NetZEB : bâtiments Nets Zéro-Énergie

NetZEB : bâtiments Nets Zéro-Énergie


Définition

Dans la famille des concepts de performance énergétique des bâtiments, je demande le bâtiment net zéro-énergie !

Mais qu’est-ce qu’un bâtiment « net » zéro-énergie ?

Les NetZEB pour « Net Zero Energy Building » (bâtiments nets zéro-énergie, ou « à bilan énergétiques neutres ») ne sont en rien des bâtiments autonomes ou zéro émissions. Ils peuvent être définis comme produisant autant d’énergie qu’ils n’en consomment sur une période de temps. Le bâtiment peut consommer ou non sa production et consommer de l’énergie issue du réseau ou de sa propre production (autoconsommation). Le bilan s’établi sur une année, généralement en énergie primaire et la production énergétique doit être renouvelable, cela va de soi !

Ainsi, un tel bâtiment compense sa consommation du mix énergétique sur le réseau en déversant sa surproduction renouvelable sur le réseau lorsqu’il ne peut l’autoconsommer. Généralement, le bâtiment sera consommateur en hiver et producteur en été. L’indication « Net » devant « zéro-énergie » vise à souligner cet équilibre entre consommation et production, calculé en énergie primaire. [Schéma central, ci-dessous]

Pour les bâtiments qui produisent plus d’énergie qu’ils n’en consomment, on parlera de bâtiments à énergie positive [schéma de droite, ci-dessous] tandis que ceux dont la production est proche de leur consommation mais inférieure on utilisera le terme « Quasi zéro énergie ». [Schéma de gauche, ci-dessous]

Schémas sur les 3 définitions bâtiments basse énergie.

* Si en 2018 aucune exigence wallonne ne porte sur le net zéro-énergie ou l’énergie positive, la directive Européenne 2010/31/UE impose néanmoins aux États-membres que toutes les nouvelles constructions soient quasi zéro-énergie dès le 1er Janvier 2021. Chaque État-membre est néanmoins libre de définir jusqu’à quelle écart entre production et consommation d’énergie primaire il considère qu’un bâtiment est « quasi » zéro-énergie. Pour la Wallonie, toutes les valeurs réglementaires en fonction du type de bâtiment se trouvent sur notre page dédiée.

On comprend donc bien que ce qui est mesuré au niveau de la balance énergétique ne concerne que les échanges entre le réseau et le bâtiment, ce qui se passe à l’intérieur du bâtiment n’est pas repris dans le bilan. L’éventuelle part d’autoconsommation n’est ainsi pas directement comptabilisée ou valorisée dans cet équilibre. L’égalité se fait par comparaison entre consommation sur le réseau et surproduction remise sur le réseau.

Schéma sur l'équilibre entre consommation sur le réseau en hiver et surproduction injectée sur le réseau en été.
Équilibre entre la consommation sur le réseau en hiver et la surproduction injectée sur le réseau en été.

Ces bâtiments sont toujours dépendants du réseau car ils y puisent une partie de leur consommation. Il ne faudra donc pas les confondre avec les bâtiments strictement zéro-énergie ou les bâtiments autonomes qui eux parviennent à annuler leurs besoins en énergie ou à les combler instantanément et en totalité par des énergies renouvelables produites sur place ou au sein d’un district énergétique local sans connexion au réseau.


Histoire du concept

Les premières mentions de bâtiments zéro-énergie sont la MIT Solar House I en 1933 (BUTTI,K.et PERLIN,J.(1980). A Golden Thread, 2500 Years of Solar Architecture and Technology. Van Nostrand Reinhold Company) et la Bliss House en 1955 (BLISS, R. (1955). Design and performance of the nations’ only fully solarheated house. Air conditioning, Heating and Ventilating, 52:92–97). D’autres exemples historiques sont la Vagn Korsgaard Zero energy Home au Danemark (ESBENSEN,T.et KORSGAARD,V.(1977). Dimensioning of the Solar Heating System in the Zero Energy House in Denmark. Solar Energy, 19:195– 199) et la Saskatchewan Conservation House (BESANT, R., DUMONT, R. et SCHOENAU, G. (1979). The Saskatchewan conservation house: some preliminary performance results. Energy and Buildings, 2:163–174). Les premières se concentraient sur la maximisation de la production et valorisation de l’énergie solaire, les secondes y ajoutaient des mesures de réduction de la demande de chaleur.

Ces deux axes de développement vont se croiser à la fin du XXème siècle, et résulter en une modification importante de la conception et du bilan énergétique des bâtiments. Par exemple, le double puis triple vitrage devient la norme permettant d’augmenter la surface vitrée des logements et bureaux sans augmenter les besoins de chaleur, mais en élevant les besoins de refroidissement. Ceci entraîne des réflexions plus poussées sur les protections solaires, le développement de doubles façades, etc. C’est à ce moment que se produit un glissement dans la manière de concevoir. Alors qu’avant une installation de conditionnement d’air était pensées isolément pour compenser les charges thermiques du bâtiment, quelle qu’elles soient, les concepteurs l’ont progressivement intégrée au concept global du bâtiment pour en faire un ensemble de plus en plus cohérent et complémentaire regroupant: l’enveloppe, les HVACs, les techniques passives, l’éclairage et les appareils électriques.

L’intégration croissante des systèmes et l’apparition au début des années 90’ de l’idée que techniquement le soleil pourrait suffire à répondre aux besoins d’énergie du bâtiment, contribue à renforcer la réflexion sur le zéro-énergie. Le soleil, bien utilisé et combiné à des techniques passives de régulation de l’ambiance pourrait permettre de tendre vers le zéro-énergie. Or, à ce moment, les panneaux solaires photovoltaïques et thermiques se développent, gagnent en efficacité mais surtout deviennent de plus en plus abordables.

La conjoncture d’alors entre :

  • le développement de technologies de production d’énergie renouvelable abordables,
  • l’urgence environnementale,
  • la nécessité de réduire le pic énergétique de la demande,
  • la mise en place de politiques économiques de soutien au développement des énergies renouvelables
  • la maturité des systèmes HVAC
  • l’émergence d’une vision complète et intégré des systèmes.

fut propice au développement de la perspective du Net Zéro-Énergie.

Assez vite est apparue une réflexion sur le caractère autonome (par rapport au réseau) ou non des bâtiments « zéro-énergie ». Vale et al. ont montré que l’idée d’une liaison au réseau permet une meilleure performance sur le cycle de vie du bâtiment que la recherche d’autonomie par le stockage in situ de l’énergie produite, et offre également plus de flexibilité (VALE, B. et VALE, R. (2002). The New Autonomous House : Design and Planning for Sustainability. Thames & Hudson Ltd). L’idée que le bâtiment « zéro-énergie » fasse partie intégrante d’un réseau énergétique s’est dès lors généralisée.

L’idée d’un habitat entièrement autonome est aujourd’hui limitée aux cas où les réseaux d’énergie font défaut. Pour éviter toute confusion le terme bâtiment net zéro-énergie (Net-ZEB) est utilisé de préférence à bâtiment « zéro-énergie » pour désigner un bâtiment dont la balance consommation/production est nulle sur une période déterminée (généralement un an). Il s’agit d’avoir pu produire et réinjecter sur un réseau autant d’énergie que l’on en aura consommé. Cette approche a le mérite de replacer le bâtiment dans un contexte régional (via le réseau d’électricité) ou local (via des réseaux de chaleur urbains). Notons que certains projets se présentent déjà comme plus ambitieux et prétendent à un statut de bâtiment à énergie positive.


Peut-on être NetZEB et gros consommateur d’énergie fossile?

