Évaluer la rentabilité d’une rénovation [ventilation]

Évaluer la rentabilité d'une rénovation


Rentabilité du confort

Il est difficile de calculer la rentabilité d’un investissement ayant pour but de rétablir le confort des occupants. On sait cependant que confort et productivité sont liés. Si on ne regarde que l’aspect financier du confort, on peut « se risquer » au calcul suivant

  • Un service administratif est occupé par 60 personnes.
  • On estime que la mauvaise qualité de l’air entraîne, par jour, une perte de « productivité » équivalente à 5 minutes.
  • Un employé administratif coûte en moyenne 25 €/h.
  • L’inconfort coûte donc annuellement : 60 [pers] x 220 [jours/an] x 5/60 [h/jour] x 25 [€/h] = 27 500 [€/an].
  • Si on se fixe un temps de retour de 5 ans, on peut se permettre un investissement de 137 500 € pour solutionner l’inconfort.

Évaluation de la rénovation d’une installation de ventilation existante

Exemple.

Considérons un bureau paysager de 250 m². Ce bureau est ventilé 10 h par jour, 250 jours/an par un système double flux (pulsion et extraction mécanique).

Le débit d’air neuf recommandé du local est de 2,5 m³/h.m², soit 625 m³/h.

La consommation d’énergie nécessaire au chauffage de cet air durant la saison de chauffe (du 15 septembre au 15 mai) est estimée à :

0,34 [Wh/m³.K] x 625 [m³/h] x (20[°C] – 8[°C]) x 1 700 [h/an] / 0,7 = 6 193 [kWh/an]

  • 20[°C] = température de consigne intérieure.
  • 8[°C] = température extérieure moyenne diurne durant la saison de chauffe (Uccle).
  • 1 700 [h/an] = durée de fonctionnement de la ventilation durant la saison de chauffe.

La consommation électrique des ventilateurs dépend du rendement global du système « moteur, transmission, ventilateur » et des pertes de charge du circuit de distribution de l’air (pulsion et extraction). Celles-ci varient en fonction de la configuration du réseau. Prenons dans un premier temps une valeur moyenne couramment rencontrée de 1 500 Pa (1 000 Pa pour la pulsion et 500 Pa pour l’extraction).

La consommation énergétique des ventilateurs est de :

0,174 [m³/s] x 1500 [Pa]  x 2500 [h/an] / 0,65 =  1 004 [kWh/an]

  • 0.174 m³/s] = 625 [m³/h].
  • 0,65 = rendement global des systèmes « moteur, transmission, ventilateur ».
  • 2 500 [h/an] = durée de fonctionnement annuelle des ventilateurs.
Récapitulatif
Chauffage de l’air Transport de l’air
Consommation annuelle. 6 193 kWh/an 1 004 kWh/an
% consommation totale. 86 % 14 %
Coût de l’énergie. 0,0622 €/kWh 0,16 €/kWh
Coût annuel. 385,20 €/an 160,64 €/an
% coût total. 71 % 29 %

Par rapport à cette situation, qu’apporteraient certaines améliorations ?

Diminution de la consommation Diminution du coût
Diminution du débit de ventilation de 10 %. 12 % * 16 %
Amélioration du rendement du système de ventilation de 10 %. 2 % 5 %
Réduction du temps de fonctionnement de 10 %. 10 % 10 %

*Lorsque le débit diminue dans le réseau de distribution, les pertes de charge diminuent comme le carré de celui-ci (règles de similitude).

Ces calculs rapides peuvent être affinés puisqu’ils ne tiennent pas compte du fait qu’une partie de la consommation du ventilateur de pulsion est souvent récupérée sous forme de chaleur dans l’air neuf.

Vous pouvez adapter ces données à votre propre situation et estimer l’investissement maximum permis pour garantir la rentabilité financière d’un projet de rénovation :

Calculs

Pour estimer l’investissement maximum permis

Évaluer la consommation de la ventilation

Évaluer la consommation de la ventilation


Répartition des coûts d’une ventilation

Les consommations liées à la ventilation hygiénique proviennent:

  • de la consommation électrique du (des) ventilateur(s) éventuel(s),
  • du chauffage de l’air neuf qui est porté à la température ambiante avant d’être évacué chaud vers l’extérieur.

 Ordres de puissances

Puissance liée à l’apport d’1 [m³/h] d’air neuf en [W/(m³/h)]
de à
Puissance de chauffage Pmax : en fonction de la région, de la qualité de la production de chaleur, de la température intérieure de consigne et des apports de chaleur gratuits.
9,4 15,6
Pmoy :
3,8 9,6
Puissance du ventilateur 0,2 1,1 en fonction de la qualité du ventilateur, des pertes de charge du réseau de distribution. Dans le cas d’une ventilation double flux, le coût des ventilateurs est plus important. Dans le cas d’une ventilation purement naturelle, elle est évidemment nulle.
Exemple.

Un système de ventilation fonctionne pendant 10 heures par jour et 250 jours par an, soit 2 500 heures par an, dont 1 700 en période de chauffe. Sa consommation énergétique pour 1 [m³/h] se situe dans les fourchettes suivantes :

Consommation de … à …
Chauffage 3,8 x 1 700 = 6,5 [kWh/an] 9,6 x 1 700 = 16,3 [kWh/an]
Ventilateurs 0,2 x 2 500 = 0,5 [kWh/an] 1,1 x 2 500 = 2,8 [kWh/an]
Totale 7 [kWh/an] 19,1 [kWh/an]

Le coût lié à cette consommation est donné en multipliant ces valeurs par un coût du kWh électrique et un coût du kWh thermique.

La puissance du ventilateur équivaut à la puissance nécessaire au transport de l’air plus les pertes au niveau du moteur, de la transmission et du ventilateur lui-même. Si ces trois éléments se trouvent dans le flux d’air pulsé, ce qui est fréquent dans les monoblocs de ventilation, on peut considérer que la totalité de la puissance absorbée pour transporter l’air se retrouve sous forme de chaleur dans l’air (la consommation d’un ventilateur d’extraction est perdue).

On estime ainsi que la température de l’air pulsé augmente de 1 à 1,5 [°C], à cause du ventilateur.

La consommation d’un ventilateur de pulsion ne doit donc pas être considérée comme une consommation complémentaire pour peu que l’on doive chauffer le bâtiment. En dehors des périodes de chauffe et a fortiori si on doit refroidir l’air, cette consommation est une perte.

À titre d’exemple, dans une année type moyenne, la température extérieure diurne est inférieure à 18,5 [°C] (= 20 [°C] – 1,5 [°C]) pendant 3 123 heures, période pendant laquelle les apports calorifiques du ventilateur sont utiles au chauffage de l’air neuf.

Il faut cependant noter que les apports calorifiques du ventilateur de pulsion doivent être considérés comme du chauffage électrique, mode de chauffage nettement plus onéreux et nécessitant une consommation d’énergie primaire plus importante que le chauffage par combustible. À ce titre, la consommation des ventilateurs de pulsion reste un poste important à gérer, même durant la saison de chauffe du bâtiment.


