéressant);
  • il forme des acides avec l’eau et du carbonate d’ammonium (corrosif) avec l’ammoniac;
  • les pressions de service sont très importantes (80, 100 bar voire plus);
  • les équipements des circuits et de sécurité, dus à la pression, doivent être performants (coûts importants);
  • la mise en œuvre de tels circuits n’est pas encore bien maîtrisée;
  • à la mise en route, la déshydratation des circuits doit être encore plus poussée.
  • en cas d’arrêt prolongé, des dégazages à l’atmosphère doivent être opérés, nécessitant une recharge ultérieure;


Utilisation du CO2 comme fluide frigorigène : Cas pratique

Actuellement, un supermarché GB à Aywaille teste un système de réfrigération-chauffage combiné où :

  • les sources froides sont :
    • les meubles frigorifiques;
    • échangeur air/CO2 (« évaporateur de toiture);
    • échangeur eau nappe souterraine/CO2;
  • et les sources chaudes sont :
    • échangeur CO2/air (« gaz cooler »de toiture);
    • les circuits à basse température tels que le chauffage au sol, la centrale de traitement d’air et les rideaux d’air;
    • les circuits à haute température pour l’eau chaude sanitaire.

L’intérêt de ce système est de combiner des besoins :

  • de froid au niveau des meubles frigorifiques. En effet, le nombre impressionnant de meubles frigorifiques ouverts et fermés pour ce type de supermarché nécessite une puissance frigorifique de 300 kW (positif) et 40 kW (négatif);
  • de chaud classiques d’une puissance de l’ordre de 540 kW.

avec une seule machine, à savoir une pompe à chaleur.

Les résultats du monitoring ne sont pas encore connus mais devraient permettre d’y voir plus clair sur une technologie qui a le vent en poupe.


Comparaison  CO2 – R134a  

À titre d’exemple, on compare les performances théoriques de deux fluides réfrigérants comme le CO2 et le R134a.

Les hypothèses de travail sont les suivantes :

  • la phase de refroidissement du CO2 est dans la zone « transcritique » (refroidissement au dessus du point critique : 31°C, 73,6 bar);
  • la température d’évaporation est de -10°C dans les deux cas (application classique de froid positif);
  • la température de condensation pour le R134a est de 30°C (la température ou pression de condensation est flottante en fonction du climat externe);
  • la température de fin de refroidissement pour le « gaz cooler » est de 30°C aussi.

Dans le diagramme (log p, h), on superpose les deux cycles frigorifiques :

Les avantages et inconvénients du cycle CO2 au niveau thermodynamique sont :

Avantages

Inconvénients

  • L’efficacité énergétique en production de froid est relativement bonne si on maîtrise la phase de refroidissement (au « gaz cooler ») au niveau de la température. Pour une température de condensation flottante atteignant les 30°C, l’EFF du compresseur est de l’ordre de h1/h2 = 3,8;
  • Les températures à l’entrée du « gaz cooler » ou  d’un échangeur quelconque, peuvent atteindre des valeurs de l’ordre de 80°C, ce qui est intéressant pour des applications classiques de chauffage par pompe à chaleur;
  • L’efficacité énergétique en production de chaleur peut être très bonne dans la mesure où l’installation puisse tenir des pressions importantes (de l’ordre de 90 bar), ce qui représente quand même une prouesse technologique, mais accessible actuellement. Le COP pourrait atteindre des valeurs de h3/h2= 5;
  • Que ce soit en chaud comme en froid, les valeurs de EFF et COP restent en dessous des valeurs obtenues pour le R134A dans les mêmes conditions, soit une EFF h4/h5 de 5 et un COP h6/h5 de 6.

Les avantages et inconvénients du cycle R134a au niveau thermodynamique sont :

Avantages

Inconvénients

  • pour une installation bien régulée (détendeur électronique, variateur de vitesse des compresseurs, …, les performances des compresseurs tant en chaud qu’en froid sont meilleures que celles pour le cycle CO2 (COP = 6, EFF = 5).
  • Les températures de condensation sont plus faibles que celle du cycle CO2. Ce qui signifie que ce type de fluide ne peut être utilité pour des applications de chauffage haute température combiné au froid alimentaire.


Intérêt du CO2 ?

L’intérêt de l’utilisation du CO2 comme fluide réfrigérant, est avant tout lié à un choix par rapport à l’environnement. En effet, on pointera principalement :

  • le faible impact sur la couche d’ozone et l’effet de serre de part sa composition:
  • la plus faible quantité de fluide utilisé de part son volume massique faible (en cas de fuite, la quantité rejetée est faible);
  • la disponibilité de ce fluide dans la nature (piège à CO2 réalisable);

De plus, dans le cas où l’on considère qu’il faut combiner le besoin de chaleur à haute température (80-90°C) avec celui de froid et ce afin d’éviter de choisir une chaudière et un groupe de réfrigération pour la partie froid alimentaire, une installation de pompe à chaleur au CO2 peut être intéressante.

Toutefois en conception, pour autant que :

  • l’enveloppe soit bien isolée;
  • la ventilation hygiénique soit régulée en fonction de l’occupation;
  • les entrées soit bien étudiées afin de réduire les pertes énergétiques aux accès (courant d’air par exemple);
  • la quantité de meubles frigorifiques dans les commerces ouverts soit limitée;

Il n’y a pas de raison valable d’investir dans une installation coûteuse telle que celle au CO2 car la nécessité d’atteindre des températures d’eau chaude de 80-90°C n’est plus nécessaire. Autant alors investir dans une pompe à chaleur classique dont le condenseur fonctionne à des températures avoisinant les 45°C.


Conclusion

L’utilisation du CO2 comme fluide frigorigène est probablement une piste à suivre de très près.

Il est important, en conception, avant de choisir le réfrigérant qui va naturellement conditionner tout le choix des équipements, de déterminer si le projet s’inscrit dans une démarche énergétique et durable globale. Auquel cas, il faut limiter au maximum :

  • Les déperditions de l’enveloppe par l’isolation thermique des parois, la limitation des pertes par ventilation et infiltration, …
  • Les apports internes positifs ou négatifs tels que l’éclairage intensif, les meubles frigorifiques ouverts, …, par le choix  de luminaires performants, de meubles frigorifiques fermés, apport de lumière naturelle contrôlé (sheds par exemple), …
  • Les apports externes tels que les apports solaires par l’orientation du bâtiment, les ombrages, …

En fonction de l’objectif fixé au niveau de l’esquisse du bâtiment, lors du projet on pourra déterminer l’intérêt ou pas d’investir dans un fluide réfrigérant tel que le CO2.