Mesurer la vitesse du vent

Mesurer la vitesse du vent


Mesure de l’amplitude de la vitesse

Schéma anémomètre.

Cette mesure est typiquement réalisée par un anémomètre à coupelle.  Une coupelle présente une résistance au vent différente suivant la direction du vent : du coté du dos profilé, la résistance est moindre qu’avec la partie creuse face au vent. Les trainées sur les différentes coupelles de l’anémomètre auront une même direction (orientée avec la vitesse du vent) mais une amplitude différente. Cela va mettre le rotor de l’anémomètre en mouvement. Naturellement, la vitesse de rotation sera d’autant plus importante que la vitesse du vent est grande. Il y aura donc une relation directe entre la vitesse de rotation et la vitesse du vent. Un peu d’électronique embarquée permet de faire cette conversion et de stocker les données mesurées pendant la période d’observation (data logger).

De nouveau, il existe des anémomètres de qualités différentes et donc, de prix différents. Dans le cas de projets éoliens plus modestes, il existe des anémomètres à des prix très abordables, c’est-à-dire avec des ordres de prix compatibles avec de petits projets.

Mesure de la direction du vent

La direction du vent peut se faire par une simple girouette. Celle-ci est souvent combinée à l’anémomètre comme il est illustré dans la figure ci-dessus.


Mesure au bon endroit et à la bonne hauteur

La vitesse du vent dépend fortement de l’emplacement, c’est pourquoi il est important de réaliser la mesure du vent le plus près possible du lieu de la future implantation des éoliennes. On peut se poser la question de savoir si au sein de la future parcelle de terrain, il est vital de placer le capteur à l’endroit exact des futures éoliennes. Cela doit dépendre fortement de la taille de l’éolienne et de la nature du terrain. Plus l’éolienne est petite et plus elle est sensible à des variations locales. De même, la nature du terrain a de l’importance. En effet, si on est en présence d’un terrain plat sans obstacles, la position de la mesure ne doit pas être très critique : l’évolution du champ de vitesse le long du terrain doit être régulière. Par contre, en présence d’irrégularités, comme des obstacles, le choix de la position de mesure doit être plus sensible. En conclusion, il est difficile de donner une règle précise, mais ces éléments de réponse devraient permettre de choisir le plus judicieusement possible ses points de mesure.

On a aussi mis en évidence la forte dépendance de la vitesse moyenne du vent avec la hauteur. Il est donc important de placer le capteur de mesure le plus prêt possible de la future hauteur du rotor de l’éolienne. On réalise cela au moyen d’un mât de mesure. Il faut être vigilant à la législation en vigueur, sur la possibilité d’ériger un tel mât sur votre terrain.

Que se passe-t-il si le mât n’est pas à la même hauteur ? Comme il a été expliqué dans la section relative sur la dépendance de la vitesse avec la hauteur, il y a moyen de déduire la vitesse à une autre hauteur, h, en fonction de la mesure de référence réalisée à la hauteur, h0. Cette relation n’est uniquement valable que si on est en présence d’un terrain plat, homogène et sans obstacle :

V(h) = V(h0) (h/h0)α

avec le coefficient « alpha » qui dépend de la rugosité du sol sur le terrain considéré. En fait, il s’agit de la rugosité du sol telle que vue par le vent, c’est-à-dire le type de couverture (eau calme, herbe, arbres, …). Les valeurs du coefficient « alpha » sont données ici à titre d’exemple.

Réglementation pour le petit éolien

Réglementation pour le petit éolien

Les éléments suivants sont extraits du CoDT (Code du développement territorial).


Demande de permis éolien

Dans le cas des petites éoliennes, la procédure de demande de permis d’urbanisme peut être sujette à des simplifications. Mais dans tous les cas l’installation d’une éolienne sera soumise à un permis d’urbanisme.

Le pôle « Aménagement du territoire » rend les avis pour les demandes de permis éoliens soumises à une étude des incidences sur l’environnement au sens du Code de l’Environnement.

Le permis est quant à lui délivré par le fonctionnaire délégué.

Adéquation avec le plan de secteur

Afin de ne pas demander de dérogation par rapport au plan de secteur lors de la demande de permis d’urbanisme, il est nécessaire d’avoir une concordance entre l’activité que l’éolienne est destinée à alimenter et l’affectation du sol. Les zones ci-dessous pourront accueillir une éolienne :

CoDT Art. D.II.28. Les zones d’activité économique

Les zones d’activité économique comprennent la zone d’activité économique mixte, la zone d’activité économique industrielle, la zone d’activité économique spécifique, la zone d’aménagement communal concerté à caractère économique et la zone de dépendances d’extraction.

Une zone d’activité économique peut […] comporter une ou plusieurs éoliennes pour autant qu’elles ne compromettent pas le développement de la zone existante.

CoDT Art. D.II.36. Les zones agricoles

La zone agricole est destinée à accueillir les activités agricoles c’est-à-dire les activités de production, d’élevage ou de culture de produits agricoles et horticoles […].

Dans la zone agricole, les modules de production d’électricité […] qui alimentent directement toute construction, installation ou tout bâtiment situé sur le même bien immobilier, sont admis pour autant qu’ils ne mettent pas en cause de manière irréversible la destination de la zone. Elle peut également comporter une ou plusieurs éoliennes pour autant que :

  • elles soient situées à proximité [< 1 500 m] des principales infrastructures de communication ou d’une zone d’activité économique  […] ;
  • elles ne mettent pas en cause de manière irréversible la destination de la zone.

Une éolienne est autorisée par propriété pour autant que le mât soit d’une hauteur maximale de vingt-quatre mètres.

CoDT Art. D.II.37. Les zones forestières

La zone forestière est destinée à la sylviculture et à la conservation de l’équilibre écologique.

Elle peut également comporter une ou plusieurs éoliennes pour autant [qu’] elles ne mettent pas en cause de manière irréversible la destination de la zone.

Le mât des éoliennes […] est situé :

  • en dehors du périmètre d’un site [de] conservation de la nature ;
  • à une distance maximale de 750 mètres de l’axe des principales infrastructures de communication […] ;
  • en dehors d’un peuplement de feuillus […].

Les infrastructures de communication :

Le réseau des principales infrastructures de communication est celui qui figure dans la structure territoriale du schéma de développement du territoire et qui comporte :

  • les autoroutes et les routes de liaisons régionales à deux fois deux bandes de circulation, en ce compris les contournements lorsqu’ils constituent des tronçons de ces voiries, qui structurent le territoire wallon en assurant le maillage des pôles régionaux ;
  • les lignes de chemin de fer, à l’exception de celles qui ont une vocation exclusivement touristique ;
  • les voies navigables, en ce compris les plans d’eau qu’elles forment.

Rendement des éoliennes

Rendement des éoliennes


 

La puissance instantanée du vent

Une éolienne est une machine qui, par définition, transforme l’énergie du vent en énergie mécanique. Pour débuter, il y a lieu de quantifier la source d’énergie dont on dispose, c’est-à-dire l’énergie associée au vent. Si le vent présente une certaine vitesse « V » à un moment donné et traverse une certaine surface « A », la puissance instantanée du vent est donnée par la relation suivante :

Pvent = 1/2 rho*A*V3,

où « rho » est la masse volumique de l’air, qui vaut approximativement 1.2 kg/m³ à 20°C, au niveau de la mer.

Néanmoins, cette relation met clairement en évidence :

  • que la puissance disponible du vent à un instant donné dépend du cube de la vitesse du vent. En conclusion, si vous avez un vent 2 x plus rapide, vous avez 8 x plus de puissance. On comprend dès lors tout l’intérêt de placer des éoliennes dans des sites venteux. Ce n’est donc pas un caprice de technicien puriste, on voit que le potentiel d’énergie dépend fortement de la vitesse du vent. C’est une condition nécessaire et non une option.
  • que la puissance disponible dépend directement de la surface traversée par le vent. Si on la considère équivalente à la surface balayée par le rotor d’une éolienne, la puissance instantanée du vent (telle qu’évaluée par la relation ci-dessus) représente le maximum de puissance disponible que l’éolienne peut convertir. On sait que la surface balayée par une éolienne dépend du rayon de son rotor (π*R²). Du coup, la puissance disponible dépend du carré du rayon de l’éolienne. En conclusion, si vous avez un rotor 2 x plus long, vous avez 4 x plus de puissance.
    [Découvrez ICI >> notre outil de pré dimensionnement éolien]

Diagramme illustrant le rapport entre le diamètre du rotor et la puissance maximale de l’éolienne :
Réalisé à partir des fiches techniques de 62 modèles d’éoliennes récentes

  • que la masse volumique de l’air a une influence sur la puissance disponible. On sait que la masse volumique de l’air dépend de la température, de  l’humidité et de la pression atmosphérique. Suivant ces paramètres, on peut obtenir des variations de 20 % de la masse volumique et donc de la puissance instantanée du vent.
    Ainsi, au niveau de la mer, par – 10 °C un mètre cube d’air pèsera 1,341 kg tandis qu’à 30 °C, il n’en pèsera plus que 1 164 kg.

L’énergie du vent

Connaître la puissance instantanée du vent est une chose, mais ce qui nous intéresse, c’est son énergie. Il y a donc une notion de temps qui va devoir intervenir quelque part. Pour connaître l’énergie du vent sur une période, il faut intégrer sa puissance sur cette même période. La connaissance de la vitesse moyenne du vent n’est pas suffisante, il faut disposer de l’évolution de la vitesse sur la période étudiée et sommer les contributions.

Prenons une période de 24h et comparons trois journées venteuses avec un vent moyen de 6m/s pour chacune mais un profil de distribution différent :

 

Si les vitesses moyennes sont bien les mêmes, le profil de distribution est lui très différent entre ces trois journées. Un simple calcul nous permet d’observer que la quantité d’énergie que le vent aura fournie sur 24h par m² pour chaque profil est drastiquement différente.

  • Jour1 : 24 [h] x 6 [m/s]³ x 1 [m²] x 1,2 [kg/m³] = 6 220 Wh = 6,22 kWh
  • Jour2 : 12 [h] x 12 [m/s]³ x 1 [m²] x 1,2 [kg/m³] = 24 880 Wh = 24,88 kWh
  • Jour3 : 6 [h] x 24 [m/s]³ x 1 [m²] x 1,2 [kg/m³] = 99 530 Wh = 99.53 kWh !!

Nous voyons donc clairement que nous ne pouvons pas moyenner la vitesse du vent et que la distribution du vent est déterminante dans le calcul de l’énergie dispensée par le vent sur une période et une surface données.

Nb : les éoliennes actuelles atteignant leur puissance maximale aux alentours de 10-15 m/s, les vents plus puissants ne seront pas pleinement exploités : l’éolienne sera freinée pour préserver son intégrité.