Consommation de combustible

Que l’air soit préchauffé avant son introduction dans le bâtiment (batterie de chauffage dans les gaines de pulsion) ou ne le soit pas (chauffage de l’air par mélange avec l’air ambiant), la consommation liée au chauffage de l’air neuf s’estime par la formule :

Consch = 0,34 x qx ΔTmoy x h / ηch

Où :

  • Consch = consommation énergétique pour le chauffage de l’air neuf [Wh/an]
  • 0,34 = capacité calorifique de l’air [Wh/m³.K]
  • qv = débit d’air neuf [m³/h]
  • ΔTmoy = différence entre la température de consigne de l’ambiance et la température extérieure moyenne [°C]
  • h = nombre d’heures de fonctionnement annuel [h/an]
  • ηch = rendement moyen saisonnier de l’installation de chauffage
Exemple.

Dans un bâtiment situé à Namur, un système de ventilation a un débit (qv) d’air neuf de 3 000 [m³/h].

Il fonctionne durant une période (t) de 10 heures par jour et 250 jours par an, soit 2 500 heures par an, parmi ces heures, seulement 1 700 heures se situent durant la saison de chauffe (du 15 septembre au 15 mai).

La température extérieure moyenne diurne durant la saison de chauffe est de 8,5°C, tandis que la température de consigne des locaux est de 20°C.

Le rendement global de l’installation de chauffage par radiateurs (ηch) est estimé à 0,7.

La consommation de chauffage de l’air neuf (Consél) s’élève à :

Consél = 0,34 x 3 000 x (20 – 8,5) x 1 700 / 0,7 =
28 487 143 [Wh/an] ou 28 487 [kWh/an]


Consommation d’électricité

Dans les systèmes de ventilation mécanique (simple ou double flux), la consommation électrique du (des) ventilateur(s) s’estime par :

Consél = (q/ 3 600) x Δp x t / ηvent

où,

  • Consél = consommation énergétique du transport de l’air [Wh/an]
  • qv = débit d’air neuf  [m³/h]
  • 3 600 = 3 600 secondes par heure [s/h]
  • Δp = perte de charge (pulsion + extraction) [pa]
  • t = durée de fonctionnement [h/an]
  • ηvent= rendement total du système de ventilation (moyenne entre pulsion et extraction).
Exemple.

Un système de ventilation double flux a un débit (qv) de 3 000 [m³/h], soit 3 000 / 3 600 = 0,833 [m³/s].

Il fonctionne durant une période (t) de 10 heures par jour et 250 jours par an, soit 2 500 heures par an.

La perte de charge (Δp) du réseau de distribution s’élève à 1 500 Pa (1 000 Pa pour le réseau de pulsion et 500 PA pour le réseau d’extraction).

Le rendement global des ventilateurs (ηvent) est de 0,65.

La consommation énergétique des ventilateurs (Consél) s’élève à :

Consél = 0,833 x 1 500 x 2 500 / 0,65 =
4 807 692 [Wh/an] ou 4 807 [kWh/an]

Attention, toute cette consommation ne doit pas toujours être considérée comme une perte car une partie de celle-ci est récupérée sous forme de chaleur par l’air neuf.


Paramètres de variation

Par rapport à cette situation, comment varient les consommations ?

En fonction du débit ?
La puissance des ventilateurs varie comme le cube du débit et les coûts de chauffage sont proportionnels : pour une augmentation 10 % du débit par rapport à la situation de l’exemple, on obtient une surconsommation totale de 11 % et un surcoût de 20 %.
En fonction du rendement du système de ventilation ?
Pour une diminution de 10 % du rendement du système de ventilation, on obtient une surconsommation totale de 1 % et un surcoût de 5 %.
En fonction du temps de fonctionnement ?
Pour une augmentation de 10 % des temps de fonctionnement journaliers, on obtient une surconsommation totale de 10 % et un surcoût de 10 %.

Au vu de ces ordres de grandeur, on peut établir un ordre d’action sur une installation de ventilation existante

  1. Adapter les débits d’air aux besoins pour limiter les frais de chauffage.
  2. Améliorer l’efficacité énergétique des équipements pour fournir les débits demandés avec une consommation minimum.

Calculs

Pour évaluer la consommation de votre propre installation.

Évaluer l’absence de courant d’air

Évaluer l'absence de courant d'air


Valeurs recommandées

La norme européenne NBN EN 13779 (2007) et l’annexe C3 de la PEB

Ces normes proposent une plage de variation de vitesse avec une valeur par défaut en fonction de la température intérieure.

Paramètres

Situation

Plage type

Valeur par défaut

Vitesse de l’air [m/s]
Température d’air locale = 20°C
0,1 à 0,16
< 0,13
Température d’air locale = 21°C
0,1 à 0,17
< 0,14
Température d’air locale = 22°C
0,11 à 0,18
< 0,15
Température d’air locale = 24°C
0,13 à 0,21
< 0,17
Température d’air locale = 26°C
0,15 à 0,25
< 0,20

Un mouvement d’air n’est en moyenne ressenti par une personne que si sa vitesse est supérieure à 0,2 m/s : à ce moment, il est considéré comme un courant d’air.

Exemple.

Température optimale de l’air nécessaire dans la zone d’occupation d’un bureau pour garantir le confort en fonction de la vitesse de l’air (température des parois = 19°C)
0,15 m/s 21°C
0,4 m/s 23°C
1 m/s 25°C
Pourcentage probable de personnes ressentant un inconfort en fonction de la vitesse de l’air (température de l’air = 19°C)
0,15 m/s 6 %
0,4 m/s 12 %
1 m/s 25 %

Comment évaluer sa situation ?

Il est très difficile de mesurer les vitesses d’air dans des locaux. L’évaluation de l’inconfort lié aux courants d’air est donc purement qualitative. Pour se faire une opinion, il faut interroger les occupants, s’asseoir dans leur position de travail, … Un truc cependant, si en plaçant la main à 20 cm de l’ouverture incriminée, aucun mouvement d’air n’est ressenti, on peut considérer qu’il n’y a pas de problème de courant d’air.

Voici quelques situations pouvant poser problème :

Courants d’air dus aux infiltrations

Les courants d’air se font principalement ressentir au niveau des joints de fenêtre et de porte. Un cas typique conduisant à l’établissement d’un courant d’air est celui où une série de portes non étanches sépare un local donnant sur une façade en surpression et un local donnant sur une façade en dépression : c’est le cas habituel d’un plateau de bureaux séparés par un couloir central. Cet effet de courant d’air se fait d’autant plus ressentir que le radiateur placé devant la fenêtre ne couvre pas toute la largeur de celle-ci et ne compense pas l’infiltration d’air froid.

Le même phénomène se présente lorsqu’il y a des portes donnant sur l’extérieur et non protégées par un sas.

Des courants d’air peuvent aussi apparaître pour les bureaux situés aux étages inférieurs d’une tour lorsqu’il y a possibilité d’un mouvement ascensionnel de l’air chaud, par exemple, via une cage d’escalier ouverte sur plusieurs niveaux.

Tous ces mouvements d’air inconfortables sont facilement détectables avec la main. On peut aussi les mesurer objectivement grâce à un anémomètre à fil chaud.

Courants d’air dus au système de ventilation

Grilles placées trop bas

Schéma grilles placées trop bas.