Oui, en théorie, sans aucun doute. D’après la définition littérale d’un bâtiment NetZEB, il « suffit » simplement d’être aussi grand producteur que consommateur pour être NetZEB. Ainsi, un bâtiment mauvais du point de vue de sa performance thermique, pourrait compenser, par exemple, avec une grande surface de panneaux photovoltaïques. Celui-ci pourra alors être considéré comme « Net Zéro-Énergie ».

Définition littérale d’un bâtiment NetZEB.

Si mathématiquement la balance est vérifiée, d’un point de vue qualitatif peut on affirmer que l’énergie consommée en hiver à partir du mix énergétique (majoritairement fossile) équivaut à la même quantité d’énergie produite en été de manière renouvelable ?

En effet, l’énergie consommée en hiver est issue du mix énergétique wallon (et donc majoritairement non-renouvelable à ce jour) et utilisée à un moment où l’énergie est plus rare tandis que celle produite en été par les panneaux PV est injectée sur le réseau à un moment où la consommation est moindre et l’énergie se fait beaucoup moins rare…

Schéma sur le concept Net zéro-énergie, précisions (1).

Si les cas 1 et 2 sont tous deux Net zéro-énergie (la balance entre la surproduction injectée sur le réseau en été et la consommation sur le réseau en hiver étant à l’équilibre), on remarque que même avec ce « label », un bâtiment peut rester un grand consommateur d’énergie issue du mix énergétique du réseau (cas 2). Les deux balances sont mathématiquement à équilibre mais il reste qu’au bout de l’année une plus grande quantité d’énergies fossiles auront été consommées pour ce bâtiment (cas 2)… La meilleure énergie est et sera toujours celle qu’on ne consomme pas.

Schéma sur le concept Net zéro-énergie, précisions (2).

Pour avoir un sens environnemental et énergétique, les concepteurs de bâtiments Net zéro énergie ne peuvent se limiter au seul critère de l’équilibre production/consommation mais devraient aussi, dès le début de la conception, veiller à réduire les besoins au minimum rationnel et pertinent avant d’entreprendre les démarches de compensation des besoins résiduels via la production d’énergie renouvelable in situ. En ce sens, les exigences thermiques régionales sur la performance des parois (Umax) et le niveau d’isolation thermique global (niveau K) constituent des garde-fous.

Pour aller plus loin, n’hésitez pas à visiter nos pages sur les stratégies de conception !

Pour augmenter la part d’autoconsommation et réduire l’empreinte environnementale du bâtiment, le concepteur de l’installation peut également penser à déployer des moyens locaux de stockage d’énergie journalier et/ou saisonnier de manière à ne plus considérer le réseau comme un moyen de stockage infini.


Une approche intégrée

Ce nouveau statut du bâtiment alternativement ou simultanément producteur, consommateur, auto-consommateur induit des bouleversements sur la manière dont ceux-ci sont intégrés au réseau électrique et dans la manière de concevoir les bâtiments. En voici une synthèse traduite du livre « Modeling, Design and optimization of Net-Zero Energy Buildings » :

Systèmes, Conception et Utilisation Bâtiment “classique” Bâtiment NetZEB
Enveloppe Passive, pas conçue comme faisant partie du système énergétique global Optimisé pour la conception passive et l’intégration des systèmes solaires actifs
HVAC Systèmes surdimensionnés (côté sécurité) Petits systèmes contrôlés et optimisés, intégrés avec les systèmes solaires, les systèmes combinant chaleur et électricité, stockage journalier et/ou saisonnier, systèmes partagés dans le quartier.
Systèmes solaires (PV, ST), renouvelable, cogénération Pas d’intégration systématique, on y pense après, on rajoute après. Pleinement intégré : lumière naturelle / solaire thermique / Photovoltaïque / solaire hybride / géothermique / biomasse / connexion à un microSmartGrid
Système d’automatisation Systèmes utilisés de manière peu efficace. Contrôle prédictif, Optimisation du confort et des performances énergétiques.
Conception et utilisation Considéré séparément Intégré et optimisé pour satisfaire le confort.

Notons qu’une clarification est à faire entre les notions zéro-énergie et zéro-carbone. Le « Common Language for sustainable construction » propose les définitions reproduites ci-dessous (ref. : Europeann Concrete Platform Et Architects Council of Europe).

On constate une différence d’approche entre des objectifs exprimés en termes de carbone ou d’énergie primaire, selon que l’on se concentre sur l’impact climatique ou sur une approche plus large de l’enjeu énergétique. L’expression d’objectifs selon l’un ou l’autre terme est importante dans la mesure où les solutions techniques privilégiées sont différentes. Des solutions de chauffage à la biomasse ou à l’électricité nucléaire seront par exemple favorisées dans un bilan carbone, mais plus nuancées dans une approche énergétique.

« Net zero carbon buildings : Buildings that, by virtue of the materials of which they are constructed and by virtue of the fact that they produce surplus energy from renewable sources, ensure that, over their Design Life, they compensate for all carbon emissions associated with the construction and use of the building. »

« Net zero Energy : The goal of Net Zero Energy is to become a community that produces its own energy. Net Zero Energy Buildings […], for instance, rely on efficiency to reduce energy needs and allow the balance to be supplied with renewables. NetZEBs produce as much energy on-site as they use annually. The reason NetZEBs are referred to as ’net zero’ is that they are still connected to the grid. Sometimes they produce more power than they are consuming and feeding power to the grid and running the meter back. Sometimes they consume more power than they are producing and pulling power from the grid. But for a NetZEB, the energy given to the grid is equal to the amount of energy pulled from the grid on an annual basis. It is important to note that net zero refers to energy use, and does not necessarily mean zero carbon emissions from energy use. »


Un concept qui reste vague

Les définitions usuelles du NetZEB restent très vagues et reflètent le manque de consensus international sur la notion de bâtiment net zéro-énergie. La Tâche 40 « Vers des bâtiments nets zéro-énergie » de l’Agence Internationale de l’Energie (AIE) a dès lors compilé les différentes définitions existantes et leurs critiques (AGENCE INTERNATIONALE DE L’ENERGIE (2010). Task 40). Il ressort de cette tâche quatre éléments vis à vis desquels toute définition des NetZEB devrait se positionner.

Premièrement, le niveau de spécification des paramètres de calcul doit être clarifié. L’évaluation doit-elle préciser quelles conditions climatiques intérieures réaliser? Les charges internes doivent-elles être forfaitaires ? Pour quel climat doit se faire l’évaluation ?

Deuxièmement, le type d’indicateur et les règles de pondération entre formes d’énergie doivent être explicités. Si l’énergie primaire est l’indicateur généralement préféré, elle soulève des questions telles que l’évolution dans le temps des coefficients de conversion et la façon de prendre en compte les énergies renouvelables. Les émissions de CO2 sont une alternative possible, tout comme un bilan financier ou exergétique. Ces deux dernières possibilités sont cependant respectivement instables dans le temps et peu compréhensibles par le public.

Troisièmement, le caractère « net » de la définition doit être précisé : quels éléments sont pris en compte et sur quelle période de temps ? L’échelle de temps privilégiée est souvent l’année, ou un multiple d’années. Des divisions temporelles plus fines sont peu populaires car plus contraignantes, mais une tendance existe pour réaliser des évaluations sur le cycle de vie complet du bâtiment. La question du type d’énergie considéré est également importante. A côté de l’énergie nécessaire au maintien du climat intérieur, il n’y a pas de consensus sur la prise en compte des énergies liées à l’occupant ou aux matériaux. Ces deux aspects souffrent d’un manque de précision des méthodes d’évaluation et d’une divergence de point de vue selon l’utilité que l’on donne à la définition des NetZEB. D’un point de vue gestion des réseaux énergétiques, l’énergie grise n’a pas d’impact, mais l’occupation bien. Du point de vue du constructeur, l’inverse est plus vrai. L’importance relative de ces deux aspects est croissante au vu de la diminution des consommations d’énergie liées au maintien des ambiances intérieures. Il existe également un débat relatif aux énergies renouvelables, entre la limitation aux énergies produites sur site et l’intégration de crédits carbones.