Explication avec quelques formules

Supposons que l’on dispose de mesures du vent à intervalles réguliers pendant une période de plus ou moins une année. L’intervalle entre chaque mesure est de « dt » secondes et le nombre d’échantillons est de « N » mesures. La durée de la période d’observation, « T », est donc N*dt. On obtient un échantillon de différentes vitesses, U1 jusque UN.  Il est donc possible d’estimer simplement la vitesse moyenne du vent, Um, pendant cette période de mesure :

Um = (1/N)*(U1+U2+ … + UN-1 + UN)

Pour obtenir l’énergie, il faut sommer les contributions des différentes mesures. Si la puissance du vent associée à une mesure de vitesse Ui vaut

Pi = 1/2*rho*A*(Ui)3

L’énergie du vent, Ev, vaut alors : Ev = (P1 + P2 + …. + PN-1 + PN)*dt. En fait, il faut connaître l’évolution de la vitesse du vent durant toute la période étudiée. Si on ne connaissait que la vitesse moyenne du vent, Um, cela ne suffirait pas pour déterminer l’énergie, Ev. En effet, on ne peut pas calculer l’énergie du vent au moyen de la vitesse moyenne (de la manière suivante) :

 Ev n’est pas égal à 1/2*rho*A*(Um)3*T

Cette différence sera chiffrée dans la section suivante et elle est loin d’être négligeable.


La distribution du vent : approche statistique

Dans la section précédente, nous avons intégré les différentes puissances pour obtenir l’énergie du vent sur la période étudiée. Il existe une autre manière de procéder qui présente en outre l’avantage de synthétiser les propriétés du vent sur la période investiguée. Il s’agit de la fonction de distribution du vent, que l’on nommera ici p(V).

Imaginons que l’on s’intéresse aux vitesses prises par le vent. Celles-ci varient entre la valeur zéro et la vitesse maximale rencontrée. On découpe cet intervalle en différentes petites plages de vitesses de largeur dV. Le produit p(V)*dV donne la probabilité que la vitesse du vent aie la valeur V durant la période d’observation (que l’on avait nommée, « T »). Cette valeur oscille entre « 0 » et « 1 ». La valeur est nulle quand le vent n’atteint jamais cette vitesse et la valeur « 1 » quand le vent est toujours à la vitesse V, ce qui, dans la pratique, n’arrive jamais. À titre d’exemple, si la probabilité p(V)*dV que la vitesse soit égale à V est de 0.5, cela veut simplement dire que l’on rencontre la vitesse V la moitié du temps de l’observation. Cela peut paraître assez abstrait, mais il est difficile de passer à côté de ce concept si l’on veut introduire les approches statistiques de l’évaluation de l’énergie du vent.

Une fois cette fonction connue, on peut déterminer la contribution de la vitesse V à l’énergie du vent de la manière suivante :

Ev(V) = 1/2*rho*A*V3*(p(V)*dV*T)

On obtient alors l’énergie du vent en sommant sur les différentes gammes de vitesse rencontrées. En d’autres termes, chaque gamme de vitesses se présente à une certaine fréquence pendant la période étudiée, « T », et correspond à une certaine contribution à l’énergie totale. Pour obtenir l’énergie du vent, il faut tenir compte de toutes les gammes de vitesse rencontrées et de leur contribution.

Comment obtient-on cette fonction de distribution ? La manière la plus consistante est d’utiliser les valeurs mesurées de vitesse et de regarder à quelle fréquence les différentes vitesses sont rencontrées. C’est la situation idéale.

Néanmoins, il arrive que l’on ne dispose pas de ces mesures ou, du moins, on dispose de mesures lacunaires qui ne permettent pas d’établir proprement la fonction de distribution. Par exemple, le potentiel de vent peut varier d’une année à l’autre si bien qu’il faut plusieurs années de mesure pour établir un comportement moyen. La littérature reprend souvent le chiffre de 10 années de mesure. On comprend dès lors qu’une évaluation du potentiel sur une période aussi longue ne soit pas toujours possible. Dans ce cas de figure, on peut faire une hypothèse sur la manière dont les vitesses sont rencontrées dans le temps. Dans le domaine de l’éolien, la fonction la plus courante est la fonction de distribution de Weibull.

Exemples de distributions de Weibull pour différents jeux de paramètres.

La fonction de Weibull est représentée dans le graphe ci-dessus. Elle ne comporte que deux paramètres : le facteur de forme, k, et le facteur d’échelle, c. Qu’est-ce que cela veut dire ? Cela veut dire que l’on sait à quelle fréquence sont rencontrées les différentes vitesses de vent, V, durant la période d’observation uniquement si l’on est capable de fixer la valeur de deux coefficients. Le but du jeu est de fixer ces deux coefficients sur base de données lacunaires dont on dispose. En d’autres mots, on est capable de reconstruire l’historique d’intérêt du vent sur la période étudiée uniquement si l’on est capable de fixer les deux paramètres de la fonction de Weibull : notamment sur base de la vitesse moyenne du vent et de sa variance. La qualité de cette méthode est correcte si, effectivement, la distribution du vent a, dans le site étudié, effectivement tendance à suivre une répartition de Weibull. Cela devient une question de spécialiste. On invite le lecteur à se référer à des ouvrages plus approfondis si cette thématique l’intéresse. À noter que l’on entend aussi parler de la fonction de distribution de Rayleigh qui est plus simple dans la mesure où elle ne comporte qu’un seul paramètre (c’est un cas particulier de la fonction de Weibull).

À titre d’exemple, commentons la figure ci-dessus représentant 5 jeux différents de paramètres pour la fonction de distribution de Weibull. On voit par exemple la courbe « rouge » représentant des vents de vitesse moyenne proche de 4.25 et qui oscille largement autour de cette valeur. La courbe « noire » quant à elle représente des vents de vitesse moyenne plus faible (proche de 3.5) et qui ont une variation nettement plus faible (proche de 3m/s) et qui ont une variation nettement plus faible autour de cette moyenne.

En conclusion, les fonctions de distribution du vent peuvent avoir deux utilités. D’une part, elles permettent de synthétiser les propriétés d’intérêt du vent en relation avec la production d’énergie et, d’autre part, si on utilise des fonctions prédéfinies comme la fonction de Weibull, elles permettent d’évaluer l’énergie du vent si on ne dispose que de données lacunaires concernant son évolution sur un site donné. Dans ce dernier cas de figure, il faut être conscient que la qualité de cette méthode est moindre qu’une campagne de mesure sur une dizaine d’années. Au mieux, les résultats auront une valeur identique.

Pourquoi ne pas directement évaluer l’énergie au moyen de la vitesse moyenne ? Ce n’est pas la même chose !

La puissance instantanée du vent est obtenue en prenant le cube de la vitesse. On obtient l’énergie sur la période de mesure en intégrant ces puissances. Mathématiquement parlant, c’est différent d’intégrer la vitesse sur la période puis de la mettre au cube. En d’autres termes, l’ordre dans lequel vous réalisez les opérations d’intégration et mise à la puissance 3 a une importante : on met d’abord la vitesse instantanée au cube puis on somme les différentes contributions durant la période analysée.

Fait-on une grosse erreur si on évalue l’énergie du vent au moyen de la vitesse moyenne ? Oui ! Sur base de cas rencontrés, on peut facilement faire une sous-estimation de 100 % voire plus.

On peut essayer de voir ce que cela donne avec la fonction de distribution de Weibull. Avant de rentrer dans le vif du sujet, on peut d’abord se faire une idée de l’évolution de la vitesse moyenne et de la variance en fonction de l’évolution des deux paramètres de la fonction de Weibull, le paramètre de forme, k, et le paramètre d’échelle, c.

On voit que la vitesse moyenne du vent dépend essentiellement du facteur d’échelle, c. La variance, quant à elle, dépend fortement des deux facteurs. Finalement, on représente maintenant le rapport entre l’énergie du vent calculée avec la fonction de Weibull et l’énergie du vent calculée de façon approximative par la moyenne de la fonction de Weibull. On connaît ce rapport sous le nom de facteur Ke,

Ke = Somme(1/2*rho*A*Ui³/N)/(1/2*rho*A*Um³) = (1/N Somme(Ui³))/(Um³)

   

Conclusion, le rapport, Ke, peut être très important, d’autant plus que le facteur de forme k est faible. On aura noté qu’il dépend uniquement de la valeur de ce facteur k. On reprend ci-dessous, un tableau avec des chiffres :

k Ke
1.2 3.99
2 1.91
3 1.40
5 1.15

Courbe caractéristique de puissance et rendement instantané

Le vent présente donc une certaine énergie pendant une période donnée. Cette énergie est convertie par l’éolienne en énergie mécanique et très certainement en énergie électrique. Cette transformation peut être décomposée en plusieurs étapes :

  1. L’énergie cinétique du vent est convertie en travail moteur à l’axe du rotor. Cette conversion est réalisée avec un certain rendement, le rendement aérodynamique.
  2. Le travail moteur au rotor est transmis vers l’axe de la génératrice avec un certain rendement, le rendement d’accouplement mécanique.
  3. La génératrice transforme le travail moteur à son axe en énergie électrique avec un certain rendement électrique.

Le rendement global est le produit des rendements de ces trois étapes. Il est difficile d’évaluer de manière simple ces trois rendements et donc d’estimer le rendement global. Le plus simple est de mesurer ce qui rentre et ce qui sort de l’éolienne pour avoir une idée de rendement global.

On définit le rendement instantané global d’une éolienne pour une vitesse de vent, V, comme étant le rapport entre la puissance électrique débitée par la génératrice, Pelec, et la puissance instantanée du vent, Pvent :

eta(V) = rendement instantané à la vitesse V = Pelec(V)/Pvent(V),

La puissance instantanée du vent a été définie au début de cette page. Il reste à connaître la puissance électrique débitée par l’éolienne en fonction de la vitesse V tout en sachant que le détail des pertes successives à chaque étape de transformation n’est pas explicité. En outre, si l’on peut connaître la puissance électrique débitée en fonction de la vitesse de vent, on peut évaluer la production électrique annuelle de l’éolienne sur base des mesures du vent réalisées in situ :

 Eelec = (Pelec(V)1 + Pelec(V)2 + … + Pelec(V)N)*dt.

La courbe caractéristique de puissance d’une éolienne donne la puissance électrique en fonction de la vitesse du vent. Généralement, ces courbes sont données par les fabricants d’éoliennes. Dans le cas de grandes éoliennes, la courbe caractéristique a été certifiée par un laboratoire et définie dans des conditions d’essai standard. On a donc une certaine assurance quant aux performances réelles de l’éolienne. La situation est plus critique pour les petites éoliennes produites par de relativement petits constructeurs. En effet, ils fournissent généralement la courbe caractéristique de puissance de leur appareil, mais ils font rarement certifier les performances. On n’a donc aucune ou peu d’assurance quant à la fiabilité des performances annoncées. Dans tous les cas, la certification des performances est un élément à bien garder à l’esprit lors de l’acquisition d’une éolienne, surtout s’il s’agit de concepts novateurs ou « potentiellement » révolutionnaires (pour ne pas dire fumants).