Lorsque les grilles de ventilation en contact avec l’extérieur sont placées à hauteur d’homme, il peut y avoir des sensations de courant d’air. Par contre, ce ne sera sûrement pas le cas si les grilles sont situées à 1,8 m de haut (en partie supérieure des châssis plutôt que dans le bas).

Débits d’air pulsé importants

Si la ventilation est de type purement hygiénique, c’est-à-dire que l’air ne sert pas aussi à la climatisation, les débits pulsés mécaniquement dans les locaux ne sont généralement pas suffisants pour être ressentis par les occupants.
Cependant, ces débits peuvent augmenter dans des locaux à forte concentration comme les auditoires, les salles de réunion,…

Dans ce cas, le débit pulsé par bouche risque d’entraîner des vitesses d’air trop élevées. C’est un problème de choix des bouches. Le placement de bouches hélicoïdales permet un meilleur brassage de l’air avec des vitesses moindres.

Débits d’air pulsé trop faibles

Schéma débits d'air pulsé trop faibles.

Lorsque l’air pulsé sert aussi à la climatisation, la vitesse de l’air à la sortie des diffuseurs plafonniers doit avoir une valeur minimum d’environ 2 m/s. Si ce n’est pas le cas, l’air ne profitera pas de l’effet Coanda et chutera verticalement, provoquant un courant d’air.

Ici aussi le problème est lié à un mauvais choix de bouches. Paradoxalement, les bouches ont été choisies trop grandes, c’est-à-dire que leur vitesse de sortie est trop faible. Le courant d’air se fera ressentir sous la bouche.

Plafonniers trop rapprochés

Schéma plafonniers trop rapprochés.

Lorsque des diffuseurs plafonniers sont placés côte à côte, le flux d’air de chacun se rencontrant, le jet d’air résultant est propulsé vers le sol. Si les bouches sont trop rapprochées, la vitesse de ce jet risque d’être trop importante dans la zone d’occupation. Le courant d’air se fera ressentir entre les bouches.

Plafond trop bas

Un plafond bas (2,4 m) demande des bouches à forte induction (plafonnier hélicoïdal) pour lesquelles l’air se mélange très vite avec l’air ambiant. Dans le cas contraire, la vitesse de l’air pulsé risque d’être trop importante dans la zone d’occupation.

Absence de préchauffage

La sensation de courant d’air est aussi liée à la température de l’air pulsé. Pour les débits d’air importants, un défaut de préchauffage de l’air neuf peut donc être inconfortable. La température critique d’inconfort est évidemment liée à la vitesse et à le direction du jet d’air.

Évaluer l’efficacité du réseau de distribution

Évaluer l'efficacité du réseau de distribution


Qualité générale de l’installation

Pour évaluer l’efficacité générale d’un système de ventilation, plusieurs paramètres du réseau peuvent être observés :

  • L’adéquation des débits en fonction des besoins,
  • Les pertes de charges du système,
  • L’étanchéité à l’air des conduits,
  • Le rendement du ou des ventilateur(s).

Ce sont donc ces paramètres qui vont influencer la consommation finale des ventilateurs. Mais la consommation des ventilateurs par m³/h transporté peut être très différente d’un ventilateur à un autre. Voici une classification qualitative des systèmes de ventilation en fonction de leur consommation (source : Swedish Indoor Climate institute).

Puissance d’un ventilateur par m³/h transporté

Efficacité énergétique

0 < puissance < 0,4 W/(m³/h) bonne
0,4 < puissance < 0,7 W/(m³/h) moyenne
0,7 < puissance < 1,1 W/(m³/h) mauvaise

Inversément, on peut situer la consommation des ventilateurs existants dans ce tableau pour évaluer la qualité énergétique générale de l’installation, c’est-à-dire la qualité du groupe et du réseau de distribution.

L’évaluation de l’efficacité générale du système de ventilation passe donc par plusieurs mesures :

Mesure de la consommation

La mesure de la consommation électrique du ventilateur peut s’effectuer grâce à un compteur électrique classique ou grâce à une pince ampèremétrique.

Compteur électrique intégré dans le tableau électrique.

La puissance moyenne délivrée s’obtient en divisant la consommation électrique mesurée sur une période représentative du fonctionnement normal par la durée de la mesure.

Attention, lorsque la mesure est effectuée via une pince ampèremétrique, cela nécessite le relevé sur la plaque signalétique, du cos φ de l’installation.

Mesure des débits

La mesure du débit pulsé par le ventilateur est effectuée grâce à un anémomètre dans le conduit de pulsion ou encore grâce au manomètre différentiel équipant les filtres.

Mesure de débit dans une gaine.

Mesure des pertes de charge

Il est également possible de répartir les pertes liées au réseau de distribution en mesurant la répartition des pressions au niveau des groupes de pulsion ou d’extraction. Il en ressort souvent que plus de 50 % de l’énergie du groupe sont créés par les pertes de l’ensemble moteurtransmissionventilateur.

Points de mesure de pression nécessaires à la détermination des pertes du système

Objectifs de qualité

On peut aussi se fixer des objectifs de qualité pour réduire les consommations liées à la distribution, comme le font les Suisses dans les exigences SIA (Société suisse des ingénieurs et architectes)  :

Exigences selon SIA V382/3 de base accrues
Pertes de charge totales maximum (pulsion et extraction) < 1 200 Pa < 900 Pa

Débit d’air neuf maximum

Fumeurs < 70 m³/h/pers < 50 m³/h/pers
Non fumeurs < 30 m³/h/pers < 25 m³/h/pers

Rendement global minimum au point de fonctionnement :

15 000 m³/h > 65 % > 70 %
10 000 m³/h > 60 % > 65 %
5 000 m³/h > 55 % > 60 %

Adéquation des débits

La quantité d’air à transporter et donc les débits va influencer la consommation finale du système de ventilation. Plus les débits augmentent, plus la consommation sera grande. Ainsi assure une adéquation des débits en fonction des besoins en ventilation d’un bâtiment permet de garantir une consommation « minimale » et donc une efficacité accrue du réseau complet.

Comme ce fut présenté dans l’évaluation de la qualité de l’air ambiant, on peut dans un premier temps vérifier par mesure si les débits réels ne sont pas supérieurs aux recommandations. C’est souvent le cas pour les anciennes installations de ventilation.

Ensuite, dans les locaux dont l’occupation varie fortement, on peut se demander si la modulation des débits en fonction des besoins réels peut apporter des économies substantielles. Il faut donc voir si

  • La ventilation est permanente 24h/24 alors que seule une ventilation diurne est nécessaire.
  • Certains locaux sont ventilés en journée alors qu’ils sont inoccupés.

Il faut également être attentif aux périodes de relance des installations de chauffage. La relance se faisant avant l’arrivée des occupants, un apport d’air neuf n’est pas nécessaire et constitue une charge thermique complémentaire à vaincre. Or on constate souvent sur le terrain que toutes les installations (chauffage, ventilation, humidification, …) démarrent en même temps à 6h du matin, alors que la ventilation, elle, ne devrait démarrer qu’à 8h30 (démarrage des ventilateurs, ouverture des volets d’air neuf). Par exemple, dans une installation de climatisation tout air, la relance du chauffage doit se faire en total recyclage, sans apport d’air neuf.

Les exemples suivants illustrent les économies potentielles pour quatre situations différentes.