Quatrièmement, les conséquences en termes de réseau énergétique sont à considérer. Les approches NetZEB considèrent souvent le réseau comme une forme de stockage infini, ce qui n’est pas la réalité. Des évaluations plus fines sont nécessaires, notamment au niveau de l’utilisation effective de l’énergie délivrée au réseau et des écarts entre les puissances maximales demandées et délivrées, ce qui devrait générer des indicateurs spécifiques à intégrer dans la démarche NetZEB. Ceci doit se faire à la lumière des évolutions que connaîtront les réseaux énergétiques à l’avenir, avec la part croissante d’énergie renouvelable qu’ils devront intégrer.

Cinquièmement, les procédures de monitoring et d’accompagnement doivent être précisées et devraient faire partie intégrante de la définition des NetZEB, pour garantir que les performances visées en conception sont bien rencontrées en pratique.


Un concept pragmatique ?

Aux critiques et limitations présentées ci-dessus, nous pensons utile d’ajouter que la définition des bâtiments zéro-énergie doit avant tout être un outil pratique destiné à guider le concepteur dans ses choix. Il en découle que cette notion doit répondre à trois caractéristiques : (1) la rigueur scientifique indispensable, (2) l’expression d’un niveau d’ambition proportionnel à l’enjeu et (3) le pragmatisme, compris comme sa cohérence avec la pratique de terrain. Le concept NetZEB n’offre pas forcément une réponse optimale à cette triple exigence. Et ce pour deux raisons.

Premièrement, les critiques relevées plus haut ont mis en évidence qu’une limitation aux besoins de chauffage et de refroidissement n’était pas adéquate. Il y a aujourd’hui consensus pour considérer que la notion des NetZEB devrait intégrer les consommations d’énergie liées au maintien des ambiances thermiques, à l’éclairage et aux auxiliaires HVAC, comme le fait la réglementation Q-ZEN. L’intégration de l’énergie grise liée aux matériaux et composants mis en œuvre est souvent mentionnée comme un élément à intégrer. Pour mieux refléter la réalité, l’évaluation devrait également intégrer d’autres consommations telles que l’énergie consommée par le chantier et le processus de conception en tant que tel, ou encore l’impact du projet sur l’énergie dépensée en transports et infrastructures ou son influence éventuelle sur les comportements énergétiques des habitants.

Sans trancher sur la liste des paramètres à intégrer, force est de constater que nous sommes face à une tendance qui pousse à agréger en une seule évaluation une série d’impacts énergétiques différents. D’une part, l’agrégation des différentes consommations rend la valeur finale difficilement compréhensible. Il devient difficile de se représenter concrètement ce qu’elle représente et quel est le poids de chaque mesure de performance énergétique dans le résultat final. D’autre part,il est difficile d’obtenir une valeur réaliste avant d’atteindre un stade d’avancement poussé du projet, vu que des choix préliminaires doivent avoir été faits pour chaque élément intervenant dans le calcul. Or, ce sont souvent les premières étapes qui déterminent la performance énergétique, ainsi que la combinaison de la performance énergétique avec la performance économique. La tendance à l’exhaustivité du calcul énergétique pourrait donc à terme rendre l’évaluation netzéro-énergie inopérante comme guide de conception.

Deuxièmement, la recherche d’un niveau « zéro-énergie » reflète une approche sectorielle de l’impact énergétique des bâtiments. Cette ambition peut être acceptée en tant que projection à l’échelle du secteur d’un équilibre énergétique global de nos sociétés, mais rien n’indique que l’équilibre annuel entre production et consommation soit pertinent à l’échelle d’un projet d’architecture. Au contraire, le niveau net zéro-énergie génère une iniquité flagrante au niveau des projets individuels, notamment entre les sites bénéficiant d’un fort potentiel d’énergies renouvelables et les autres, ou entre les projets permettant une réduction drastique des besoins et ceux qui ne le peuvent du fait de contraintes propres et justifiées (pensons aux questions de patrimoine remarquable, de capacité d’investissement, etc.). Un niveau d’ambition unique ne peut pas être considéré a priori comme applicable partout. Certaines situations de projet nécessiteront de revoir les ambitions à la baisse face aux contraintes techniques, économiques ou patrimoniales, tandis que d’autres permettrons d’aller plus loin que l’équilibre énergétique.


Tous Nets zéro-énergie ?

Bien qu’incontournable aujourd’hui, la notion de bâtiment net zéro-énergie apparait assez éloignée de l’architecture, tant dans ses fondements que dans son ambition. Les critiques qui lui sont faites par la communauté scientifique portent principalement sur la rigueur physique de sa définition, tandis que nous lui voyons un manque de pragmatisme de par sa volonté (louable en soi) d’exhaustivité.

Face à ses limites, il pourrait être intéressant de rouvrir la question du caractère autonome du bâtiment. D’une part il force à contextualiser l’approche, d’autre part il implique des formes de conservation de l’énergie dans le bâtiment et donc la nécessité d’analyses de comportements dynamiques sur base saisonnière et journalière. L’objectif d’autonomie totale pose également différemment la question des formes d’énergie valorisables et nécessite de repenser la notion de confort thermique.

Cette piste n’est à ce jour pas un objectif rationnel à l’échelle collective, notamment d’un point de vue économique. Dès lors, visons le NetZEB, mais de façon critique.

logo plan air, climat, énergie.

En Wallonie, un cap important a été franchi le 19 juillet 2018 avec l’approbation du Plan Wallon Énergie Climat (lié au PNEC 2030 : Plan National Énergie Climat). Ce plan prévoit de définir ce que sera le zéro énergie wallon. Cette définition devrait être d’application à partir de 2025. Dans la suite logique du QZEN (Quasi Zéro ENergies), ces bâtiments porteront l’acronyme ZEN (Zéro ENergies).

 

Bâtiment nearlyZEB ou « Quasi » zéro-énergie et son application en Wallonie (Le Q-ZEN)

Bâtiment nearlyZEB ou « Quasi » zéro-énergie et son application en Wallonie (Le Q-ZEN)
Copyright https://energie.wallonie.be/.

1. Définition d’un bâtiment « quasi » zéro énergies d’après la directive Européenne

Un bâtiment « Quasi » zéro-énergie est « un bâtiment qui a des performances énergétiques très élevées […]. La quantité quasi nulle ou très basse d’énergie requise [pour le chauffage, le refroidissement, l’éclairage, l’eau chaude sanitaire et la ventilation] devrait être couverte dans une très large mesure par de l’énergie produite à partir de sources renouvelables, notamment l’énergie produite à partir de sources renouvelables sur place ou à proximité ». [Directive 2010/31/CE] Ces bâtiments peuvent également se retrouver au sens large sous les acronymes NZEB/NearlyZEB (nearly Zero Energy Building) ou Q-ZEN (Quasi Zéro Énergie) pour son application en réglementation régionale wallonne.

Chaque État-membre est tenu de fixer la définition des bâtiments dont la consommation d’énergie est quasi nulle, qui tient compte des conditions nationales, régionales ou locales.