La courbe caractéristique de puissance comporte par trois grands paramètres (voir figure ci-dessous) :

  • La vitesse minimale de démarrage (cut-in wind speed) : il s’agit de la vitesse du vent à partir de laquelle l’éolienne commence à débiter une puissance utile (c’est-à-dire de la puissance électrique).
  • La vitesse maximale ou d’arrêt (cut-off wind speed) : il s’agit de la vitesse maximale acceptable par l’éolienne. Au-delà de celle-ci, la tenue mécanique de ces divers composants n’est plus assurée (ou simplement prévue). Si le vent présente une vitesse supérieure, l’éolienne est mise à l’arrêt, idéalement de manière automatique, pour préserver son intégrité.
  • La puissance nominale (rated power) : cette valeur est souvent égale à la puissance électrique maximale qui peut être extraite de l’éolienne. Elle n’a jamais lieu à la vitesse maximale acceptable du vent. En effet, peu avant d’atteindre la vitesse de mise à l’arrêt, des dispositifs sont mis en place pour freiner la vitesse du rotor (soit de manière dynamique, soit de manière aérodynamique), ce qui peut diminuer significativement les performances de l’éolienne.

En conclusion, on trouve typiquement des courbes de puissance ayant l’allure suivante.

 

Forme typique d’une courbe de puissance d’une éolienne : production électrique finale en kW en fonction de la vitesse instantanée du vent en m/s.

La puissance nominale d’une éolienne ne veut rien dire sur son efficacité si le constructeur ne mentionne pas à quelle vitesse de vent cette puissance électrique est obtenue. En effet, on n’est pas en mesure de déterminer la puissance instantanée du vent et donc d’établir son rendement global instantané.

Exemple : FairWind F64-40

À titre d’exemple, la société wallonne ouverture d'une nouvelle fenêtre ! FairWind établie à Seneffe commercialise des éoliennes à axe vertical dont les courbes de puissance sont disponibles sur leur site internet. En analysant leur modèle F64-40, voici les courbes obtenues :

 

 

Performances de l’éolienne à axe vertical Fairwind F64-40 suivant les données fournies par le constructeur.

On distingue clairement la vitesse minimale de 3 m/s, la vitesse maximale de 20 m/s ainsi que la puissance nominale de 40 kW obtenue à 15 m/s. Un simple calcul montre que le rendement instantané global ne dépasse pas 35 %.

Données générales FairWind F64-40
Puissance nominale (rated power) 40 kW
Vitesse du vent nominale 14 m/s
Vitesse du vent minimale (cut-in speed) 3 m/s
Vitesse de vent maximale (cut-out speed) 20 m/s
Vitesse de mise en sécurité 55 m/s
Diamètre du rotor 8 m
Longueur des pales 8 m
Surface balayée 64 m²
Hauteur du mât [12,24] m

L’estimation de la production d’électricité

Sur base de mesures

Sur base de la mesure du vent réalisée sur une période T et de la courbe caractéristique de puissance de l’éolienne, on peut évaluer la production électrique, Eelec, de l’éolienne durant cette période :

Eelec = (Pelec(V)1 + Pelec(V)2+ Pelec(V)3+ … + Pelec(V)N)*dt,

où on réalise une mesure de la vitesse toute les « dt » secondes, on possède ainsi « N » valeurs dans notre échantillon tel que T = N*dt. En bref, on suppose que la vitesse que l’on a mesurée à un moment, Vi, reste constante pendant tout l’intervalle de mesure, dt. Durant un intervalle, l’éolienne produit Pelec(V)i*dt.  On réalise finalement la somme sur tous les points de mesure pour obtenir l’énergie électrique finale.

Sur base de la distribution statistique

Une autre manière de procéder est de travailler sur base de la distribution statistique dont on connaît les paramètres (sur base de mesures ou de simulations) :

Eelec(V) = Pelec(V)*(p(V)*dV*T),

où, dans le membre de droite, le premier facteur est la puissance électrique produite à la vitesse V et le second facteur est le temps total durant lequel la vitesse est égale à V (pendant la période de mesure, T). L’énergie finale, Eelec, est obtenue en sommant sur toutes les vitesses rencontrées.

Certains constructeurs utilisent cette méthode pour communiquer une estimation de la production électrique annuelle de leur éolienne. En fait, ils fixent les paramètres de la fonction de distribution, p(V), et regardent ce que cela donne au niveau de la production. Quand vous entendez des estimations de la production électrique, il faut être conscient que le constructeur a fait des hypothèses sur la manière dont les vitesses sont rencontrées dans le temps. De manière générale, le vent sur votre site ne sera pas identique à celui qu’il a considéré dans son estimation. Pour être rigoureux, il faut veiller à ce que le constructeur communique ces paramètres. C’est la seule manière de pouvoir comparer différents matériels entre eux sur base d’estimation de la production électrique.

Estimation du rendement moyen global de l’éolienne

On peut aussi connaître le rendement moyen de l’éolienne sur la période d’observation, T. On peut estimer, d’un côté, l’énergie du vent qui était disponible (la source d’énergie), Event, et, d’un autre côté, l’énergie électrique produit par l’éolienne, Eelec (comme calculée ci-dessus). Le rapport de ces deux valeurs donne le rendement moyen :

Rendement moyen global = Eelec/Event,

Par global, on sous-entend que l’on s’intéresse à ce qui rentre et ce qui sort globalement de l’éolienne. On trouve typiquement, un rendement moyen de 20 % pour les petites éoliennes et de 35 % pour les grands modèles.

Nombre d’heures pleines de fonctionnement

La puissance débitée par une éolienne dépend de la vitesse du vent.  Par conséquent, la majorité du temps, l’éolienne ne fonctionne pas à puissance nominale (PN), le vent n’étant généralement pas suffisant pour garantir cela. C’est un des arguments des détracteurs des éoliennes. En effet, comparé à des centrales électriques traditionnelles basées sur les énergies fossiles (typiquement une centrale TGV) ou le nucléaire qui peuvent fonctionner de manière continue proche de leur puissance nominale, une éolienne fonctionnera principalement à une puissance inférieure à PN. Du coup, il faudra une puissance installée supérieure avec des éoliennes qu’avec des centrales classiques pour atteindre une même production d’énergie annuelle. C’est un argument assez controversé bien que techniquement très clair. Le but n’est pas de faire le point sur ce sujet. On reprend juste ici l’argument.

Une manière de chiffrer la production d’une éolienne est de rapporter sa production électrique annuelle en nombre d’heures de fonctionnement à puissance nominale. En d’autres termes, on calcule le nombre d’heures que l’éolienne doit tourner à puissance nominale pour débiter la même production électrique annuelle (avec un vent dont la vitesse varie).

Nombres d’heures équivalentes à puissance nominale = tN = Eelec/PN.

Valeur typique pour les grandes éoliennes en Wallonie : tN = 25% de l’année.

Valeur typique pour le petit éolien en Wallonie  tN = 11% de l’année.

Typiquement, la production annuelle électrique d’une grande éolienne en Wallonie correspond à 25 % du temps à puissance nominale. Il ne faut pas en déduire que l’éolienne ne tourne que 25 % du temps. Non, dès que la vitesse instantanée du vent dépasse la vitesse minimale de mise en fonctionnement (cut-in wind speed), l’éolienne débite de l’électricité.  En fait, les chiffres montrent que l’éolienne fonctionne 80 % du temps (source : ouverture d'une nouvelle fenêtre ! APERe). Néanmoins, elle produit à une puissance généralement inférieure à la puissance nominale, cette dernière étant souvent prise comme étant la puissance maximale.

Estimation rapide : Quick-scan

Dans certaines situations, notamment dans une étude de préfaisabilité, on souhaite pouvoir estimer grossièrement ce qu’un site va pouvoir donner comme production. On peut simplement se baser sur la vitesse moyenne du vent, Um, sur le site :

Estimation de la production = (rendement moyen global)*(1/2*rho*A*(Um)3),

où le rendement moyen est pris :

  • à 22 % pour le petit éolien (moins de 35 m de diamètre) ;
  • 30 % pour l’éolien moyen (35 à 100 m de diamètre) ;
  • et 35 % pour le grand éolien (> 100 m de diamètre).

Dans la réalité, on remarquera une tendance à un meilleur rendement pour les modèles d’éoliennes avec les pales les plus longues (> 30 m) :
Diagramme réalisé sur base de 62 fiches techniques d’éoliennes récentes.

On sait très bien qu’il s’agit d’une estimation limitée étant donné que l’effet des fluctuations de la vitesse autour de la moyenne n’est pas pris en compte. On peut montrer que cette manière d’estimer l’énergie du vent (le deuxième terme dans le membre de droite), est susceptible d’amener de grosses erreurs. On sous-estime le potentiel de vent. Néanmoins, si un constructeur prétend pouvoir produire, pour une vitesse moyenne donnée, une production électrique annuelle dépassant quatre ou cinq fois cette estimation simplifiée, vous pouvez clairement conclure que ce n’est pas une proposition honnête.


La limite de Betz

Le fabricant d’une éolienne doit faire certifier la courbe caractéristique des performances de son modèle. Cela doit être réalisé selon une méthode normalisée, idéalement par un laboratoire indépendant.

Dans la pratique, les modèles de plus faibles puissances ne bénéficient pas de cette certification. Le constructeur peut fournir une courbe de puissance, mais on n’a aucune garantie sur sa fiabilité, tout au plus, on peut se reposer sur la crédibilité du fabricant.

Comment détecter un produit farfelu ? Il n’y a malheureusement pas de méthode absolue (hormis tester le matériel). Néanmoins, certains chiffres communiqués par le constructeur peuvent être mis à l’épreuve. C’est le cas du rendement global instantané de l’éolienne tel que défini à la section précédente.

L’application des principes fondamentaux de la mécanique permet de déterminer la quantité maximale d’énergie du vent qui peut-être convertie en énergie mécanique (rotation du rotor). Ce rendement aérodynamique instantané, ou Coefficient de performance (Cp), ne peut dépasser 16/27 soit approximativement 59 %. Par conséquent, le rendement instantané qui tient aussi compte d’autres pertes (aérodynamiques, accouplement, conversion électrique, auxiliaires) doit être inférieur à cette valeur :

Rendement global instantané < rendement aérodynamique < 16/27

Cette limitation est mieux connue sous le nom de « limite de Betz » ou « théorie de Betz ». Pour arriver à ces conclusions, il a fallu introduire des hypothèses simplificatrices. Néanmoins, celles-ci sont tout à fait raisonnables.