Exemple 1 :

Un immeuble de bureaux est occupé 5 jours par semaine de 8h30 à 17h30 (250 jours par an). Or, le système de ventilation fonctionne tous les jours de la semaine pendant 24 heures, avec un débit de 1 000 m³/h (= 0,28 m³/s) d’air neuf.

Sans horloge, la

consommation pour le chauffage de l’air neuf durant la saison de chauffe (soit 5 800 h/an) s’élève à :

0,34 [Wh/m³K] x 1 000 [m³/h] x (16 [°C] – 6 [°C]) x 5 800 [h/an] / 0,7 =
28 161 [kWh/an]

Avec une horloge qui coupe la ventilation en dehors des heures de bureau, elle s’élève à :

0,34 [Wh/m³K] x 1 000 [m³/h] x (18 [°C] – 8 [°C]) x 1 530 [h/an] / 0,7 =
7 433 [kWh/an]

où,

  • 16 [°C] est la température moyenne intérieure sur 24 h tenant compte des apports gratuits de chaleur et du ralenti nocturne,
  • 18 [°C] est la température intérieure diurne de consigne compte tenu des apports de chaleur gratuits (soleil, ordinateur, …Apportent 2 [°C]),
  • 6 [°C] est la température extérieure moyenne de la saison de chauffe,
  • 8 [°C] est la température extérieure moyenne diurne durant cette même période,
  • 0,7 est le rendement de l’installation de chauffage.

Soit, une économie de 20 728 kWh/an.

L’économie réalisée sur la

consommation électrique est imputable à la mise à l’arrêt des ventilateurs de pulsion et d’extraction pendant 2 190 h en dehors de la saison de chauffe et à la mise à l’arrêt du ventilateur d’extraction pendant 4 270 h durant la saison de chauffe. Durant cette dernière période, l’économie réalisée sur la consommation du ventilateur de pulsion est déjà, en grande partie, comptabilisée dans l’économie de chauffage.

0,28 [m³/s] x 1 500 [Pa] x 2 190 [h/an] / 0,65 = 4 243 [kWh/an]

+

0,28 [m³/s] x 500 [Pa] x 4 270 [h/an] / 0,65 = 2 758 [kWh/an]

où :

  • 1  500 [Pa] (pulsion + extraction) et 500 [Pa] (extraction) sont des valeurs courantes de perte de charge d’un réseau de distribution de qualité moyenne,
  • 0,65 est le rendement global de l’installation de ventilation.
Exemple 2 :

Le bureau d’un représentant commercial est effectivement occupé durant 2 jours par semaine pendant 8 heures. Or le système de ventilation fonctionne tous les jours de la semaine pendant 10 heures (de 8 h à 18 h), avec un débit de 30 m³/h d’air neuf.

L’économie de chauffage réalisée en coupant la ventilation du bureau inoccupé est estimée à :

0,34 [Wh/m³K] x 30 [m³/h] x (18 [°C] – 8 [°C]) x (1700 [h/an] – 544 [h/an]) / 0,7 = 168 [kWh/an]

L’économie électrique sur la consommation des ventilateurs s’élève à une vingtaine de kWh/an.

Exemple 3 :

Le système de ventilation double flux d’un auditoire de 200 places délivre un débit d’air neuf de 4 000 m³/h (= 200 x 20 m³/h) pendant 40 heures par semaine. En fait, cet auditoire n’est occupé que 2 jours par semaine pendant 8 heures par 100 personnes en moyenne.

Si la ventilation est ajustée en fonction du nombre de personnes, le système fournira seulement 2 000 m³/h (= 100 x 20 m³/h) pendant 16 heures par semaine.

La consommation actuelle de chauffage est donc de :

0,34 [Wh/m³K] x 4 000 [m³/h] x (18 [°C] –
8 [°C]) x 1 360 [h/an] / 0,7 = 26 423 [kWh/an]

Grâce à la nouvelle régulation, on consommera :

0,34 [Wh/m³K] x 2 000 [m³/h] x (13 [°C] –
8 [°C]) x 544 [h/an] / 0,7 = 2 642 [kWh/an]

Où :

  • 18  [°C] est la température moyenne intérieure durant la semaine tenant compte des apports gratuits de chaleur dus aux 100 personnes présentes 2 jours par semaine,
  • 13  [°C] est la même température intérieure, mais sur les 2 jours par semaine d’occupation.

Soit une économie de 23 781 kWh/an pour le chauffage.

On sait en outre que la consommation d’un ventilateur varie comme le cube de sa vitesse (règles de similitude) donc de son débit. L’économie potentielle réalisable en adaptant la vitesse du ventilateur d’extraction aux besoins s’élève donc à (rappel : le gain de consommation du ventilateur de pulsion est déjà comptabilisé dans les économies de chauffage) :

0,2 [W/(m³/h)] x 4 000 [m³/h] x (1 360 [h/an] – 544 [h/an]) = 653 [kWh/an]
(arrêt du ventilateur d’extraction pendant 3 jours)

+

0,2 [W/(m³/h)] x 4 000 [m³/h] x 544 [h/an] x (7/8) = 381 [kWh/an]
(diminution de la vitesse en période d’occupation : division par 2 de la vitesse de rotation et donc division par 8 de la consommation, on économise donc 7/ 8 de la consommation de départ).

où 0,2 [W/(m³/h)] est la consommation d’une extraction performante (règle de bonne pratique).

Exemple 4 :

Un bureau paysager disposant de 4 places de travail est occupé en moyenne à 40 % de sa capacité pendant 5 jours par semaine. Le système de ventilation délivre un débit d’air constant de 120 m³/h durant 10 heures par jour (de 8h00 à 18h00).

Si on équipe ce bureau d’une bouche de ventilation avec détection de présence et estimation du nombre de personnes présentes, le débit moyen de ventilation sera ramené à 48 m³/h.

On pourrait donc s’attendre à une économie de chauffage de :

0,34 [Wh/m³K] x (120 [m³/h] – 48 [m³/h]) x
(18 [°C] – 8 [°C]) x 1 700 [h/an] / 0,7 = 594 [kWh/an]

et à une économie d’électricité pour le ventilateur de 28 kWh/an.

Dans un premier temps, il faut donc examiner si les horaires de ventilation respectent les horaires d’occupation. Une simple horloge peut soit couper les ventilateurs, soit les faire fonctionner en vitesse réduire, par exemple pour maintenir un minimum d’extraction dans les sanitaires.

Dans un deuxième temps, on peut aussi repérer les locaux à occupation importante et fortement variable (salle de réunion, bureau paysager, auditoire, …). en effet, ceux-ci peuvent éventuellement faire l’objet d’une gestion en fonction de la présence des occupants.

Pour qu’une telle régulation soit possible, il faut que les bouches de pulsion et d’extraction puissent être automatiquement fermées en fonction d’un détecteur de présence, d’une sonde CO2, d’une sonde d’humidité, …  Dans le même temps, pour que l’économie électrique soit effective, il faut que le débit du ventilateur soit régulé en fonction de la fermeture des bouches ou que le ventilateur soit déclenché par un contact d’horloge.

Financièrement, la gestion des débits de ventilation a un impact encore plus important si l’air pulsé est chauffé électriquement

Gérer

Comment gérer les débits d’air.