Voir les exigences Q-ZEN 2019 (bâtiments publics uniquement) & 2021


2. A ne pas confondre !

Les Bâtiments Quasi zéro énergie sont à différencier des immeubles autonomes et des constructions Net Zéro Énergie : NetZEB (Net Zero Energy Buildings) ou Q-ZEN en Wallonie (Quasi Zéro ENergies). Contrairement à ces deux approches, dans le Quasi zéro-énergie, les besoins d’énergie primaire sur le réseau ne sont ni nuls (Bâtiment autonome), ni nécessairement totalement contrebalancés par une forte production d’énergie renouvelable sur place ou à proximité (Net Zéro Énergie). Ici, les besoins en énergie primaire nécessaires au fonctionnement normal du bâtiment sont fortement réduits et, parfois, partiellement contrebalancés par de l’énergie produite à partir de sources renouvelable pour répondre aux exigences variables selon les états-membres et les régions.


3. Le Q-ZEN en Wallonie, dans la continuité

logo QZEN

Si les premiers tâtonnements en termes de règlementations thermiques wallonnes datent de 1985 [Arrêté du 29 février 1984], ce n’est que depuis le début du millénaire que le monde politique prend pleinement conscience de l’importance d’une lutte active pour l’économie d’énergie et contre le changement climatique. C’est ainsi qu’en 2002, l’Europe ratifie le protocole de Kyoto [cop23.unfccc.int] scellant ainsi son engagement à réduire ses émissions de certains gaz à effet de serre.

Dans la foulée, une première directive européenne voit le jour (Directive 2002/91/CE). Elle sera ensuite transposée en décret (2007) et arrêtés (2008, 2009 et 2012) qui furent les premières exigences thermiques issues de directives européennes que nous ayons connus.

Plus récemment, en 2010, la directive a été révisée (directive 2010/31/UE) et trois ans plus tard cette version de la directive a été transposée en droit interne sous la forme d’un décret mis en application l’année suivant via l’arrêté d’application de 2014 modifié en dernier lieu par l’arrêté de 2017.

Pour honorer leurs engagements et respecter les directives européennes, les états membres ont renforcé les exigences en matière de performance énergétique d’années en années. Dans le secteur tertiaire, le niveau K est ainsi soumis à des exigences croissantes depuis 1985 tandis que le niveau Ew l’est depuis 2010 et a fait l’objet d’un renforcement croissant.

Schéma sur l'évolution de la réglementation thermique en wallonie.
Les Umax (coefficient de transmission thermique maximum des parois) sont pour leur part apparus en 1996.

schéma sur les Umax en wallonie.

Dernièrement, en vue de la transposition dans le droit interne de l’article 9 de la Directive européenne de 2010 relative à la performance énergétique des bâtiments, les états membres ont eu pour obligation de faire en sorte qu’au 1ier janvier 2021 tous les nouveaux bâtiments (y compris les bâtiments résidentiels) soient quasi Zéro Énergie. Pour les nouveaux bâtiments occupés et possédés par les pouvoirs publics, cette obligation est déjà valable à partir du 1er janvier 2019 !

schéma sur l'évolution du Q-ZEN en Wallonie.

Le Q-ZEN, se positionne donc dans la continuité des exigences précédentes. L’exigence est à la fois progressiste, réaliste et rationnelle. Les Umax sont conservés, le niveau K et les exigences pour la ventilation également. Le renforcement notable concerne le renforcement des exigences en matière de consommation d’énergie primaire EW (-30%) pour les parties fonctionnelles de bureau et d’enseignement ainsi que pour les bâtiments résidentiels.

Une réduction de – 27% sur le niveau Espec qui ne concerne lui que les bâtiments résidentiels est également à noter.

Vous l’aurez compris : pas de panique ! Le bâtiment Q-ZEN n’est pas nécessairement high-tech ou hors de prix, avec une stratégie passive adaptée et des technologies simples, les exigences pourront déjà être rencontrées.

Plus d’information sur la conception d’un bâtiment Q-ZEN !

Courbe des températures cumulées et visualisation des performances d’un récupérateur

Pour illustrer l’importance des gains énergétiques, il est utile de pouvoir visualiser l’évolution des températures tout au long de l’année. C’est l’intégration de cette évolution des températures qui donne la courbe des fréquences cumulées degrés-heures (D°h), image des besoins en chauffage du bâtiment.

Les degrés-heures représentent la somme cumulée des écarts entre la température extérieure et une température de référence, à chaque heure de la saison de chauffe.

Par exemple pour Uccle et une température de 20°C, c’est l’aire entre l’isotherme 20°C et la courbe de fréquence cumulée des températures extérieures soit 89 248 degrés-heures (Dh).

Courbes représentant la fréquence d’occurrence des températures extérieures, comparée à la température de consigne intérieure.

Le graphe ci-après représente le fonctionnement d’un récupérateur dont le rendement est de 70 %, placé sur de l’air pulsé à 22°C.

Courbe de températures cumulées
illustrant l’énergie économisée par la présence d’un récupérateur
(T° sortie récupérateur = T° ext + ε x (T° int – T° ext), par exemple : 19° = 12° + 0,7 x (22° – 12°)).

Comportement thermique d’un local climatisé

Date : page réalisée sous l’hégémonie Dreamweaver

Auteur : les anciens

Mars 2009 : Thibaud

Notes :

  • antidote appliqué. Thibaud
  • Winmerge : ok – Sylvie
  • Mise en page [liens internes, tdm, en bref !, passage général sur la mise en page de la feuille] – Sylvie

 Pour comprendre l’évolution des températures dans un local climatisé, il est utile de se créer mentalement un modèle de fonctionnement thermique.

Simulation d’un local « aveugle »

Partons d’un exemple simple : un local sans fenêtre, chauffé en journée par des apports internes et refroidi par une ventilation d’air à 16°C.

Hypothèses

  • Le local fait 3,5 x 4 x 2,8  de hauteur, soit un volume de 39 m3.
  • Les apports sont fixés à 600 Watts de 8h00 à 18h00.
  • Une ventilation permanente (jour et nuit) apporte 150 m3 d’air à 16°C, soit un renouvellement horaire de 3,8 (ce qui est plutôt élevé pour un apport de ventilation mais faible pour un apport frigorifique de climatisation). Cela représente un refroidissement de 400 Watts si l’ambiance est à 24°C, ou de 200 Watts si l’ambiance est à 20°C.

Deux types de parois sont étudiées, afin de visualiser l’impact de l’inertie des parois sur la température intérieure.

Variante 1 : local de forte inertie

On considère un sol en béton, des murs en maçonnerie recouverts de plafonnage, un faux plafond en matériau isolant.

La température opérative est la moyenne entre la température de l’air et celle de la surface des parois. Elle correspond à la température ressentie par les occupants. De plus, on peut en déduire l’allure de la température de surface des parois. Ainsi, puisque la température opérative est 0,6°C plus froide que l’air lors de la montée en température, on en déduit que la température de surface des parois est 1,2°C plus froide.

Il est intéressant de visualiser l’allure de la T° de l’air : en période de refroidissement, elle tend à descendre vers les 16°C donnés par l’air neuf, mais cette descente est freinée par les parois qui sont chaudes et qui transfèrent de la chaleur vers l’ambiance. L’air « cale » à 1,2°C de la température moyenne des parois.
Une fois 8h00 du matin, l’équilibre s’inverse : les apports dépassent le refroidissement. Sans inertie, l’air monte brusquement en température jusqu’à ce que ce même écart de 1,2°C apparaisse entre air et paroi, la paroi refroidissant cette fois l’ambiance.
À noter qu’en supprimant le faux plafond et en laissant l’air en contact direct avec le béton, la température maximale atteinte par l’air serait de 23°C, contre 23,5°C ici.