Vitesse en bout d’aile et performance : tip speed ratio

On a vu que la limite de conversion de puissance du vent vers la puissance mécanique du rotor est théoriquement limitée à 16/27, soit 59 %, par l’approche de Betz. Par rapport à ce cas idéal, il existe une série d’imperfections qui empêchent d’atteindre cette limite. En d’autres termes, on a une série de pertes qui réduisent l’efficacité aérodynamique de l’éolienne :

  • Mise en rotation du sillage : Le vent avant de rencontrer l’éolienne ne possède pas de mouvement de rotation prononcé et cohérent. Du moins, c’est le cas s’il ne rencontre pas d’obstacles majeurs en amont de l’éolienne. Une fois que l’air est passé dans le rotor de l’éolienne, il en ressort avec une vitesse de rotation générale dans le sens opposé à celui du rotor. Cette vitesse de rotation qui n’existait pas au départ correspond à une certaine quantité d’énergie cinétique qui n’a pas pu être convertie pas l’éolienne. Il s’agit d’une première source de pertes.
  • Trainée des profils de l’aile : Lorsque l’on place une aile face au vent, il génère une force sur cette aile. C’est l’effet escompté. Cette force peut se décomposer en partie. Une force dite de portance qui est perpendiculaire à la direction du vent en aval de l’aile et une composante dite de trainée qui est parallèle à cette vitesse de vent. Dans le cas d’un avion, c’est la portance qui permet de vaincre la gravité et permet ainsi à l’avion de voler. La trainée freine l’avion, car cette force est opposée à la direction dans laquelle l’avion progresse. Pour permettre à l’avion de conserver cette vitesse, les moteurs de l’avion donnent la force nécessaire pour vaincre cette force de trainée.  Dans le cas d’une éolienne, on retrouve la même idée. Néanmoins, il faut alors tenir compte à la fois de la vitesse du vent, mais aussi de la vitesse de rotation de l’éolienne. Le problème est un peu plus complexe. Tout cela pris en compte, on se rend compte que c’est la portance des pâles de l’éolienne qui exerce une force utile dans le sens de rotation de l’éolienne. La trainée des pâles, par contre, a tendance à freiner la progression de ces pâles. C’est une deuxième source de pertes parce qu’une partie de l’énergie du vent sert à freiner l’éolienne. Fort heureusement, une aile d’éolienne est conçue pour avoir la trainée la plus faible possible pour une portance donnée. En gros, il s’agit d’une question de spécialistes dans la mesure où il s’agit de travailler sur l’aérodynamique de l’aile.
  • Nombre limité de pales : Le nombre de pales d’une éolienne est limité pour des questions de poids et de prix. Le rendement idéal considéré plus haut faisait l’hypothèse d’un nombre très important de pales. Dans la réalité, ce nombre ne sera jamais atteint. Cette limitation est source d’une troisième forme de pertes. D’un point de vue physique, ces pertes sont générées par la trainée induite. La trainée induite est d’autant plus faible que la portance est faible et le rapport entre envergure et corde moyenne de l’aile est important. Ainsi, une aile qui a une grande envergure par rapport à la corde aura une trainée plus faible. On peut s’en convaincre en comparant les ailes d’un planeur à celle d’un avion traditionnel : les ailes du planeur sont beaucoup plus allongées pour limiter la trainée, ce qui est souhaitable étant donné qu’il n’a pas de moteur. C’est une des raisons qui expliquent pourquoi une éolienne a des ailes allongées.

   

Analogie entre l’allongement (aspect ratio) des ailes d’un planeur et des pales d’une éolienne : limitation de la trainée.

Ces explications avaient juste vocation de montrer que le rendement idéal n’était jamais atteint, ceci étant dû à différentes pertes. Un facteur qui influence grandement ces pertes est le rapport entre la vitesse en bout de pale (induite par la rotation) et la vitesse du vent, le tip-speed ratio (TSR) en anglais,

Lambda = tip-speed ratio (TSR) = u/V = n.2*pi*R/V,

avec,

  • u, la vitesse en bout de pale qui peut être évaluée comme étant le produit
  • de la vitesse de rotation, n (en Hz),
  • par le rayon de l’éolienne, R, multiplié par 2*pi.
  • V est la vitesse du vent en amont.

La théorie confirmée par la pratique montre que les pertes sont minimisées pour un TSR donné. En d’autres termes, pour chaque vitesse de vent, il existe une vitesse de rotation qui maximise le rendement aérodynamique de l’éolienne, c’est-à-dire la quantité d’énergie du vent transférée au rotor. On peut s’en rendre compte sur base du la figure ci-dessous,

Évolution du rendement aérodynamique instantané en fonction du rapport entre la vitesse en bout de pale et la vitesse du vent (tip-speed ratio) : illustration des différentes sources de pertes par rapport au rendement idéal de Betz.

On peut comprendre le graphe de la manière suivante :

  1. On dispose au départ de la puissance instantanée du vent par m², ce qui correspond dans le graphe au niveau de 100 %.
  2. La théorie de Betz nous apprend que l’on peut dans le meilleur des cas récupérer jusqu’à 16/27, soit approximativement 60 %.
  3. Si l’éolienne tourne plus lentement pour une vitesse de vent donnée, on aura un couple aérodynamique important pour atteindre une même puissance et donc une forte déviation du fluide par les pales. Cela engendre une mise en rotation plus importante du sillage et donc des pertes plus importantes. On le voit clairement dans le graphe sous la dénomination « pertes de sillage ». En conclusion, plus l’éolienne tourne vite, moins les pertes par mise en rotation sont importantes.
  4. Si on considère un profil d’une pale d’éolienne, la force aérodynamique se décompose en une force de portance, mais aussi de trainée qui s’oppose dans la direction de rotation de l’éolienne (du moins pour les éoliennes dont le principe de fonctionnement est basé sur la portance). L’effet négatif sur le rendement aérodynamique est d’autant plus important que l’éolienne tourne vite. On peut s’en rendre compte dans le graphe ci-dessus sous l’appellation « trainée du profil d’aile » où les pertes augmentent avec le tip-speed ratio. Sur base des deux premiers termes de pertes (pertes de sillage et de trainée de profil), on voit apparaître un premier optimum à une vitesse de relative de bout d’aile entre 6 et 8.
  5. On voit apparaître enfin le dernier terme de perte induit par le nombre limité de pales. En fait, si on prend la courbe relative à un nombre donné de pales en pointillé (on considère ici 1, 2 ou 3 ailes), on voit que la courbe générale correspond à l’enveloppe de tous les maxima des courbes à nombre de pâles fixé.

 

Évolution du rendement aérodynamique en fonction du nombre de pales pour un modèle donné.

Au regard de la courbe ci-dessus, qui reprend l’évolution du rendement aérodynamique en fonction du nombre de pale pour un modèle donné, on voit que plus le nombre de pales est important, plus le rapport optimal de vitesse en bout de pale est faible.

En outre, l’analyse des rendements de 62 modèles récents d’éoliennes démontre qu’il y a  une tendance claire vers un meilleur rendement pour les éoliennes ayant une vitesse de vent nominale plus basse (comprises entre 10 m/s et 12 m/s.

On peut conclure cette section en faisant une description des différentes courbes caractéristiques de rendement aérodynamique pour chaque grand modèle d’éolienne. De manière générale, on voit que les éoliennes basées sur la portance, c’est-à-dire les éoliennes à axe horizontal ou à axe vertical de type Darrieus, ont un rendement aérodynamique supérieur aux éoliennes basées sur la trainée (typiquement, le rotor Savonius). L’influence du nombre de pales sur le rendement est aussi représentée. Si la vitesse de rotation diminue, il faut un couple aérodynamique plus important pour une même puissance mécanique. C’est pourquoi les éoliennes qui cherchent à produire du travail mécanique, notamment pour des applications de pompage, ont un nombre de pales important (illustré ci-dessous par l’éolienne américaine). Actuellement, les éoliennes de type Darrieus ont un rendement un peu supérieur à celui présenté dans le graphe ci-dessous.

Évolution typique du rendement aérodynamique en fonction du tip-speed ratio et du modèle d’éolienne.

Eoliennes

Eoliennes

Généralités

Une éolienne est une machine qui convertit l’énergie du vent en énergie mécanique. Pour être plus clair, on considère qu’il y a du vent quand l’air se déplace et donc quand l’air possède une certaine vitesse. À cette vitesse est associée une énergie, l’énergie cinétique. Le vent exerce une force sur le rotor de l’éolienne et le met en rotation : il exerce une certaine puissance. A proprement parler, cette force est transmise à un axe qui correspond à une certaine puissance. En langage d’ingénieur, nous sommes en présence d’une machine motrice.

Cette énergie mécanique peut être utilisée directement. Par exemple, on pense à l’actionnement d’une pompe à des endroits non desservis par le réseau électrique ou à nos anciens moulins à vent. Néanmoins, ces applications mécaniques sont assez marginales. Dans la majorité des cas, l’énergie mécanique du rotor de l’éolienne est transformée en énergie électrique via une génératrice. En tout cas, comme l’énergie mécanique est de « qualité » élevée (notion d’exergie), il est a priori regrettable de la transformer en chaleur, par exemple en utilisant l’énergie éolienne pour se chauffer.


Classification

On peut classifier les éoliennes suivant leur taille ou suivant leur principe de fonctionnement.

Classification selon la taille

On définit différentes classes de taille d’éoliennes. En théorie, il n’y a pas de relation directe entre la hauteur et la puissance de l’éolienne. En effet, cette puissance dépend essentiellement de la surface balayée par le rotor qui n’est pas toujours fonction de la hauteur de l’éolienne, mais du diamètre du rotor. Néanmoins, dans le cas des grandes éoliennes, une règle de bonne pratique veut que la hauteur du mât, L, soit égale au diamètre du rotor, D. Dans ce cas, il y a un lien indirect entre la hauteur du mât et la puissance. Dans le tableau suivant sont repris les dénominations de taille et les ordres de grandeur de puissances associées. Attention, il s’agit bien d’ordres de grandeur de puissance. Le but est uniquement de se donner une idée. En outre, cette puissance n’a de sens que si on a défini la vitesse de vent à laquelle elle est délivrée.

Graphe diamètre rotor / puissance

Illustration de la relation entre le diamètre du rotor et la puissance électrique de sortie basée sur les données techniques de 62 modèles récents d’éoliennes.

Dénomination Diamètre du rotor [m] Aire balayée [m²]  Puissance [kW]
Micro 0.5-1.25 0.2-1.2 0.1-0.4
Mini 1.25-3 1.2-7.1 0.4-2
Domestique 3-10 7-79 2-30
Petite commerciale 10-20 79-314 30-120
Moyenne commerciale 20-50 314-1963 120-750
Grande commerciale 50-100 1 963-7854 750-3 000
Géante commerciale 100-170 7 854-22 686 3 000-8 000

 Classification des éoliennes suivant la taille et ordre de grandeur associé.

Pour être plus parlant, on trouve classiquement ces éoliennes pour les applications suivantes :

  • Micro-éoliennes : en général pour couvrir des besoins très limités et sites isolés (par exemple, des sites de pèche, des bateaux, des caravanes).
  • Mini-éoliennes : essentiellement pour recharger des batteries sur des sites isolés du réseau, les plus puissantes peuvent servir pour l’alimentation domestique hors du réseau (maisons isolées).
  • Eoliennes domestiques : elles balayent un spectre assez large allant de rotors de 3 à 10 m de diamètre. C’est typiquement le genre d’éoliennes proposées pour les particuliers.
  • Petites éoliennes  commerciales : elles sont typiquement conçues pour les petites entreprises, les fermes, … mais il existe très peu de modèles produits dans cette gamme.
  • Moyennes éoliennes commerciales : elles sont typiquement utilisées pour les applications commerciales dans des fermes, des usines, des entreprises voire des petits parcs éoliens.
  • Eoliennes grands commerciales : ce sont les éoliennes que l’on trouve dans les parcs éoliens modernes, ce sont aussi les plus efficaces.
  • Eoliennes commerciales géantes : ce sont les éoliennes que l’on trouve dans les parcs éoliens modernes et également en offshore, elles sont très efficaces et issues des dernières générations technologiques.