Pertes de charge

Dans un réseau de distribution, l’air est déplacé sous l’impulsion des ventilateurs de pulsion ou d’extraction. La consommation électrique de ceux-ci dépend de la résistance du réseau de distribution, c’est-à-dire des pertes de charge.

Exemple.
Soit un réseau de pulsion de 12 600 m³/h :

Schéma réseau de pulsion.

La pression fournie par le ventilateur permet de vaincre la résistance du réseau le plus défavorisé (de la prise d’air extérieure A à la bouche de pulsion a). Le dimensionnement de ce réseau montre que la perte de charge à vaincre se répartit comme suit :
Conduites rectilignes (35 m) 33 [Pa]
Coudes, tés, changements de section 39 [Pa]
Filtre 45 [Pa]
Prise d’air 40 [Pa]
Bouche de pulsion 50 [Pa]

On constate dans cet exemple que les conduites rectilignes ont peu de poids dans les pertes de charge totales du réseau. Par exemple, Si on considère que la perte de charge d’une conduite est d’environ 1 Pa/m (valeur courante), une bouche de pulsion (perte unitaire de 50 Pa) a une perte de charge équivalente à 50 m de conduite. Dans le même ordre d’idée, un coude a une perte de charge équivalente à 4 .. 8 m de conduite rectiligne.

Les pertes de charge dépendent donc :

du diamètre des conduits

Par exemple, réduire de moitié la section des conduits pour diminuer leur encombrement et l’investissement double la vitesse de l’air et multiplie par quatre la puissance électrique du ventilateur pour vaincre leur résistance.

De plus, les conduits rectangulaires ont une perte de charge plus importante que les conduits circulaires (plus grand périmètre pour une même section) : si on passe d’une gaine circulaire à une gaine rectangulaire dont la rapport des côtés est égal à 4, la perte de charge, donc la puissance est augmentée d’environ 30 %.

du tracé des conduites

Plus le tracé comporte des coudes, des tés, des variations de section, plus les pertes de charge seront importantes. Ce sera d’autant plus le cas si les changements de direction sont brusques et non équipés d’ailettes directionnelles.
Exemples de tracé de conduites.

>>

Pavillon à la prise d’air.

>>  

Changement progressif de section.

>> 

Placement des batteries dans des sections rectilignes suffisamment longues.

>>

Ailettes directionnelles dans les coudes.

>>

Coudes arrondis.

>>  

Bifurcation arrondie.

>>

Pas de brusque changement de direction aux abords du ventilateur.

Pas de bifurcation directement à la sortie du ventilateur.

du choix et de l’entretien des filtres

Les filtres constituent des pertes de charge non négligeables dans l’ensemble d’un réseau de ventilation. Utiliser un filtre trop performant par rapport aux besoins risque d’augmenter cette perte de charge singulière et donc la puissance du ventilateur nécessaire pour obtenir le débit souhaité.

En ventilation des bâtiments tertiaires, des filtres F7 sont généralement suffisant, les préfiltres grossiers (EU 3) n’apportent quant à eux pas d’augmentation de vie des filtres mais augmentent fortement les pertes de charge.

Lorsqu’on rentre dans une zone propre ou en environnement maîtrisé apparenté, le niveau de filtration doit être nettement plus fin tel que les filtres HEPA H13. Les pertes de charge deviennent importantes même en début de vie (250 Pa nouveau et 600 Pa en final).

Exemple.

Un filtre EU 7 a une perte de charge initiale d’environ 50 Pa, tandis que celle d’un filtre EU 8 est proche de 150 Pa Pour un débit de 36 000 m³/h (10 m³/s), le filtre EU 8 entraînera une puissance absorbée du ventilateur de :

Puissance = débit x perte de charge/rendement

= 10 [m³/s] x 150 [Pa] / 0,65 = 2 285 [W]

(0,65 = rendement global du ventilateur)

pour seulement 772 W pour le filtre EU 7.

Après un certain temps de fonctionnement (environ 3 000 heures), la perte de charge d’un filtre augmente rapidement du fait de son colmatage, ce qui a pour conséquence une diminution du débit pulsé et une diminution de la puissance absorbée par le ventilateur. On consomme donc moins, mais le débit de l’installation peut chuter en dessous d’un minimum admissible.
Lorsque le débit de ventilation doit être maintenu constant (cas des hôpitaux où une pression relative entre locaux doit être maintenue), l’encrassement des filtres va entraîner une augmentation de la consommation électrique des ventilateurs.
Exemple.

La perte de charge d’un filtre fin est de :

Filtre propre 100 Pa
Filtre sale (après 6 mois) 500 Pa

Après 4 mois de fonctionnement, la perte de charge du filtre est de 370 Pa. Si on décide de remplacer le filtre à ce moment et non pas lorsque sa perte de charge finale est atteinte, on peut réaliser une économie d’énergie de (pour un débit de 15 000 m³/h (soit 4,2 m³/s)) :

4,2 [m³/s] x ((500 [Pa] – 370 [Pa]) / 2) x 840 [h] /0,65 =  353 [kWh]

où :

  • (500 Pa – 370 Pa) / 2 = la perte de charge moyenne du filtre avec une utilisation allant de 4 à 6 mois
  • 840 h = un fonctionnement de 14 h/jour pendant 60 jours
  • 0,65 = rendement global de l’installation de ventilation 

L’économie réalisée peut être comparée au prix d’un filtre neuf.

Une gestion efficace du remplacement des filtres doit comporter un manomètre mesurant en permanence la perte de charge des filtres. Lorsque la perte de charge maximum admissible par le fabricant du filtre est atteinte, le filtre doit être changé. En outre, pour des questions d’odeur, un filtre doit être changé au minimum tous les ans.

Pertes de charge d’un filtre à poches en fonction de sa durée d’utilisation.

du dimensionnement de la prise d’air extérieure

Un sous-dimensionnement de la prise d’air extérieure sera synonyme de pertes de charge plus importantes.

Dans une installation existante, on peut repérer une prise d’air extérieure sous-dimensionnée si une quantité importante de neige, de pluie et de feuilles sont entraînées à l’intérieur de l’installation du fait de la trop grande vitesse d’air. On peut ainsi retrouver de la neige dans les filtres.


Étanchéité des conduits

Les conduits de distribution doivent être suffisamment étanches à l’air pour éviter d’insuffler de l’air inutilement dans les espaces techniques ou dans les couloirs.

Des mesures réalisées sur plusieurs bâtiments ont montré que la qualité des conduits et de leur mise en œuvre laissait fortement à désirer et ne respectent pas les critères de la norme européenne Eurovent :

Évaluation des fuites du système de ventilation de 23 bâtiments, la classe A de la norme EUROVENT étant la plus mauvaise en terme d’étanchéité
(source : Improving ductwork. A time for tighter air distribution systems. FR Carrié, J Andersson, P Wouters, AICV, UK 1999)

Il en résulte qu’en moyenne 20 % du débit d’air pulsé par un ventilateur n’arrive pas dans les locaux de destination.