Variante 2 : local de faible inertie

Dans le même volume, on considère cette fois un sol en béton recouvert par 0,5 cm de tapis, des parois légères de 8 cm d’isolant recouvertes de 1,5 cm plafonnage, un faux plafond en matériau isolant.

Les parois ne présentent presque plus de masse thermique. L’air est cette fois « plus libre » de monter ou descendre en fonction des variations de charge et entraîne avec lui les fines parois. La température maximale monte à 25°C, contre 23,5°C dans le cas précédent.

Quel modèle thermique équivalent ?

Pour représenter cette évolution des températures, on peut imaginer le modèle suivant très simplifié :

Les apports sont communiqués à l’air du local; celui-ci échange par convection vers la surface des parois; le cœur de la paroi voit sa température lentement évoluer.
Remarque : en pratique, une part des apports internes est donnée par rayonnement direct vers les parois.
On en déduit une évolution des températures suivantes :

       

Cela correspond assez bien à la réalité lorsque l’apport frigorifique est donné par l’air. Par contre, une climatisation par plafonds froids entraînerait un transfert direct du froid par rayonnement vers les parois et donc une meilleure stabilisation de la température de l’air.

Le cas d’un apport solaire supplémentaire

Les locaux climatisés sont souvent soumis à des apports internes importants par les vitrages. Dans ce cas, le soleil ne chauffe pas l’air, il chauffe d’abord les parois (essentiellement le sol) qui restituent ensuite cette chaleur vers l’air par convection et vers les autres parois par rayonnement.

L’impact de l’inertie des parois est dans ce cas encore amplifié : si la paroi « touchée » par le soleil est absorbante (couleur foncée) et de forte inertie (béton), elle va accumuler la chaleur sans monter en température, et donc limiter le transfert de chaleur par convection vers l’air.
La présence de tapis au sol des bureaux génère donc plus facilement une montée en température de l’air des bureaux ensoleillés… Le mouvement convectif est encouragé par la vitre dont la température monte à … 30°C … par absorption partielle du rayonnement solaire.

Conclusions

  • Les charges sont apportées au local, partiellement par rayonnement, partiellement par convection.
  • Dans tous les cas, l’inertie des parois permet une stabilisation de la température de l’air.
  • Un apport frigorifique par rayonnement (plafonds froids) permet une stabilisation de la température de l’air similaire à celle obtenue par une inertie plus forte.
  • A la limite, un refroidissement du plancher par une circulation d’eau froide dans le plancher permettrait une captation directe des apports solaires… mais le risque d’inconfort aux pieds des occupants est présent…

Apports solaires et effet de serre

Apports solaires et effet de serre

Tout corps transmet de la chaleur par rayonnement au monde qui l’entoure. La longueur d’onde du rayonnement ainsi émis dépend de la température du corps.

Le rayonnement solaire (température du soleil voisine de 6 000°C) est principalement composé de longueurs d’onde courtes, tandis que le rayonnement émis par les corps terrestres (température courante voisine de 20°C) est plutôt à grandes longueurs d’onde.

Schéma principe effet de serre.

L’effet de serre provient de la transparence sélective du verre en fonction de la longueur d’onde du rayonnement. Un vitrage sera transparent pour le rayonnement solaire mais opaque pour le rayonnement en provenance des matériaux du bâtiment.

Ainsi, les rayons du soleil traversent les parois vitrées et échauffent les parois intérieures et les objets du bâtiment. Ces derniers réémettent alors la chaleur accumulée. Leur longueur d’onde étant dénaturée, ces rayons ne peuvent retraverser les parois par lesquelles ils se sont introduits. C’est alors l’escalade des degrés !

Charges thermiques internes pour les commerces

Charges thermiques internes pour les commerces


L’apport des occupants

L’homme apporte chaleur sensible (par notre corps à 37 °C) et chaleur latente (par notre production de vapeur d’eau en respiration et transpiration).

Différentes valeurs sont données dans la littérature. La norme DIN 1946-2 (VDI-Lüftungsregeln) est intéressante dans le sens où, pour une plage de température qui correspond bien aux ambiances de zones de vente, elle donne des valeurs de chaleur sensible et latente et des apports d’eau des personnes pour des activités allant du repos au travail lourd.

DIN 1946-2 : du repos à l’activité légère
Température d’ambiance [°C] Chaleur totale [W] Chaleur sensible [W] Chaleur latente  [W] Apports en eau [g/h]
18 125 100 25 35
21 120 95 25 35
22 120 90 30 40
23 120 85 35 50
24 115 75 40 60
25 115 75 40 60
26 115 70 45 65
DIN 1946-2 : activité légère à soutenue
Température d’ambiance [°C] Chaleur totale [W] Chaleur sensible [W] Chaleur latente  [W] Apports en eau [g/h]
18 190 125 65 95
21 190 115 75 110
22 190 105 85 125
23 190 100 90 135
24 190 95 95 140
25 190 85 100 145
26 190 85 105 150
DIN 1946-2 : activité lourde
Température d’ambiance [°C] Chaleur totale [W] Chaleur sensible [W] Chaleur latente  [W] Apports en eau [g/h]
18 270 155 115 165
21 270 140 130 185
22 270 120 150 215
23 270 115 155 225
24 270 110 160 230
25 270 105 165 240
26 270 95 175 250

En période froide

La personne présente à la caisse, pour une température de 21 °C fournit donc 95 Watts de chaleur gratuite au local. Par ailleurs, elle disperse 35  grammes d’eau dans l’ambiance chaque heure. Dans une certaine mesure, la contribution des apports des personnes dans le magasin peut être intéressante.

Par exemple, si on considère que 100 clients se trouvent présents dans une moyenne surface, on arrive, pour une activité légère (c’est le cas des clients qui se déplacent dans le magasin), à des apports de l’ordre de :

115 [W] x 100  = 11 500  [Watts]

En période chaude

La vapeur d’eau risque d’être condensée, sur la batterie froide du ventilo-convecteur ou sur l’évaporateur des meubles frigorifiques. La chaleur de condensation correspondante devra être comptabilisée dans le bilan thermique de la machine frigorifique. La chaleur de vaporisation/condensation étant de 2 500 kJ/kg environ, la correspondance est donnée pour un client évoluant dans une ambiance de 26 °C par :

(150 [g/h] x 2 500 [J/g] ) / 3 600 [s/h] = 105 [Watts]

En conclusion

  • La présence d’un client apporte 115  Wh, chaque heure, en diminution des besoins de chauffage d’hiver dans un magasin à 21 °C.
  • Le même client (fidélité oblige) augmente de 190 Wh, chaque heure, les besoins de refroidissement d’une zone de vente climatisé par la présence de froid alimentaire, dans un magasin maintenu à 26 °C.

L’apport des équipements par usage

Si la consommation des nouveaux appareils d’éclairage a été fortement réduite ces dernières années, par contre, celle due à la prolifération des équipements par usage a augmenté de manière spectaculaire.

La quantité totale de chaleur libérée par ce type d’équipement est déterminée par l’utilisation/allumage de l’équipement. Les charges moyennes réelles dépendent de la configuration et de l’occupation des zones de vente. Des campagnes de mesure dans certains magasins ont montré la contribution de ces apports internes à l’augmentation des consommations de climatisation ou de froid alimentaire.

La cuisson rapide, par exemple, s’est fortement développée que ce soit dans les commerces de détail comme dans les grandes et les moyennes surfaces.

Les sources l’ADEME en France nous permettent d’interpréter les appels de puissance dues aux appareils se trouvant dans la zone de vente et risquant de perturber le fonctionnement des meubles frigorifiques.