Dans la course au gigantisme, l’éolien ne fait pas figure d’exception. Si les modèles de 9 MW sont déjà à l’ordre du jour, certaines sociétés n’hésitent pas à parler de diamètres avoisinant les 400 m (!) pour atteindre des puissances de 50 MW !!!

Classification selon le principe de fonctionnement

Eoliennes à axe horizontal ou vertical

Les plus connues sont les éoliennes à axe horizontal (HAWT, horizontal axis wind turbine).  Leur typologie est souvent identique. A la base, on a un mât sur lequel est placée la nacelle. Cette nacelle contient la génératrice ainsi que le système de transmission, c’est-à-dire les éléments d’accouplement mécanique entre le rotor et la génératrice. Celle-ci convertit l’énergie mécanique en énergie électrique.

Schéma principe éoliennes à axe horizontal ou vertical.   Photo principe éoliennes à axe horizontal ou vertical.

En suivant le sens de parcours du vent, le rotor peut être placé en amont ou en aval de la nacelle. Cette dernière configuration a été à la mode, mais devient anecdotique. Elle présentait l’avantage que la nacelle et le rotor se mettent automatiquement face au vent. Lorsque le rotor se situe en amont, il faut un dispositif particulier pour que l’éolienne se positionne correctement. Par exemple, on peut trouver une aile fixe verticale qui stabilise l’éolienne face au vent (même principe que la gouverne verticale d’un avion) ou un moteur qui réalise cette tâche. On parlera alors d’un dispositif de positionnement passif ou actif, respectivement.

Distinction entre éoliennes à axe horizontal avec le rotor placé en amont avec gouverne (figure gauche), en amont avec contrôle actif (figure centrale) et en aval (figure de droite).

L’avantage du rotor placé en aval est qu’il se positionne naturellement face au vent, c’est-à-dire de manière passive. Par contre, le vent est d’abord perturbé par la nacelle et le pylône avant d’agir sur le rotor. D’une part, le régime de vent devient non uniforme sur la surface balayée par le rotor. Cela engendre des contraintes mécaniques variables dans le temps ce qui provoque une usure prématurée du matériel (phénomène de fatigue mécanique). D’autre part, le vent perturbé vient impacter les ailettes de l’éolienne ce qui a tendance à générer beaucoup de bruit (bruit d’origine aérodynamique). Pour ces deux raisons, on préfère la configuration avec le rotor en amont. En effet, le vent est moins perturbé avant de rencontrer les pales de l’éolienne (à moins qu’un obstacle se trouve en amont, mais ce n’est idéalement pas le cas). Finalement, on peut dire que l’éolienne à axe horizontal avec le rotor en amont est devenue le standard, en tout cas pour les applications de puissance élevée.

On rencontre aussi des éoliennes à axe vertical (VAWT, vertical axis wind turbine) pour les applications de petite voire de moyennes puissances. Les avantages de cette configuration sont que l’éolienne est toujours bien positionnée par rapport au vent, que le dispositif d’accouplement ainsi que la génératrice se trouvent au niveau du sol ce qui facilite la maintenance. En outre, de par les diamètres de rotor inférieurs aux éoliennes à axe horizontal, les vitesses absolues sont plus faibles ce qui, du moins théoriquement, devrait engendrer moins de bruit.

Classiquement, on distingue deux grandes familles parmi les éoliennes à axe vertical. D’une part, on trouve les éoliennes basées sur la « portance » dont la plus connue est le modèle de « Darrieus » et, d’autre part, les éoliennes basées sur la « trainée » dont la plus connue est le modèle de « Savonius ». On invite le lecteur qui veut approfondir ces concepts à consulter des sites spécialisés. Retenons néanmoins que par le principe physique qui anime ces modèles, elles donnent peu de couple au démarrage. Par conséquent, elles ne démarrent qu’à une certaine vitesse de vent, ou il faut assurer mécaniquement le démarrage de l’éolienne pour qu’elle fonctionne.

Illustration des deux grands types d’éoliennes à axe vertical : les éoliennes de type Savonius en haut, basées sur la trainée, et les éoliennes de type Darrieus en bas, basées sur la portance. Les figures du haut montrent une coupe horizontale du rotor vue selon un axe vertical. Les figures du bas montrent une coupe horizontale du rotor d’éoliennes Darrieus. Le rotor peut avoir une forme en « phi », en « delta », en « H », etc.

  

Exemple d’éolienne Darrieus (à gauche) et Savonius (à droite).

Dans l’histoire des éoliennes, on trouve de manière cyclique un regain d’intérêt pour les éoliennes à axe vertical. Les nouveaux concepts proposés sont sensés dépasser les limites technologiques du standard actuel qui est l’éolienne à axe horizontal avec rotor en amont. Pour répondre de manière nuancée, voici quelques éléments de réflexion pour situer le débat sur ces VAWT :

  • En ce qui concerne les nouvelles éoliennes à axe vertical, il s’agit souvent de la redécouverte de vieux concepts.
  • De manière générale, on manque de retour d’expérience sur le comportement des nouvelles éoliennes à axe vertical, notamment en ce qui concerne leurs performances aussi bien techniques que d’un point de vue économique.
  • Beaucoup d’experts qui ont accumulé une longue expérience dans l’éolien sont sceptiques.
  • Beaucoup d’effets d’annonce sur les performances de ces nouveaux concepts sans pour autant les valider : absence récurrente de certification IEC (commission électrotechnique internationale) de la plupart de ces machines [APERe].

Pour résumer la situation, nous reprenons le point de vue nuancé de Paul Gipe : « Avec des éoliennes à axe vertical, on peut dans certains cas réaliser les mêmes performances technico-économiques qu’avec des éoliennes à axe horizontal, mais plus que probablement pas mieux« .

Propriétés des éoliennes à axe vertical par rapport aux modèles standards Avantages Inconvénients
Simplicité. Parfois oui, on peut arriver à un concept plus simple Parfois non, on n’aboutit pas systématiquement à plus de simplicité
Meilleure fiabilité. Peu probable, mais peu de retour d’expérience.
Positionnement. Toujours bien placé par rapport au vent.
Entretien. Equipement au niveau du sol.
Prix. Moins cher, mais le rendement est-il égal ?
Rendement mécanique (transformation énergie du vent). Meilleur rendement en vent turbulent/changeant. (Cas des implantations urbaines ou proches du sol). Peu de retour d’expérience.
Rendement économique. Peu de retour d’expérience.
Émission de bruit. Théoriquement moins bruyantes parce que les vitesses sont plus faibles.

Tableau récapitulatif des propriétés des éoliennes à axe vertical par rapport aux modèles conventionnels d’éoliennes.

Distinction selon le nombre de pales

On peut faire une distinction entre les éoliennes suivant le nombre de pales.

Distinction entre éoliennes à axe horizontal selon le nombre de pales.

         

Dans le cas des éoliennes à axe horizontal, la plupart des éoliennes ont 3 pales. En fait, il s’agit du meilleur compromis entre différentes contraintes. Une éolienne à 3 pales (ou plus) tourne plus régulièrement qu’une éolienne à 1 ou 2 pales, on a un meilleur équilibre du rotor. D’un point de vue esthétique, les effets de battement visuel sont plus importants pour les éoliennes à moins de 3 pales. Le rendement aérodynamique, c’est-à-dire la capacité à convertir l’énergie du vent en énergie mécanique (et donc, in fine, en électricité), est équivalent de 2 à 4 pales. Il augmente sensiblement à partir de 5. Le seul avantage d’avoir une éolienne à deux pales plutôt qu’à trois est qu’elle sera meilleur marché, mais elle tournera de manière moins régulière ce qui est synonyme de durée de vie plus courte. On ne monte pas au-delà de 4 pales à cause de la diminution de la tenue mécanique : en effet, la « corde » des pales diminue avec le nombre de pales.

Nombre de pâles 1 2 3 4 5
Équilibre du rotor + + +
Esthétique (effet de battement visuel) + + +
Rendement aérodynamique = = = +
Bruit et fatigue + + +
Tenue mécanique + = =

Tableau récapitulatif des propriétés des éoliennes à axe horizontal en fonction du nombre de pales.

Pour conclure cette rubrique, on peut mettre en garde contre certaines conclusions intuitives qui peuvent induire en erreur. Dans le cas des éoliennes à axe vertical, il existe des modèles avec un grand nombre d’ailettes donnant à l’ensemble un aspect très compact. Cette forte densité n’est pas nécessairement synonyme de meilleures performances (aérodynamiques). Comme il sera montré par la suite, la puissance dépend essentiellement de la surface balayée par le rotor. Or, cette surface ne varie pas en augmentant le nombre de pales. Tout au plus, on balaye cette surface de manière plus efficace. Néanmoins, on peut aussi alourdir inutilement la structure ce qui grève les performances.

Distinction selon la protection contre les vents importants

C’est un aspect fondamental. En effet, en présence de vents importants ou de rafales, il s’agit d’éviter les contraintes mécaniques trop importantes et les vitesses de rotation excessives, c’est-à-dire d’éviter la casse, d’assurer l’intégrité du matériel.
On distingue d’une part les stratégies de contrôle par l’aérodynamique. On joue sur l’orientation des ailes pour modifier leurs propriétés aérodynamiques et donc réduire la force exercée par le vent.

  • Soit on réduit l’angle d’attaque des pales qui présentent alors un rendement plus faible. On peut aller jusqu’à mettre les pales face au vent où elles seront soumises à une force nulle.
  • Soit on augmente l’angle d’attaque jusqu’au décrochage du profil (« stall control » en anglais).

Une autre manière de procéder est de placer directement un frein aérodynamique sur l’aile (mais cela est physiquement équivalent à chercher le décrochage).

Ces modifications des propriétés aérodynamiques peuvent être réalisées sur l’entièreté de l’aile ou sur seulement une fraction de celle-ci, par exemple sur le bout d’aile.

À noter que l’on peut jouer sur l’orientation de l’éolienne à axe horizontal. Dans ce cas de figure, il s’agit de réduire la surface présentée au vent par le rotor de l’éolienne en la décalant par rapport à la direction du vent. Comme cette surface est réduite, la puissance du vent est directement réduite. Typiquement, on décale l’éolienne à gauche ou à droite suivant son axe vertical, soit on place l’éolienne en « hélicoptère » en tirant le rotor vers l’arrière.

D’autre part, on trouve le freinage dynamique ou électrique. Dans ce cas, c’est un frein mécanique qui limite la vitesse de rotation. Cette fonction peut être réalisée par le génératrice électrique.

Le freinage aérodynamique est une stratégie dont on ne peut se passer pour les grandes éoliennes. On peut se limiter au freinage dynamique que pour les éoliennes de faible puissance.

Distinction selon le mode de régulation de la vitesse du rotor : vitesse constante ou variable

Le rendement aérodynamique instantané, ou coefficient de performance, d’une éolienne dépend du rapport entre la vitesse en bout de pales et la vitesse du vent (évaluée bien en amont de l’éolienne) :

Lambda = tip speed ratio (TSR) = u/V,

avec,

  • u, la vitesse en bout de pale induite par la vitesse de rotation du rotor,
  • et V, la vitesse en amont de l’éolienne.