Conséquences de fuites dans les réseaux aérauliques

Si le ventilateur ne compense pas les fuites :

Si le ventilateur compense les fuites :

Débits dans les locaux non respectés. Débits dans les locaux respectés mais avec des difficultés d’équilibrage.
Problèmes de qualité d’air et/ou de confort thermique non atteint. Pas d’effet sur la qualité de l’air.
Risque de gaspillage énergétique par destruction de chaud et de froid. Surconsommation du ventilateur
Surconsommation de combustible/d’électricité du groupe frigorifique.
Aspiration possible de polluants (CO, fibre de verre, …) dans les gaines d’extraction et pulsion possible de ceux-ci dans les locaux si recyclage de l’air.
Perte de performance des échangeurs de récupération par dilution de l’air extrait.

Pourtant, il existe actuellement sur le marché des produits qui garantissent une meilleure performance.

La mesure de l’étanchéité à l’air des conduits s’effectue facilement lors du montage du système de distribution d’air. Une mesure ultérieure est toujours envisageable mais des problèmes d’accessibilité se posent souvent (démontage des faux plafonds, etc.) même si, en principe, un accès doit être préservé pour la maintenance du système.

Comment évaluer l’étanchéité des conduits ?

Qualitativement : Rechercher les fuites dans un réseau en surpression (pulsion) est relativement facile. Il suffit de déposer un produit moussant sur les joints suspects.

Des traces de poussières aux raccords sont aussi des signes d’inétanchéité.

Lorsque le réseau est en dépression (extraction), il faut boucher les diffuseurs et mettre les conduits en surpression pour pouvoir appliquer la méthode précédente.

Quantitativement : La mesure consiste à isoler la partie du système à tester en obturant les différentes connexions vers les autres parties du système ou vers les locaux (bouches, …). Les conduits sont alors mis en surpression ou en dépression à l’aide d’un ventilateur. La mesure simultanée du débit de fuite (= débit fourni par le ventilateur) et de la pression dans les conduits permet de déterminer le taux de fuite du système. Cette procédure est décrite en détails dans la norme EUROVENT 2/2.

Améliorer

Rénovation partielle : amélioration du réseau de distribution.

Rendement des ventilateurs

On a vu que l’on pouvait estimer par mesure la répartition des pertes d’un système de ventilation et donc le rendement de l’ensemble moteurtransmissionventilateur. En général, plus de 50 % de l’énergie consommée sert à lutter contre les pertes de ce dernier. C’est donc un poste sur lequel il s’agit d’être attentif si l’on désire obtenir une installation énergétiquement efficace.

Cinq éléments vont déterminer la qualité énergétique du groupe de ventilation :

  • la qualité du moteur,
  • la qualité de la transmission,
  • la qualité du ventilateur,
  • la qualité du raccordement du ventilateur au réseau,
  • la qualité du mode de réglage des débits.

Il est difficile d’évaluer qualitativement un groupe de ventilation. Voici cependant quelques pistes :

  • A priori les ventilateurs à aubes recourbées vers l’arrière ont des rendements maximum supérieurs aux ventilateurs à aubes recourbées vers l’avant. Ceci ne veut cependant pas dire que tous les ventilateurs à aubes recourbées vers l’avant doivent être remplacés par leur homologue à aubes arrière. L’utilisation d’aubes profilées en aile d’avion et d’aspirations profilées permet les meilleurs rendements et un bruit minimum par rapport à de simples tôles pliées.

Roue de ventilateur à aubes arrière profilées en aile d’avion.

  • Une trop grande différence de section entre l’ouïe de sortie de ventilateur et le conduit dans lequel il débite entraîne des pertes de charge importante qui se traduisent par une surconsommation, ce sera le cas notamment si la sortie du ventilateur est libre dans un caisson.
Exemple.

Voici trois exemples de ventilateur débitant dans un même circuit. On voit la hauteur manométrique (image de la puissance absorbée) nettement plus importante que doit avoir un ventilateur dont l’orifice de refoulement est trop petit par rapport à la section du conduit, même lorsqu’on l’équipe d’un divergent de longueur correcte.

La surconsommation du troisième cas par rapport au premier est de 11 %.

  • Une transmission de ventilateur par courroies à un plus mauvais rendement qu’une transmission directe. Elle entraîne une perte de rendement de l’ordre de 10 %. Le rendement de transmission étant d’autant réduit que les courroies sont démultipliées, que les poulies sont petites et que la tension est mal réglée.
    On peut procéder à deux types de vérification sur un entraînement par courroies : l’alignement des poulies et la tension des courroies.
    Un défaut dans l’entraînement par courroies peut aussi se repérer par la présence d’une quantité importante de poussière de courroie dans l’installation.

Vérification de l’alignement des poulies

Vérification de la tension des courroies.

Perte de transmission avec un système de courroies.

  • Les ventilateurs avec un moteur à rotor extérieur ont également un plus mauvais rendement.
  • On a vu que la gestion des débits d’air en fonction des besoins permet une économie de chauffage/refroidissement importante. Par contre, tous les modes de réglage n’apportent pas la même diminution de la consommation électrique. Le réglage par by-pass entraîne quant à lui une augmentation de la puissance absorbée par le ventilateur. Voici l’incidence des différentes mesures visant à diminuer le débit des ventilateurs sur la puissance absorbée par le ventilateur.

Ces courbes ont été établies pour un type particulier de ventilateur. Elles ne sont donc qu’indicatives pour les autres ventilateurs. Remarquons en outre que l’utilisation d’un transformateur n’est possible que pour les moteurs bobinés.

Améliorer

Rénovation partielle : amélioration du ventilateur.

Auditer rapidement le système de ventilation

Production et régulation

Repérer le problème Projet à étudier Rentabilité approximative
Le ratio du débit total d’air neuf pulsé par rapport au nombre effectif de personnes dans le bâtiment est-il compris entre 22 et 36 m³/h ?

Le ration  « puissance cumulée des ventilateurs (pulsion et extraction) par rapport au débit d’air transporté (commun) » est-il inférieur à 1,1 W/(m³/h) ?

Limiter les débits d’air neuf aux débits hygiéniques recommandés en adaptant la puissance du ventilateur de l’installation (exemple : changement du diamètre des poulies).
+ + +
Diminution permanente de 1000 m³/h = – 1 000 litres de fuel par an pour un fonctionnement 10 h/jour et 5 j/semaine.
En hiver, la pulsion est-elle arrêtée la nuit et le week-end ? En hiver, programmer l’arrêt de la pulsion d’air en dehors des heures d’occupation. + + +
Gain : …70 %… sur le poste « air ».
Le débit d’extraction sanitaire est-il réduit la nuit et le week-end ? Limiter le débit d’extraction sanitaire la nuit et le week-end. + + +
Gain : …50 %… sur le poste « air ».
En journée, le débit de ventilation des locaux à occupation variable (salles de réunions, de conférence, cafétéria,…) est-il limité en fonction de l’occupation (grâce à des détecteurs de présence ou de CO2 ,…) ?

Si oui, le débit du ventilateur est-il géré par variation de vitesse plutôt que par un système du type « étranglement » ?

Gérer le débit d’air neuf en équipant les locaux à occupation variable de bouches réglables et de détection de présence ou de sondes CO2. + +
TR : très rentable si faible taux d’occupation et salle de grande capacité.
Y a-t-il un récupérateur de chaleur Placer un récupérateur de chaleur +++
Pour chauffer l’air neuf, récupère-t-on les chaleurs gratuites du bâtiment ?