Type d’usage Puissance moyenne des usages du magasin [W]
Four de la boulangerie 20 000
Chambre de pousse de la boulangerie 300
Emballeuse boucherie 330
Etiqueteuse boucherie 15
Photomaton 100
sonorisation 35
Caisse 20
Portique anti-vol 90

Source : ENERTECH, « Diagnostic électrique d’un supermarché de moyenne surface, avril 2001.

Dans cette étude très détaillée, on a tenté de dégager l’impact des apports internes sur le froid alimentaire. Le graphique suivant illustre la démarche :

Profil des consommations en période chaude (source ENERTECH).

Profil des consommations en période froide (source ENERTECH).

  • à l’éclairage ;
  • à l’occupation ;
  • l’ouverture des portes ;
  • les déperditions du bâtiment;

Seule un essai réel dans des conditions identiques en combinant entre eux les différents apports internes permettrait d’identifier la contribution de chacun d’eux. C’est difficilement envisageable dans un commerce en exploitation.

Seule la simulation thermique dynamique peut nous aider.


L’apport de l’éclairage

Puissance spécifique

Pour les zones de vente des commerces, on peut atteindre des valeurs de puissance spécifique de l’ordre de 20 W/m². En effet, les niveaux d’éclairement sont assez élevés et frôlent les 1 000 lux. En effet, les commerçants exigent en général ce niveau d’éclairement pour :

  • réaliser des éclairages d’accentuation;
  • de compenser l’atténuation du niveau d’éclairement dû à la hauteur assez importante des zones de vente.

Éclairage général : de l’ordre de 20  W/m²

Éclairage asymétrique permettant d’éclairer de manière uniforme les rayonnages verticaux. L’éclairage général est tenu à bonne distance des meubles frigorifiques afin d’éviter que la chaleur qu’il dégage n’entre pas en ligne de compte dans le bilan énergétique des frigos. Il faut néanmoins se méfier, car indirectement à travers l’induction du rideau d’air des meubles frigorifiques ouverts (par exemple), les luminaires s’ils sont peu performants peuvent contribuer à réchauffer la température ambiante de la zone de vente et, par conséquent, influencer l’évaporateur des meubles.

Éclairage d’accentuation  : 20 à 50 W/m²

L’éclairage d’accentuation ne fait pas bon ménage avec les meubles frigorifiques pour la simple raison qu’il est en général près ou fait partie intégrante des meubles et communique directement sa chaleur.

Gestion de l’éclairage

Le nombre d’heures d’utilisation de l’éclairage dépend de son mode de gestion.

  • Avec une gestion centralisée de l’éclairage, le nombre d’heures d’utilisation maximum est atteint : l’éclairage est allumé à l’ouverture par les membres du personnel les premiers sur les lieux de travail et éteint en fin de journée par une centrale. On admet que l’éclairage est utilisé minimum 12 heures par jour, 6 jours par semaine et durant 52 semaines.
  • Avec une gestion par zones ou en différentiant l’éclairage de travail et celui de vente, la gestion peut être décomposée en plusieurs paliers de puissance au cours de la journée :
      • les premiers membres du personnel (réapprovisionneur, boucher, boulanger, …) utilisent uniquement l’éclairage de travail;
      • pendant les heures d’ouverture, l’éclairage maximum est allumé

Source : Dapesco (implantation Delhaize Mutsaart).

    • Avec une bonne gestion individualisée ainsi qu’une liaison éclairage naturel, l’éclairage est allumé et éteint en fonction de la lumière naturelle disponible. Le système automatique éteignant l’éclairage est muni d’un retardateur.

Source : IDEA (implantation Sainsbury Greenwich).

Charges thermiques internes pour les bureaux

Charges thermiques internes pour les bureaux


L’apport des occupants

L’humain apporte de la chaleur sensible (par notre corps à 37°C) et de la  chaleur latente (par notre production de vapeur d’eau en respiration et transpiration).

Différentes valeurs sont données dans la littérature. Généralement, les bureaux d’études suivent les valeurs reprises dans la méthode du « Bilan CARRIER », couramment utilisée pour le dimensionnement des installations de conditionnement d’air.

Activité T° intérieure Chaleur sensible Chaleur latente Chaleur totale Apports en eau
Travail de bureau – hiver 21°C 83 W 49 W 132 W 71 g/h
Travail de bureau – été 24°C 71 W 60 W 131 W 86 g/h
Travail de bureau – été 26°C 63 W 69 W 132 W 99 g/h

En hiver, l’occupant d’un bureau à 21°C fournit donc 83 Watts de chaleur gratuite au local. Par ailleurs, il disperse 71 grammes d’eau dans l’atmosphère chaque heure. Ceci ne modifie pratiquement pas la température du local et ne constitue donc pas un apport complémentaire en hiver.

Par contre, en été, cette vapeur d’eau risque d’être condensée, sur la batterie froide du ventilo-convecteur par exemple. La chaleur de condensation correspondante devra être comptabilisée dans le bilan thermique de la machine frigorifique. La chaleur de vaporisation/condensation étant de 2 500 kJ/kg environ, la correspondance est donnée par :

(99 [g/h] x 2 500 [J/g] ) / 3 600 [s/h] = 69 [Watts]

En conclusion

  • La présence d’un homme apporte 83 Wh, chaque heure, en diminution des besoins de chauffage d’hiver dans un bureau à 21°C.
  • Un homme augmente de 132 W, chaque heure, les besoins de refroidissement d’un local climatisé, dans un bureau maintenu à 26°C.
Remarques

1. Ces valeurs sont fort élevées et correspondent au regard d’un fournisseur de matériel frigorifique, soucieux de vaincre les situations les plus critiques. Dans « Le Recknagel », on trouve des valeurs plus modérées, en apport d’eau surtout.

T° intérieure Chaleur sensible Chaleur latente Chaleur totale Apports en eau
20°C 92 W 27 W 121 W 38 g/h
22°C 85 W 33 W 118 W 47 g/h
24°C 77 W 41 W 118 W 58 g/h
26°C 69 W 49 W 118 W 70 g/h

Ces valeurs conviennent mieux pour estimer la consommation d’une installation de chauffage ou de climatisation.

Elles peuvent être utilisées également par le responsable technique d’un bâtiment pour vérifier a posteriori les puissances installées des équipements thermiques, sur base d’un nombre moyen d’occupants correspondant à la réalité.

2. Les valeurs « Carrier » sont valables pour une climatisation par convection. Les occupants augmentent l’échange par évaporation lorsque la température de l’air augmente, pour compenser la perte d’échange par convection.

Dans le cas d’une climatisation avec un plafond froid, une partie de l’échange se fait par rayonnement et cette partie n’est pas fonction de la température ambiante et donc les occupants produisent moins de vapeur.


L’apport des équipements

Si la consommation des nouveaux appareils d’éclairage a été fortement réduite ces dernières années, par contre, celle des équipements informatiques de bureau a augmenté de manière spectaculaire.

La quantité totale de chaleur libérée par l’équipement est déterminée par l’utilisation/allumage de l’équipement. Les charges moyennes réelles dépendent de la configuration et de l’occupation des locaux de bureaux.

Vu la grande influence de l’équipement sur la quantité totale de chaleur libérée, une distinction peut être faite entre une charge d’équipement faible, normale ou élevée.