Pour optimiser la conversion de la puissance du vent en puissance mécanique appliquée au rotor, il faut que se rapport Lambda ne soit ni trop faible, ni trop élevé.  Si la vitesse du vent change, la vitesse de rotation de l’éolienne devrait idéalement pouvoir s’adapter pour maintenir le TSR constant et donc toujours travailler avec les meilleurs rendements. Par conséquent, on distingue les éoliennes à vitesse de rotation constante des éoliennes à vitesse de rotation variable. Ces dernières permettent de suivre le régime de vent et d’obtenir de meilleurs rendements en adaptant la vitesse de rotation de l’éolienne.

Il existe une deuxième raison qui justifie de travailler avec une éolienne à vitesse de rotation variable. De part nature, la vitesse du vent est fluctuante. Si l’éolienne a une vitesse de rotation constante alors ces fluctuations de vitesse se traduisent par des fluctuations du couple mécanique exercé sur l’arbre. Nous sommes alors en présence de contraintes mécaniques fluctuantes qui peuvent accélérer l’usure de la transmission entre le rotor et la génératrice. Travailler avec un rotor à vitesse variable permet d’absorber les fluctuations de vitesse par une accélération de la vitesse du rotor.

Une éolienne à vitesse de rotation variable suppose d’avoir systématiquement recours à de l’électronique de puissance. Fort heureusement, cette technique a évolué très positivement ces dernières années ce qui permet de conserver un bon rendement  et un prix acceptable. Par conséquent, le choix d’une éolienne à vitesse de rotation variable est tout à fait abordable et cohérent. Néanmoins, il faut savoir qu’une éolienne à vitesse de rotation constante reste, théoriquement du moins, plus simple.


Positionnement et intégration

Placer une éolienne est une question de compromis. Par exemple, si l’éolienne est placée près de bâtiments, elle pourra subir leur interférence dans la mesure où ces bâtiments influencent globalement la trajectoire de l’air. Par contre, placer une éolienne loin d’un bâtiment pose la question de la ligne de transmission qu’il faudra tirer entre l’éolienne et le poste électrique compatible le plus proche.

Schéma positionnement et intégration.

Illustration de la structure de l’écoulement d’air autour d’un bâtiment et des zones d’influences.

La figure ci-dessus donne une idée de l’influence d’un bâtiment sur l’écoulement. On voit que le vent est perturbé par la présence du bâtiment avant que ce vent arrive à son niveau, c’est-à-dire en amont. Si l’obstacle placé sur un terrain plat a une hauteur « H », on considère que l’écoulement est influencé en amont à partir d’une longueur de l’ordre de « 2H ». En aval, le bâtiment influence significativement l’écoulement jusqu’à une longueur de l’ordre de « 20H ». C’est donc loin d’être négligeable. Il est important de comprendre que dans ces zones d’influence, l’écoulement est fortement perturbé, c’est-à-dire que l’air subit de fortes fluctuations de vitesse qui sont loin d’être négligeables devant la vitesse du vent en amont. En d’autres termes, il ne s’agit pas de faibles fluctuations qui se superposent au vent initial, comme un « bruit blanc ». Au contraire, le vent subit de fortes fluctuations de vitesse dans toutes les directions de l’espace. En outre, la vitesse moyenne de l’écoulement est réduite, à certains endroits parfois annulée voire même inversée.

La situation peut être particulièrement complexe dans un milieu urbain où le vent est perturbé par un ensemble de bâtiments. Comme les figures ci-dessous l’illustrent bien, il existe de grandes zones où la vitesse moyenne du vent est réduite. Le comportement du vent n’est pas aléatoire, il obéit à des lois physiques bien précises. Il n’en reste pas moins que son évolution en passant près de bâtiments est loin d’être intuitive. En effet, il est difficile de prédire les caractéristiques de tels types d’écoulement. Par exemple, les résultats ci-dessous ont été obtenus au moyen de simulations numériques complexes.

Types d'écoulement via simulation numérique- 01.

Types d'écoulement via simulation numérique- 02.

Types d'écoulement via simulation numérique- 03.

Norme de la vitesse dans un plan horizontal à 1.5  m du sol (1ere figure), à 4 m du sol (2ème figure) et dans un plan vertical (3ème figure), autour d’un quartier composé d’immeubles. Cette dernière figure illustre bien l’évolution de la vitesse avec la hauteur. Résultats obtenus au moyen de simulations numériques réalisées par Tatiana de Meester de Betzenbroeck (Architecture et Climat, UCL).

Eoliennes montées sur le toit : éviter les zones d’écoulement turbulent

Photo éoliennes montées sur le toit - 01.

Photo éoliennes montées sur le toit - 02.

Exemples d’éoliennes placées sur le toit d’un bâtiment. En premier lieu, le bâtiment Éole à Gosselies (Igretec) qui intègre deux éoliennes à axe vertical dans un immeuble de bureau. Dans ce cas-ci, on voit que les éoliennes font partie intégrante du concept architectural du bâtiment (un peu comme son nom l’indique).  En second lieu, un bâtiment avec une série d’éoliennes à axe horizontal placées sur un mât.

Dans certains cas, on souhaiterait mettre une éolienne sur le toit d’un bâtiment. Cela peut constituer une opportunité dans les zones urbaines où les zones dégagées, c’est-à-dire sans obstacles, sont peu ou pas existantes. L’idée est aussi de ne pas devoir investir dans un mât pour hisser le rotor à une certaine hauteur. Mis à part ces avantages, il reste de sérieux inconvénients à travailler avec une éolienne placée sur un bâtiment :

  • Comme la figure ci-dessus sur la zone de perturbation d’un bâtiment l’illustre bien, l’écoulement est aussi perturbé au-dessus du toit. Il est moins perturbé sur le bord amont du toit, mais on voit que cette zone grandit en progressant en aval. Si le rotor de l’éolienne est situé dans cette zone d’influence,  il rencontrera un vent de vitesse moyenne plus faible et il subira de fortes fluctuations de vitesse. Par conséquent, le rendement sera plus faible et les forces auxquelles l’éolienne sera soumise seront très fluctuantes. Ces charges dynamiques sur la structure et les équipements de l’éolienne peuvent accélérer son usure. Pour conclure, on peut atténuer cet effet en conseillant d’installer l’éolienne près du bord du toit dans la direction des vents dominants.
  • Les vibrations de l’éolienne, en plus d’être potentiellement plus importantes sur un toit, sont transmises à la structure du bâtiment. Il faut voir si le bâtiment peut supporter cela et voir dans quelle mesure ces vibrations peuvent être absorbées par un dispositif ad hoc. L’impact de la propagation de ces vibrations par les matériaux de construction sur le confort acoustique des occupants n’est pas à négliger non plus.
  • Les villes étaient généralement bâties dans des sites abrités du vent.
  • Assurer la viabilité de la structure en cas de tempête devient encore plus critique concernant la sécurité. En effet, que se passe-t-il si l’éolienne est arrachée ou tombe sur une façade, une personne ? On ne peut se permettre que l’éolienne puisse perdre des éléments par grand vent.
  • L’impact paysager, au vu de la production dérisoire de ces mini-éoliennes, pose question et pourrait nuire à l’image du secteur éolien dans sa globalité alors que ce secteur est plein de potentialités. [APERe]

Tous ces éléments font que l’intérêt d’installer des éoliennes sur le toit de bâtiments est loin d’être évident. On mentionne souvent que les éoliennes à axe vertical sont bien conditionnées pour fonctionner sur un toit dans la mesure où elles sont toujours bien orientées par rapport à la direction du vent. C’est déjà un bon point, mais il n’en reste pas moins que tous les désavantages cités ci-dessus restent d’application. En effet, quand on dit que le vent est perturbé, il ne s’agit pas simplement de dire qu’il change de direction par rapport à la vitesse non perturbée en amont du bâtiment. Non, le vent est aussi sujet à de fortes fluctuations d’amplitude et la direction locale du vent fluctue aussi rapidement dans le temps. Les forces aérodynamiques sur l’éolienne restent donc relativement instationnaires (c’est-à-dire, variables), même si l’éolienne est à axe vertical. Au minimum, il faut s’assurer que le constructeur à mis en œuvre des techniques spécifiques pour gérer cela.

Éoliennes intégrées au bâtiment

     Photo éoliennes intégrées au bâtiment - 01.  Photo éoliennes intégrées au bâtiment - 02.  Photo éoliennes intégrées au bâtiment - 03.

Exemples d’éoliennes intégrées au bâtiment : le bâtiment Strata en fin de construction à Londres (figures de gauche et centrale ) et le World Trade Centre de Barhain (figure de droite).

Plus délicate encore est l’intégration de l’éolienne au sein même du bâtiment. En d’autres termes, l’éolienne devient partie intégrante du concept architectural, de l’image véhiculée par le bâtiment. Effectivement, cette démarche donne une image, un style technologique et écologique au bâtiment. Par contre, mis à part ses qualités de vitrine de marque, on peut se poser de sérieuses questions sur l’intérêt d’intégrer des éoliennes directement au bâtiment. Il reste notamment la question de l’absorption des vibrations des éoliennes par le bâtiment. Si elles sont petites, cela ne pose pas de gros problèmes, mais, d’un autre côté, si elles sont petites, elles ne produiront alors qu’une infime fraction de la consommation du bâtiment. Si les éoliennes sont de tailles plus importantes, elles peuvent fortement perturber la structure du bâtiment.

On peut jouer sur la forme du bâtiment pour obtenir un effet d’accélération au niveau de l’éolienne (effet Venturi). Néanmoins, on ne peut pas déplacer le bâtiment en fonction de l’orientation du vent. En conclusion, l’intérêt ne semble pas évident.


Les éoliennes carénées

Certaines éoliennes sont munies d’éléments externes au rotor dont l’objectif est de concentrer le vent sur le celui-ci. On pense principalement aux éoliennes carénées où un conduit convergeant ou divergeant enveloppe le rotor de l’éolienne. Les designs peuvent être des plus variés, voire des plus futuristes :

Schéma principe éoliennes carénées.    Photo éoliennes carénées.

Certains de ces modèles présentent des puissances supérieures aux éoliennes traditionnelles non carénées. Il ne faut pas y voir pour autant un effet révolutionnaire. L’explication est relativement simple. Lorsque l’on définit la puissance instantanée du vent, il faut être vigilant à la définition de la surface rencontrée par l’éolienne que l’on utilise. Dans le cas d’une éolienne classique, il s’agit de la surface balayée par le rotor. Par contre, dans le cas de modèles carénés, il faut tenir compte de ces éléments supplémentaires extérieurs. Typiquement, il faut prendre la surface frontale de l’éolienne, carénage inclus. En gros, celui-ci augmente la puissance instantanée du vent en augmentant la surface exposée au vent. Les puissances plus élevées obtenues par ces éoliennes ne sont donc pas dues à un meilleur rendement, mais à une augmentation de la puissance du vent rencontrée, c’est-à-dire la source d’énergie.

Le carénage est-il pertinent?