Récupérer la chaleur sur l’air extrait.

Récupérer la chaleur sur le condenseur d’une machine frigorifique.

Adopter une prise d’air de ventilation dans l’atrium pour valoriser l’apport solaire et l’apport des bâtiments adjacents.

+
Modifier la distribution de l’air Gain Récupérateur : …50 %… sur le chauffage de l’air.
Les locaux où les exigences sur la qualité de l’air sont plus faibles (archives, garages,…), sont-ils ventilés avec l’air extrait d’autres locaux ?

 

(Ce système permet d’économiser l’énergie nécessaire au préchauffage de l’air pulsé dans ces zones).

 

+
En été, si le bâtiment a une certaine inertie, l’installation fonctionne-t-elle la nuit pour refroidir la structure du bâtiment et diminuer la demande de refroidissement en journée ? En été, si le bâtiment a une certaine inertie thermique, ventiler le bâtiment avant l’occupation pour le « pré-refroidir ».

+

Gain pour autant que la pulsion ne se fasse que lorsque l’air extérieur est plus froid de 6 à 8 degrés minimum.

Les filtres de l’installation sont-ils adéquats ?

(qualité de filtre minimum F7)

Les filtres de l’installation sont-ils remplacés au moins tous les ans ?

Disposent-ils d’un manomètre de pression différentielle et sont-ils remplacés régulièrement en fonction des valeurs indiquées par le manomètre ?

Remplacer les filtres régulièrement (suivant indication du manomètre de pression différentielle, et au moins tous les ans).

+

 

Si les ventilateurs sont à transmission par courroie, les poulies sont-elles bien alignées et la tension des courroies est-elle correcte ?

(déformation maximum de 1 .. 1,5 cm avec une pression modérée).

Améliorer le rendement de la transmission (tension des courroies, alignement, …).
Le rapport entre la puissance du ventilateur et le débit pulsé est-il supérieur à 0,35 W/(m³/h) ?

Les ventilateurs sont-ils à aubes recourbées vers l’arrière ?

Les ventilateurs ont-ils un moteur à courant continu ?

Les ventilateurs sont-ils à transmission directe ?

Améliorer ou remplacer le ventilateur. +

Humidification et la déshumidification

Repérer le problème Projet à étudier Rentabilité approximative
Humidifie-t-on l’air pulsé dans les locaux à forte occupation ou à l’inverse inoccupé ?
(Archives ? Cafeteria ? …).L’humidification est-elle strictement réservée aux locaux où elle est nécessaire ?
Arrêter l’humidification sur certains groupes de préparation d’air.
+ +
Gain = 100 % sur le poste « humidification » (lui -même égal à 30% du poste chauffage de l’air.
L’humidificateur est-il commandé par une sonde d’humidité ambiante ou de reprise ?

Si oui, la consigne est-elle inférieure à 40 % ?

Réguler l’humidificateur en fonction de l’humidité ambiante en limitant celle-ci à 40 %.

+ + +

Le déshumidificateur est-il commandé par une sonde d’humidité ambiante ou de reprise ?

Si oui, la consigne est-elle supérieure à 60 % ?

Réguler le déshumidificateur en fonction de l’humidité ambiante en limitant celle-ci à 60 %. + + +
Y a-t-il une zone neutre entre les consignes d’humidification et de déshumidification pour éviter le fonctionnement simultané des deux systèmes ? Réguler les systèmes pour humidifier si la consigne est inférieure à 40 % et déshumidifier si la consigne est supérieure à 60%. + + +

Pour les humidificateurs à vapeur, le débit de déconcentration est-il adapté aux besoins ?

(Suite à l’évaporation de l’eau, l’eau restante se change en sel. L’eau doit être régulièrement renouvelée : de l’eau très chaude est remplacée par de l’eau froide. Ce débit peut devenir consommateur s’il n’est pas surveillé).

Adapter le débit de déconcentration des humidificateurs à vapeur aux besoins.

+ +

L’humidification est-elle mise à l’arrêt en mi-saison et en été ?

L’humidification est-elle arrêtée et vidangée à la fin de l’hiver ?

Couper l’humidification lorsque la température extérieure dépasse 8°C.

+ + +


Réseau et distribution

Repérer le problème Projet à étudier Rentabilité approx.
L’équilibrage du réseau est-il correct ?

(pas de locaux sur-ventilés ou sous-ventilés).

Équilibrer le réseau.

+

Le réseau de pulsion est-il étanche ?

(Pour rechercher les fuites dans un réseau en surpression (pulsion), il faut déposer un produit moussant sur les joints suspects. Des traces de poussières aux raccords sont aussi des signes d’inétanchéité).

Étanchéifier les conduits d’air (au minimum par bandes adhésives, au mieux par le remplacement des conduits).

+ +

Les conduits de pulsion sont-ils isolés,

  • dans les locaux non chauffés (5 cm minimum) ?
  • dans les locaux chauffés (3 cm minimum) ?
Isoler les conduits de pulsion.

+

Les circuits de distribution sont-ils adaptés au zonage du bâtiment ?

Les zones sont-elles homogènes au niveau de l’horaire d’utilisation ?

++
La position des bouches de pulsion et d’extraction est-elle correcte ?

Le type de bouche de pulsion permet-il un brassage efficace entre l’air pulsé et l’air ambiant ?

Choisir et placer les bouches de pulsion et d’extraction efficacement +

Confort de la ventilation

Qualité d’air ?

Repérer le problème Projet à étudier
Le taux de CO2 des locaux est-il supérieur à 800 ppm ?  

 

 

 

 

 

Concevoir

Les occupants se plaignent-ils d’odeurs corporelles dans les locaux fortement occupés ?
Y a-t-il des traces de condensation (moisissures) dans certains locaux ?
Le bâtiment dispose-t-il d’un système de ventilation spécifique (grilles d’amenée d’air, pulsion d’air, extraction sanitaire, …)
En ventilation naturelle, la taille des ouvertures prévues est-elle proche de 10 cm² par m² de surface au sol ?
Des grilles de transfert ou un détalonnage des portes sont-ils prévus entre les locaux d’amenée d’air et les locaux d’extraction ?
Les prises d’air neuf sont-elles protégées des ambiances polluées (parking, rejet d’air vicié, …) ?
Quel est l’encrassement du réseau de distribution d’air ?

Gérer

Courants d’air ?

Repérer le problème Projet à étudier
Les occupants se plaignent-ils de courants d’air froids ?

Concevoir

Les grilles d’amenées d’air naturelles sont-elles disposées à plus de 1,8 m de hauteur et au-dessus de corps de chauffe ?
L’air neuf est-il préchauffé ?

Concevoir

Nuisances acoustiques ?

Repérer le problème Projet à étudier
Le niveau de bruit mesuré dépasse-t-il les exigences réglementaires ?

Améliorer

Les occupants se plaignent-ils d’un bruit excessif du système de ventilation ?

Gérer

Quelle est l’origine du bruit (bruit extérieur, bruit de ventilateur, sifflement de l’air dans une bouche) ?

Améliorer

Un silencieux est-il disposé à la sortie du ventilateur ?