Appareil Puissance (W)
Unité centrale d’un PC 50 – 60 W
Écrans
Écran noir et blanc – 14 pouces 30 – 40 W
Écran couleurs – 14 pouces 50 – 70 W
Écran couleurs – 15 pouces 60 – 90 W
Écran couleurs – 17 pouces 70 – 100 W
Écran couleurs – 21 pouces 110 – 160 W
Imprimantes
Iimprimante à jet d’encre 20 – 60 W (puissance en attente : 10 W)
Imprimante laser 150 – 250 W (puissance en attente : 70 W)
Fax
Fax thermique 0.3 – 0.7 Wh / page A4 (en attente 5 – 10 W)
Fax laser 1.4 – 2.6 Wh / page A4 (en attente 60 – 70 W)
Fax jet d’encre 0.3 Wh / page A4 (en attente 4 W)
Photocopieurs
Photocopieuse 20 pages / minute 1 000 W (en attente 150 W)
Photocopieuse 40 pages / minute 1 500 W (en attente 350 W)

L’apport de l’éclairage

Pour les immeubles de bureaux, il y a 5 principaux systèmes d’éclairage à considérer. En voici les puissances installées dans une réalisation récente.

Éclairage général : 12 – 14 W/m²
Éclairage uniforme via des luminaires encastrés dans le plafond. La reprise d’air par les luminaires permet de diminuer la charge interne.

Éclairage général par zone : 10 – 12 W/m² (on peut aujourd’hui descendre jusqu’à 6-9 W/m²) 
Éclairage via des luminaires encastrés dans le plafond, certaines zones de la pièce ont un éclairage plus faible. La reprise d’air par les luminaires permet de diminuer la charge interne.

Éclairage de base et éclairage du plan de travail : 10 W/m²
Un éclairage de base (niveau de lumière relativement bas) via des luminaires encastrés dans le plafond complété par des lampes de bureau. La reprise d’air par les luminaires permet de diminuer la charge interne.

Éclairage ponctuel uniquement : 8 – 12 W/m²
Luminaires au-dessus des plans de travail et fixés à un niveau inférieur à celui du plafond de sorte qu’une partie de la lumière est rayonnée vers le haut. La reprise d’air par les luminaires est impossible.

Éclairage indirect : 20 – 25 W/m²
La lumière est réfléchie sur le plafond. La reprise d’air par les luminaires est impossible.

Le nombre d’heures d’utilisation de l’éclairage dépend de son mode de gestion.

Avec une gestion centralisée de l’éclairage, le nombre d’heures d’utilisation maximum est atteint : l’éclairage est allumé en début de journée de travail et éteint en fin de journée par une centrale. On admet que l’éclairage est utilisé 10 heures par jour, 5 jours par semaine et durant 52 semaines.

Avec une gestion individualisée, l’éclairage est allumé en début de journée de travail et éteint en fin de journée par une centrale. Lors des pauses, l’éclairage est coupé par la centrale. En outre, un interrupteur manuel individuel est disponible pour chaque utilisateur.

Avec une bonne gestion individualisée ainsi qu’une liaison éclairage naturel, l’éclairage est allumé et éteint en fonction de la lumière naturelle disponible. Le système automatique éteignant l’éclairage est muni d’un retardateur.


Apports internes d’un local de bureau

Pour fixer des ordres de grandeur, on adopte parfois les valeurs moyennes suivantes pour définir les charges internes d’un bureau :

Local sans ordinateur

apports internes faibles 20 W/m²
(= occupant + éclairage)

Local avec ordinateur

apports internes moyens 30 W/m²
(= occupant + éclairage + PC)

Local avec ordinateur et imprimante

apports internes élevés 40 W/m²
(= occupant + éclairage + PC + imprimante)

Ces valeurs ne sont pas normalisées et pourtant elles influencent fortement le bilan énergétique du local et le dimensionnement des appareils.

 

Evolution des besoins thermiques des immeubles suite à l’isolation des parois

Evolution des besoins thermiques des immeubles suite à l'isolation des parois


Transfert thermique par les parois extérieures

Prenons l’exemple d’un local de bureau de 30 m² sur 3 m de hauteur, soit un volume de 90 m³.

Supposons qu’il soit entouré d’autres locaux régulés à la même température (bureaux voisins, couloirs, …), si bien que seule la paroi en façade est source d’échanges thermiques.

Cette paroi est constituée de 7,5 m² de vitrage et de 6 m² d’allège.

Il y a 30 ans on aurait placé du simple vitrage (U = 6 W/m²K) et une allège non isolée (U = 1,5 W/m²K). Une ventilation de 1 renouvellement horaire serait assurée, essentiellement par infiltrations non maîtrisables. Il en résulte les puissances suivantes

  • pertes par paroi : (7,5 x 6 + 6 x 1,5) = 54 [W/K]
  • pertes par ventilation : (0,34 Wh/m³K x 90 m³) = 31 [W/K]

Soit un total de 85 Watts par degré d’écart entre extérieur et intérieur.

Quelle doit être la température intérieure à considérer ? On peut partir d’une zone neutre de confort entre 21°C (hiver) et 24°C (été), et donc d’une température moyenne intérieure d’hiver de 18°C (moyenne jour/nuit/week-end). On obtient alors le profil d’échange suivant en fonction de la température extérieure :

Supposons à présent que la paroi soit isolée : double vitrage à basse émissivité (U = 1 W/m²K) et allège avec 6 cm de laine minérale (U = 0,24 W/m²K). Il en résulte les puissances suivantes

  • pertes par paroi : (7,5 x 1,5 + 6 x 0,53) = 14 [W/K]
  • pertes par ventilation : (0,34 Wh/m³K x 90 m³) = 31 [W/K]

Soit un total de + 40 Watts par degré d’écart entre extérieur et intérieur. La température intérieure moyenne en période de chauffe est réévaluée à 19°C (avec la nouvelle isolation, les nuits et les week-ends seront moins frais entrainant une augmentation de la température moyenne). Le profil d’échange est adapté :

Cette fois, les infiltrations par les châssis sont négligeables et le taux horaire de renouvellement d’air de 1 correspond au débit d’air neuf pulsé mécaniquement dans les locaux de manière volontaire et contrôlée. Ce qui sous-entend que ce débit peut être arrêté la nuit et le WE, soit les 2/3 du temps.

Conclusions

Suite à l’isolation, les besoins de chauffage et de froid sont réduits. L’enveloppe freine davantage le transfert de chaleur quel que soit le sens de passage. Le besoin de refroidissement du local en été est donc, à première vue, diminué par l’isolation de la paroi ! (mais ce n’est qu’un regard partiel puisque l’on ne prend pas ici en compte l’effet des charges internes et solaires).

À noter que les besoins liés à la ventilation représentent les 3/4 des besoins totaux et qu’ils sont contrôlables.


Influence des apports internes

Les apports internes doivent être introduits dans le bilan.

Dans les bureaux non-isolés

Autrefois, on comptait 30 W/m², soit 10 W/m² pour les personnes et 20 W/m² pour l’éclairage. Quelle que soit la température extérieure, c’est un apport fixe de 900 W qui est donné au local.

Cet apport doit être diminué dans la mesure où ils apparaissent chaque jour durant les 10 heures de fonctionnement des bureaux, soit 1/3 du temps de la semaine. Les besoins thermiques sont eux proportionnels à la température moyenne intérieure, maintenue en permanence.

Ainsi, les apports internes représentent une puissance moyenne permanente de 900 x 1/3 = 300 Watts. Ce nouvel apport décale le profil de demande de -3,5 °C.

Le point d’équilibre est atteint pour une température extérieure de 14,5°C : les apports compensent les besoins de chaleur. Les besoins de froid sont augmentés : dès que la température extérieure dépassera les 20,5 °C, une puissance de réfrigération sera nécessaire pour assurer le confort des occupants.