La méthode n’est pas mauvaise, mais il faut savoir que c’est tout aussi simple d’augmenter la surface du rotor d’une éolienne classique pour qu’il soit équivalent à la surface au vent de l’éolienne carénée. En effet, dans le cas d’une éolienne carénée, ajouter cet élément externe a un certain coût. En outre, il faut pouvoir le maintenir par une structure et l’orienter correctement par rapport au vent. En ce qui nous concerne, nous pensons qu’il est plus simple d’augmenter la taille du rotor d’une éolienne traditionnelle. Un avantage néanmoins, il épargnerait les oiseaux grâce à l’absence de pièces mouvantes externes.


Dispositifs d’optimisation de l’aérodynamique

Quand on voit la complexité des ailerons acérés des Formules 1, c’est à se demander pourquoi les pales de nos éoliennes sont si minimalistes. Ni aurait-il pas moyen de pousser l’aérodynamique plus loin  ?  Si la réponse courte est OUI, la réponse longue impose de nuancer.

En effet, si une pale d’éolienne est loin de la complexité d’un aileron de formule 1, la raison se situe probablement dans une balance coût/bénéfice pour laquelle le point de vue n’est pas le même. D’un côté, en formule 1, on cherchera le bénéfice maximal, qu’importe le coût et la durée de vie ; de l’autre côté, celui de l’éolien, ce sera la solution proposant le meilleur rapport coûts/bénéfices tout au long du cycle de vie qui l’emportera. Ce dernier point de vue menant logiquement à des solutions simples, éprouvées, efficaces et durables avec « peu » de débauche de moyens. En résumé, cela revient moins cher de faire plus grand que de faire plus complexe.

Néanmoins, les techniques évoluent et les coûts associés également. Pour cette raison, certaines technologies que l’on retrouve dans le monde des sports moteurs, mais aussi de l’aéronautique deviennent suffisamment matures et abordables pour être intégrées dans le secteur éolien.

Les winglets

Photo winglets - 01.

Afin de réduire la traînée induite par les tourbillons de bout d’aile, certains dispositifs biomimétiques comme les winglets (petite ailette perpendiculaire à la pale située en bout d’aile) ont été développées pour permettre de limiter les turbulences en bout d’aile. En réduisant la trainée, c’est à la fois de rendement qui est amélioré (1 à 3 %)  mais également une réduction du bruit qui peut être observée. Ce type de dispositif est déjà très présent dans le monde aéronautique (on y voit même des doubles winglets aussi appelés « split winglets »).

Photo winglets - 02. Schéma principe winglets.

Les chevrons ou dentelures

Photo chevrons ou dentelures - 01.

Afin d’améliorer l’aérodynamique et le rendement, mais surtout l’acoustique qu’induisent les turbulences au niveau du bord de fuite, certaines sociétés s’inspirent du vol silencieux du hibou et étudient des solutions pour « adoucir » les perturbations.

Ainsi, par bio mimétisme, en s’inspirant des plumes d’hibou, des dentelures ou chevrons sont apposés au bord de fuite. Ces entreprises promettent une réduction de 5dB grâce à ce dispositif. Wait and see !

Photo chevrons ou dentelures - 02.

Les générateurs de vortex

Schéma principe générateurs de vortex - 01.

Accolés sur l’extrados de la pale, non loin du bord d’attaque, les générateurs de vortex, sorte de petites lames, permettent de contrer la séparation prématurée des flux et ainsi augmentent la portance de la pale. Se faisant, le bruit est réduit et le rendement, en poussant la limite de décrochage plus loin, est amélioré. Ce dispositif peut être placé a posteriori.

Schéma principe générateurs de vortex - 02.

Ecoulement de l’air avec générateurs de vortex.

Concevoir l’installation d’une éolienne

 


Un projet multidisciplinaire

Au-delà de la justification environnementale et économique, l’implantation d’une ou plusieurs éoliennes doit satisfaire à une série de contraintes. Celles-ci sont de natures fort différentes. Ces contraintes peuvent être vues comme des conditions nécessaires à remplir pour pouvoir édifier une éolienne, mais chaque contrainte séparée ne peut être vue comme une condition suffisante : il faut pouvoir répondre à toutes les contraintes. Naturellement, plus le projet est ambitieux en taille et plus les contraintes à respecter sont sévères ou plus la justification de leur respect doit être approfondie. À l’autre extrême, on trouve les projets de petites éoliennes où les contraintes sont relativement limitées.

Pertinence du projet

Au départ, le projet doit être intrinsèquement pertinent. On développe cette idée ci-dessous pour différentes dimensions du projet, c’est-à-dire des objectifs énergétiques, environnementaux et économiques. Ces dimensions ont été séparées pour des raisons de clarté et pour structurer le propos. Il faut être conscient qu’en réalité tous ces critères sont fortement liés et doivent être considérés ensemble.

Pertinence économique

Bien que l’impact sur la réduction de l’émission de gaz à effet de serre soit un atout indéniable, il n’en reste pas moins que la pertinence économique d’un projet éolien demeure un paramètre vital. À cet effet, il est important d’avoir une idée claire sur la rentabilité de son projet. En outre, il faut intégrer à ses calculs financiers la politique de soutien des autorités publiques pour la production d’énergie verte. En effet, ce dernier aspect améliore considérablement les performances économiques du projet.

Pertinence énergétique et environnementale

  • Maîtrise de la consommation énergétique : Si l’objectif est de répondre à la demande d’électricité d’un ou plusieurs bâtiments, d’autres approches que l’éolien peuvent être pertinentes, voire prioritaires. Produire son énergie avec des sources d’énergies renouvelables est une excellente initiative, ne pas consommer cette énergie est encore mieux. C’est un slogan que l’on rencontre systématiquement dans le contexte de l’utilisation rationnelle de l’énergie. Bien qu’un peu « bateau », il est tout à fait pertinent. Une condition préalable à l’investissement dans un projet éolien est la maîtrise de sa consommation énergétique. À l’échelle d’un bâtiment, cela doit être vu au sens large, c’est-à-dire en intégrant la consommation électrique, mais aussi la consommation de chaleur. On peut attaquer ces consommations sur deux fronts : le premier est de réduire les besoins de chaleur et d’électricité, le second est l’utilisation d’un matériel performant et en bon état de marche. Les différentes sections d’Énergie+ ont été développées pour vous accompagner dans cette démarche de maîtrise des consommations pour chaque poste-clef de votre bâtiment ou de votre parc immobilier.
  • Les ressources disponibles : Par définition, une éolienne est une machine qui transforme l’énergie du vent en énergie mécanique, c’est-à-dire la rotation du rotor. Finalement, cette énergie sera transformée en électricité via une génératrice. Comme toute machine, elle réalise cette conversion avec un certain rendement. Comme le bon vieux premier principe de la thermodynamique nous l’apprend, l’énergie est conservée : « rien ne se perd, rien ne se gagne ». Le rendement de l’éolienne ne dépasse donc jamais les 100 %. Tout cela pour dire que si le vent ne contient pas beaucoup d’énergie sur le site où vous voulez implanter votre éolienne, celle-ci ne pourra pas faire de miracles et produire plus que ce potentiel énergétique du vent. Avant de se lancer dans l’aventure, il faut donc connaître les ressources d’énergie éolienne dont on dispose. Cela peut se faire via une campagne de mesure sur site ou, dans la plupart des cas aujourd’hui, au moyen de logiciels de simulation numérique qui permettent de déterminer les grandes caractéristiques du vent en relation avec une éolienne. Une propriété importante est la puissance instantanée du vent qui traverse la surface balayée par l’éolienne. Cette puissance dépend du cube de la vitesse du vent (en amont de l’éolienne). Si la vitesse double, la puissance instantanée du vent est multipliée par huit. L’éolienne dispose alors de huit fois plus de puissance de vent à convertir en électricité. Sur base de ce constat, on comprend tout l’intérêt de placer son éolienne sur un site venteux. En outre, de par ses propriétés, le vent varie fortement d’un site à l’autre. Par conséquent, la pertinence énergétique d’un projet éolien dépend fondamentalement du potentiel local de votre site d’implantation.
  • Un large spectre d’énergies renouvelables : Comme expliqué ci-dessus, la pertinence énergétique dépend fortement du potentiel de vent de votre site d’implantation. Ce potentiel va donc aussi influencer la viabilité économique du projet. Toutes les sources d’énergies renouvelables ne sont pas aussi sensibles aux conditions atmosphériques ou météorologiques locales. Par exemple, lorsque l’on considère les techniques solaires, que ce soit le solaire thermique ou photovoltaïque, votre production sera essentiellement dépendante de l’ensoleillement ainsi que de la température extérieure (qui influence le rendement du matériel). Ces facteurs varient bien évidemment d’un site à l’autre, mais les variations, au sein d’un territoire restreint comme la Région wallonne, restent limitées. Par conséquent, ces techniques solaires souffrent moins de facteurs locaux, leur pertinence est donc plus facile à établir ou réfuter. Le choix d’une énergie renouvelable par rapport à une autre dépendra donc du potentiel de votre site. Si vous ne disposez pas de sites venteux, d’autres sources d’énergies  renouvelables seront peut-être plus indiquées. Dans certains cas, d’autres ressources d’énergies renouvelables sont peut-être plus facilement valorisables, tel le bois-énergie dans des régions où les forêts et les sous-produits de bois sont nombreux. En conclusion, il faut regarder la question de la manière la plus large possible en envisageant toutes les opportunités qui s’offrent.

Contraintes

Le but de cette section relative aux contraintes n’est pas de faire un état des lieux précis des contraintes auxquelles est soumise l’implantation d’une éolienne. L’objectif est de démontrer la diversité des questions et des disciplines rencontrées. Nous invitons le lecteur intéressé à consulter les documents de référence sur ces questions voir de rentrer en contact avec le facilitateur Électricité Renouvelable de la Région wallonne. Fort heureusement, pour les petits projets éoliens, la liste des contraintes est plus restreinte.

Contraintes urbanistiques

Une éolienne doit respecter une série de contraintes urbanistiques. Celles-ci seront d’autant plus sévères que l’éolienne sera grande. L’ensemble des règles concernant les zones capables en éolien sont reprises dans le Code du Développement Territorial (CoDT). En outre, il existe des zones protégées où l’installation d’une éolienne est en principe proscrite. On peut citer, à titre d’exemple, les zones Natura 2000, les réserves naturelles, les peuplements de feuillus,…

Les éoliennes pourront par contre s’établir, moyennant certaines conditions, dans les zones agricoles, zones d’activité économique, zone forestière à faible densité…

Contraintes électriques et de raccordement au réseau

Mis à part les situations d’auto-consommation, l’électricité qui sera produite par les éoliennes sera principalement injectée sur le réseau. Il faut que le réseau possède un nœud de connexion proche (cabine de tête) qui puisse accueillir le puissance électrique débitée par une ou plusieurs éoliennes. Cette capacité dépend de la puissance électrique que l’on souhaite faire transiter par le réseau et donc de la taille du projet éolien. Dans le cas où il faudrait tirer une nouvelle ligne de puissance vers une éolienne, il faut savoir que ce sont des travaux extrêmement coûteux. La topologie du réseau électrique à proximité du site d’implantation a donc un impact majeur. Ces questions sont traitées en collaboration avec le Gestionnaire du Réseau de Distribution (GRD) ou de Transport (GRT) suivant le niveau de tension du réseau auquel on veut se raccorder.

Actuellement, les meilleurs sites (sur les plans de l’exposition au vent et de la connexion au réseau) sont déjà équipés en éoliennes. Ce critère est donc moins évident à optimiser au fur et à mesure que les gisements de vents idéalement situés sont exploités.

Contraintes environnementales

L’implantation d’une éolienne peut perturber son environnement direct :

  • Les éoliennes émettent du bruit. Ce bruit peut être engendré par la vibration de la structure, voire aussi être d’origine aérodynamique. Il faut veiller à ce que le niveau de bruit émis par l’éolienne soit compatible avec l’occupation du voisinage. À ce titre, le législateur a mis en place un arrêté pour protéger le cadre de vie des riverains en exigent le respect de normes de bruits strictes en fonction des conditions sectorielles. http://environnement.wallonie.be/legis/pe/pesect074.html
  • L’impact de l’éolien sur l’avifaune est très limité. Il est d’autant plus limité que l’éolienne est de petite taille. Il existe pourtant des zones sensibles qu’il est souhaitable d’éviter, essentiellement pour les grands projets éoliens. Par exemple, on peut citer les couloirs de migration ou les zones de nidification. L’étude d’incidence analyse particulièrement ces impacts.

Contraintes de compatibilité

L’implantation d’une éolienne peut interagir négativement avec d’autres fonctions réalisées dans son environnement :

  • Les éoliennes émettent un rayonnement électromagnétique. Néanmoins, celui-ci n’est pas dans la même gamme de fréquences que celles utilisées par les radars. Ces éoliennes ne constituent donc pas des brouilleurs actifs. Par contre, l’éolienne peut avoir des surfaces importantes métalliques comme le mât ou les pâles qui peuvent refléter les rayons d’un radar. Potentiellement, cela peut créer de faux échos radars ce qui peut être dangereux pour l’aviation civile ou militaire. En outre, certaines parties de l’éolienne sont en mouvement. C’est, par définition, le cas du rotor. Un effet « Doppler » qui modifie le champ électromagnétique pulsé par le radar peut avoir lieu. Ce phénomène génère de forts échos radars. Il faut savoir que même les éoliennes avec un rotor de diamètre limité, comme une éolienne domestique avec un rotor de 2 m de diamètre, génèrent un écho perceptible sur les radars. Un faux écho radar peut être dangereux pour l’aviation, qu’elle soit civile ou militaire, c’est pourquoi certaines zones d’exclusion existent, notamment à proximité des aéroports ou de zones d’implantation de radars. Par contrer cela, des filtres (solutions software) sont actuellement en cours de développement de manière à permettre l’implantation d’éolienne dans certaines zones à proximité de radars.
  • Les grandes éoliennes peuvent constituer un obstacle dangereux pour l’aviation. A l’heure actuelle, les éoliennes dont la hauteur dépasse 60 m doivent être répertoriées.
  • Dans certains cas, l’éolienne peut interagir avec les ondes hertziennes parce que l’éolienne peut réfléchir ou diffracter ces ondes. Comme dans le cas du radar, il s’agit d’une perturbation passive et non pas d’un brouillage actif qui serait généré par les ondes électromagnétiques produites par l’éolienne. Le risque est que le signal envoyé par un émetteur soit « dévié » par une éolienne si bien qu’au niveau du récepteur du signal, on ait la superposition du signal direct et d’un signal dévié par une éolienne. La combinaison des deux contributions donne un signal perturbé. En pratique, une éolienne dont la hauteur totale correspond à la hauteur générale des obstacles naturels ou habituels ne créera pas de perturbation pour les faisceaux hertziens. Mais pas de panique, l’IPBT (Institut belge des services postaux et des télécommunications) et la RTBF sont systématiquement concertés dans le cadre de l’analyse des demandes de permis éoliens, de sorte que le risque de perturbation de votre programme télévisé préféré est aujourd’hui fortement minimisé.

Contraintes foncières

Dans bon nombre de cas, le développeur n’est pas propriétaire du terrain sur lequel il envisage une exploitation éolienne. Dans ce cas, l’exploitant passe un contrat avec le(s) propriétaire(s) du ou des terrain(s) pour pouvoir y réaliser leur projet éolien.

Dans un certain nombre de cas, des contraintes « de signature » peuvent grandement conditionner le projet. Les contraintes imposées par le(s) propriétaire(s) peuvent tant porter sur l’implantation des éoliennes que sur les caractéristiques du parc : nombre de turbines, puissance…


Les étapes d’un grand projet éolien

L’élaboration d’un grand projet éolien est un processus qui se réalise en plusieurs étapes. Au regard des différentes contraintes précitées et de l’importance du potentiel du vent, établir un projet complet demande beaucoup d’investissement en temps et en moyen, notamment pour réaliser les diverses études. Par conséquent, une première étape consiste à valider rapidement le bien-fondé de la démarche en évaluant une série de conditions de base que le projet doit au minimum respecter. Cela permet d’éviter d’engager trop de moyens dans un projet intrinsèquement non viable. Une fois cette étape de pré-faisabilité établie, on peut investir dans des études techniques plus poussées, c’est-à-dire des études de faisabilité, pour finalement aboutir à la finalisation du projet. Le projet ainsi défini, on passe au montage administratif qui donnera lieu à l’obtention d’un permis ou d’un refus d’implantation d’un parc éolien :

  1. Préfaisabilité
  2. Faisabilité
  3. Finalisation du projet
  4. Montage administratif
  5. Obtention ou refus du permis

Les diverses étapes jalonnant le projet sont notamment définies dans des documents de référence développés par le Facilitateur éolien,  ouverture d'une nouvelle fenêtre ! l’APERe. Nous reprenons ci-dessous une description un peu détaillée de la phase de définition du projet avant le montage administratif.

Étude de pré-faisabilité

  • Sur base de la vitesse moyenne du vent sur le site sélectionné, on estime rapidement la production électrique de la future éolienne. En parallèle, on peut aussi estimer l’impact de la topographie et d’obstacles locaux sur la qualité du vent : si l’on se trouve sur un terrain plat ou non plat, si des obstacles naturels ou artificiels sont présents.
  • On peut vérifier si l’implantation est compatible avec les contraintes urbanistiques, avec la présence de zones habitées proche, avec la présence de zones protégées, …
  • Une étude de faisabilité, appelée étude d’orientation, est commandée au gestionnaire de réseau électrique pour évaluer la possibilité de raccordement, la puissance qui peut être raccordée ainsi qu’une estimation du prix de raccordement. Il s’agit, suivant le niveau de raccordement, du gestionnaire du réseau de transport (GRT) ou de distribution (GRD).
  • Consulter les organismes dont l’avis risque d’être sollicité par les autorités qui délivrent le permis d’implantation de l’éolienne. On pense par exemple à Belgocontrol, la Défense Nationale, aux Fonctionnaires Délégués et Techniques. De cette manière, on peut s’assurer que le projet ne recevra pas un avis négatif de la part de ces organismes plus tard dans le processus d’obtention du permis. Encore une fois, on peut ainsi éviter d’engager trop de forces dans un projet qui ne risque pas d’aboutir. Il s’agit d’un avis indicatif qui ne garantit rien sur l’avis officiel qui sera donné ultérieurement par ces institutions durant la phase administrative du projet. À noter que certains organismes ne donnent pas d’avis indicatif.

Étude de faisabilité

  • Une étude plus approfondie sur le potentiel éolien du site est réalisée. Ce potentiel est évalué sur base d’une campagne de mesure sur site bien qu’aujourd’hui les simulations numériques (via un logiciel de simulation numérique des écoulements environnementaux) sont privilégiées.
  • Une étude de détail sera commandée au gestionnaire du réseau électrique afin qu’il établisse les spécifications techniques du raccordement de l’éolienne au nœud du réseau fixé par l’étude d’orientation. Sur base des ces informations techniques, on peut faire établir un devis par une société spécialisée en électrotechnique pour réaliser le raccordement du parc éolien projeté.

Finalisation de l’étude

  • On passe à la phase dite de « micro-siting« . Il s’agit de déterminer le nombre, le type et les caractéristiques des éoliennes qui seront installées ainsi que l’emplacement exact de chaque turbine sur le terrain. On tient à la fois compte des informations collectées sur le potentiel du vent et des contraintes urbanistiques.
  • Un plan de financement est réalisé. Sur base du potentiel du vent, on peut estimer la rentabilité économique du projet. Cette étude tient compte des frais déjà engagés, de l’investissement dans les différentes éoliennes, leur installation et les frais de connexion au réseau électrique. En outre, les frais de maintenance ne seront pas négligés.
  • L’étude est ainsi finalisée, on peut ainsi rentrer dans la phase du montage administratif et la réalisation de l’étude d’incidence environnementale du projet.

Les étapes d’un petit projet éolien

Dans le cas d’un petit projet éolien, le montage d’un projet est fort heureusement moins lourd. Nous résumons ci-dessous les grandes étapes d’un tel projet. On passe au travers ces différentes étapes de manière séquentielle : une fois que la démarche est réalisée, on peut seulement passer à l’étape suivante (processus « go/no-go« ).

Les étapes d’un petit projet éolien :

    1. Vérifier sa consommation électrique et la réduire. En amont de toute démarche, il faut maîtrise ses consommations par une utilisation rationnelle de l’énergie (URE). Énergie+ a typiquement été développé pour vous accompagner dans cette tâche.
    2. Vérifier le coût de l’électricité du réseau auprès des fournisseurs.
    3. Faire une estimation rapide de la production de l’éolienne, notamment sur base de la vitesse moyenne du vent sur le futur site d’implantation.
    4. Faire une estimation rapide de la rentabilité du projet en intégrant les incitants fiscaux. Sur cette base, faire une comparaison avec les autres systèmes d’énergies renouvelables.
    5. Vérifier si l’implantation d’une petite éolienne est compatible avec les prescriptions urbanistiques.
    6. Mesurer le potentiel de vent de son site, c’est-à-dire la vitesse du vent durant une période d’au minimum plusieurs mois à, idéalement, un an. Il faut en outre vérifier la « qualité » de l’écoulement du vent sur le terrain en repérant les obstacles qui risquent de le perturber ou les modifications de relief qui risquent d’accélérer ou décélérer le vent localement. Il faut se référer aux règles de bonne pratique pour avoir une idée de cet impact. Finalement, sur base des mesures, on peut faire une estimation de la production électrique réalisable.
    7. Choisir la taille de l’éolienne, son modèle ainsi que la hauteur du mât. La hauteur du mât est un aspect très important. C’est un point sur lequel il faut être particulièrement vigilant et intransigeant pour garantir le futur succès de votre installation éolienne.
    8. Demande et obtention du permis de bâtir.
    9. Suivant la puissance, notification ou demande de permis au Gestionnaire de Réseau de Distribution (GRD) pour la connexion au réseau électrique.
    10. Commander l’éolienne.
    11. Installation de l’éolienne.
    12. Réception des travaux, notamment au niveau électrique et de la connexion au réseau.
    13. Maintenance et surveillance du matériel durant toute sa durée d’utilisation.