Dans les bureaux actuels isolés avec 14 cm de laine minérale

Pour un bâtiment actuel, les apports internes sont similaires dans un local de bureaux : si 10 W/m² supplémentaires de bureautique sont apparus, la nouvelle performance des systèmes d’éclairage a permis une diminution de 10 W/m².

À noter que dans les anciens bureaux, l’arrivée de la bureautique a entraîné un réel accroissement de la charge.

Le nouveau profil de charge apparaît, avec un point d’équilibre ramené à 11,52 °C :e

19 °C – (300 W/(40 W/K)) ≈ 11,5 °C

Conclusion

La puissance frigorifique maximale n’est pas plus élevée que dans les anciens bâtiments; elle commence cependant plus tôt dans la saison.


Influence des apports solaires

Des apports solaires élevés vont s’ajouter à la charge thermique du local.

Imaginons que le bureau soit situé en façade Ouest.

Comment estimer l’importance des apports solaires en fonction de la température extérieure ?

Un lien partiel existe. On l’évaluera en première approximation par le fait que :

  • 3 kWh d’énergie solaire atteignent, en moyenne, chaque m² de façade Ouest par journée, pour un ciel moyen de juin, soit pour une température extérieure moyenne de 16 °C.
  • 0,36 kWh d’énergie solaire atteignent, en moyenne, chaque m² de façade Ouest durant une journée de décembre, que l’on pourra faire correspondre à T° extérieure de l’ordre de 0° (en fait, par ciel serein l’apport solaire est élevé mais la température est plus faible).
  • 4,8 kWh sont reçus par m2 de façade Ouest, par jour, par ciel serein au mois de juin, et donc pour des températures maximales proches de 30°C.

Pour connaître les apports solaires reçus par le bureau, multiplions ces valeurs par les 7,5 m2 de vitrages, affectons ces montants d’un coefficient 0,6 pour tenir compte du facteur solaire du double vitrage et de la présence du châssis, et divisons cette énergie par 24 h pour obtenir une puissance moyenne effective.

Il en résulte un apport de 900 Watts aux températures maximales (30°C), de 560 Watts à 16°C et de 70 Watts à 0°C. Apport qu’il faut additionner à la courbe qui traduit le bilan thermique du local :

Bilan pour les immeubles non isolés

On constate que la température d’équilibre est descendue à 12 °C. Ceci signifie qu’avec 12 °C à l’extérieur, les apports internes et externes suffisent à assurer une température confortable de 21°C à l’intérieur. De plus, au-delà de 15 °C extérieur, en raison des divers apports, la température intérieure dépasse 24 °C et un besoin de rafraîchissement apparaît.

Bilan pour les immeubles isolés

Cette fois, le chauffage s’arrête pour 7°C extérieur et le rafraîchissement est souhaité à partir de 10°C extérieur.

Remarque : cette évaluation est simplifiée puisque le lien entre température extérieure et puissance solaire est évalué grossièrement et de plus, la présence de soleil fait monter la température extérieure des parois, ce qui entraîne une augmentation du transfert thermique au travers de la paroi.


Conclusions sur les conséquences de l’isolation des parois

La comparaison des deux courbes de puissance montre que la puissance de refroidissement souhaité n’a pas été augmentée par l’isolation des parois (elle a même plutôt légèrement diminué aux fortes températures).

Mais le profil de la demande de puissance est très différent : il faut refroidir de plus en plus tôt dans l’année.

L’énergie de refroidissement (produit de la puissance par le temps de la demande) va dès lors augmenter. Pour le visualiser, il faut mettre en regard la courbe des puissances et la courbe de l’évolution des températures en fonction du temps de l’année :

On constate que la température extérieure est située entre 12 et 18°C durant de nombreuses heures de l’année. Autrefois, à ces températures la puissance du local était nulle ou faible. Aujourd’hui, une demande de refroidissement est bel et bien présente à ces températures…

Voici l’évolution de la demande annuelle du local par tranche de températures extérieures :

Attention : dans l’absolu les besoins de chauffage ne baissent pas en deçà de 0 degrés pour devenir nuls vers -15 °C; simplement, le nombre d’heures/an rencontrant ces situations extrêmes étant très réduit, la consommation annuelle (puissance x durée) à ces températures, est réduite. Le même raisonnement explique la tendance au-delà de 18 °C.

La demande énergétique totale est en baisse de 20 % ;L’énergie de refroidissement est donc en hausse après isolation. Mais pas de regrets et pas de marche arrière !

  • La demande de chauffage s’est effondrée de 75 %.

Comment comprendre que les besoins soient nuls sur une large plage (7 °C à 10 °C ? Le bâtiment est à l’équilibre thermique et la température intérieure oscille dans « la zone neutre » entre 21 et 24 °C.

Cependant, la demande en énergie de refroidissement a dramatiquement progressé de + 95 % ! Dramatiquement, vraiment ? Nous sommes tout de même passés de 1 200 kWh/an à 2 350 kWh/an…

En réalité cette valeur est à nuancer. Rappelez-vous qu’elle exprime l’énergie nécessaire au refroidissement d’un local fermé, peu aéré, sans protections solaires…

Nous pouvons aussi observer que l’augmentation des besoins de refroidissement suite à l’isolation du local a principalement lieu pour des températures extérieures comprises entre 10 °C et 21 °C. À ces températures, l’air frais extérieur pourra-t-être mis à profit pour refroidir l’ambiance gratuitement (les besoins de froids qui concernent des températures supérieures à 21 °C ne représentent que 20 à 30 % des besoins de froids).

Vous l’aurez compris, isoler permet une réduction de la consommation d’énergie de chauffage très importante avec pour revers d’augmenter les besoins de froids. Il faudra donc entreprendre des stratégies adaptées à ce nouveau profil pour en tirer tous ses avantages :

  1. Autrefois, le chauffage constituait le principal poste énergivore, mais à présent, un équilibre est plus souvent atteint et il faut pouvoir faire face à une demande de chaud et une demande de froid lors des températures extrêmes. Par exemple, la simple présence de protections solaires extérieures peut fortement limiter les besoins de refroidissement.
  2. Le diagramme des puissances met en évidence que la demande de froid se fait souvent au moment où la température extérieure est bien inférieure à la température de consigne intérieure, ce qui, théoriquement, permet de mettre en place une technique de free cooling diurne.
  3. Suite à cette évolution des besoins, il y a de plus en plus souvent des besoins de réfrigération dans certains locaux alors que d’autres locaux sont encore en demande de chauffage. Par exemple, dans un immeuble bien isolé comportant deux façades Est-Ouest, il est probable qu’en mi-saison vers 10h00, la façade Est est en demande de refroidissement alors que la façade Ouest demande encore de la chaleur. Le système de climatisation devra pouvoir répondre à cette évolution.
  4. Également, ce que le diagramme ne montre pas, c’est le cycle de température jour/nuit qui permet d’évacuer la chaleur accumulée en journée, par de l’air nocturne plus frais : c’est le free cooling nocturne. Ceci pour autant que le local puisse jouer le rôle de réservoir tampon, et donc qu’il dispose d’une inertie suffisante.
  5. Pour finir, nous pouvons observer sur le schéma ci-dessous que la période de besoin de refroidissement  coïncide avec la disponibilité en énergie solaire la plus forte. Ainsi, l’installation de panneaux photovoltaïques pourrait s’avérer être une stratégie judicieuse [notamment dans le cadre d’un objectif QZEN] profitant de la concordance entre la période de disponibilité d’une énergie renouvelable (le photovoltaïque solaire) et la période de besoin de cette énergie pour le refroidissement.

Si cela se vérifie à l’échelle d’une année, il en va de même à l’échelle de la journée.