Améliorer

Le ventilateur est-il raccordé au réseau de distribution par un manchon souple ?

Améliorer


Audit complet avec classement des mesures à prendre ?

Évaluer

Audit de la ventilation hygiénique d’un bâtiment existant pour le Responsable Énergie

Calculs

Audit de la ventilation hygiénique d’un bâtiment existant pour l’auditeur (xls)

Se poser les questions les plus fréquentes sur la ventilation

Worker making final touches to HVAC system. HVAC system stands for heating, ventilation and air conditioning technology. Team work, HVAC, indoor environmental comfort concept photo.

Voici les affirmations et les questions les plus couramment formulées par des gestionnaires de bâtiment à l’adresse de l’Administration régionale wallonne concernant la mise en œuvre de la réglementation wallonne en matière d’isolation et de ventilation :


C'est à cause de l'isolation que l'on connaît des problèmes de salubrité dans les bâtiments. Mieux vaut donc ne pas trop isoler

Cette affirmation est en grande partie fausse. Pour comprendre pourquoi, il est utile de retracer l'historique de l'isolation.

Les années d’insouciance :

Avant la crise pétrolière des années '70, l’énergie était bon marché. Les habitations non isolées pouvaient être bien chauffées à peu de frais.

Les années de crise :

Dans les années ’70, les pays producteurs de pétrole augmentèrent fortement les prix. Le choc fut rude pour nos économies et il devint urgent de diminuer nos dépenses énergétiques. À cette fin, tous les moyens furent bons. Quelques-uns tentèrent d’isoler avec les moyens et les connaissances d’alors …

Mais, on a surtout

  • réduit le chauffage que l’on a même coupé dans certaines pièces,
  • calfeutré portes et fenêtres,
  • limité l’aération.

Les conséquences de ces actes uniquement basés sur une logique d’économie d’énergie furent désastreuses pour les bâtiments : de nombreux problèmes d’humidité apparurent suite à la « fermeture complète » du bâtiment. L’isolation mal réalisée agit en effet comme révélateur d’humidité : sans isolation, la condensation de la vapeur d’eau se répartissait sur toutes les surfaces. Mais lorsqu’on a commencé à isoler, les problèmes d’humidité se sont concentrés uniquement sur les nombreux défauts provoquant l’apparition de moisissures. Très rapidement, l’idée d’isolation fut alors confondue avec l’idée de calfeutrage et associée à celle d’humidité.

Les années de tâtonnement :

À cette époque, la conception des bâtiments était fondée sur la logique de « fermeture » : on isole et on supprime quasiment toute ventilation. De plus, la combinaison des techniques traditionnelles et des exigences nouvelles génère toute une série de problèmes (ponts thermiques, mauvaise mise en œuvre de l’isolant). Suite à la parution du règlement régional wallon, l’isolation des bâtiments neufs est devenue obligatoire. Elle s’est généralisée, mais quelques problèmes ont subsisté.

Les années raisonnables :

L’observation des pathologies apparues dans le parc immobilier, ainsi que les recherches menées pour améliorer les performances énergétiques des bâtiments, ont permis de dégager trois règles essentielles à respecter pour éviter les problèmes de condensation

  • assurer un chauffage suffisant des locaux,
  • contrôler la ventilation,
  • réaliser une isolation de qualité (absence de ponts thermiques, de discontinuités de la surface isolante, …).

Ainsi réalisée, l’isolation est une source de confort et d’économies sans ennuis.

Et l’avenir …

La réglementation thermique va devenir plus exigeante afin de protéger le consommateur et l’environnement. L’isolation doit progresser en efficacité. Il est donc impératif d’assurer une conception et une exécution de qualité.


Pourquoi rendre étanches les châssis et isoler le bâtiment pour ensuite créer des « trous » pour laisser rentrer de l’air froid ?

1er élément : pertes par transmission et pertes par ventilation

Il faut distinguer « perte de chaleur par ventilation et infiltration » et « perte de chaleur par transmission ». La première est due au renouvellement de l’air intérieur (chaud) du bâtiment par de l’air (froid) extérieur. La seconde est due au transfert de chaleur d’un espace chaud vers un espace froid au travers des matériaux d’une paroi.

Placer de l’isolant dans une toiture, dans un mur, … n’a donc théoriquement aucun impact sur la perte de chaleur par ventilation, mais bien sur la perte par transmission. En effet, on ne modifie pas le renouvellement d’air du bâtiment mais le pouvoir isolant de ses parois.

À l’inverse, calfeutrer un bâtiment, c’est-à-dire le rendre étanche à l’air (par des joints au niveau des fenêtres, …) c’est diminuer les pertes par ventilation et infiltration.
On peut faire une comparaison avec un ballon de stockage d’eau chaude sanitaire :

  • Les pertes par ventilation équivalent au chauffage nécessaire pour chauffer l’eau froide qui rentre dans le ballon lorsqu’il y a puisage à un robinet.
  • Les pertes par transmission, c’est la chaleur qui s’échappe par les parois du ballon puisque celui-ci est plus chaud que l’ambiance.

Isoler le ballon ou le bâtiment, c’est donc limiter les pertes par « transmission »; fermer le robinet ou calfeutrer le bâtiment, c’est éliminer les pertes par « ventilation » (ou irrigation dans le cas de l’eau).

2ème élément : manque de ventilation et pollution de l’air intérieur

Si le taux de ventilation d’un local fortement occupé est insuffisant, l’air y est rapidement vicié par de multiples agents (CO2, micro-organismes, matières odorantes, émissions des imprimantes et photocopieurs, …) : la respiration est moins active, une fatigue prématurée apparaît, la concentration diminue, le risque de contamination augmente, …

3ème élément : ventilation et utilisation rationnelle de l’énergie

L’URE consiste à assurer le confort des occupants, tout en maîtrisant les consommations énergétiques. Il faut donc limiter les apports d’air extérieur à la quantité nécessaire et suffisante (ni plus, ni moins !) pour maintenir la qualité de l’air intérieur. Ce principe est difficilement respecté dans les anciens bâtiments, les débits d’air frais entrant dans le bâtiment via les infiltrations (fuites et fentes) sont tout à fait incontrôlables (en quantité, en température, en direction et en durée) et varient fortement avec les conditions atmosphériques :

  • Les fuites et les fentes représentent des ouvertures accidentelles et involontaires n’offrant aucune garantie quant au débit de fuite atteint.
  • Les fuites et les fentes constituent des dispositifs d’amenée d’air tout à fait incontrôlables, car sans réglage possible. Par grand vent, les risques de courant d’air sont importants et les pertes d’énergie sont incontrôlables. À l’inverse, par temps calme, les débits d’air neuf peuvent être insuffisants.
  • En fonction de la direction du vent, la répartition des flux d’air dans le bâtiment change alors que les besoins en air neuf sont, eux, théoriquement constants.
  • La surface totale des fuites d’un bâtiment est souvent insuffisante pour atteindre les débits exigés par la norme.
  • Les inétanchéités du bâtiment sont souvent mal réparties conduisant à des inégalités de ventilation entre les locaux.

Éliminer les infiltrations d’air parasites (c’est-à-dire incontrôlables) et créer une ventilation organisée (c’est-à-dire intentionnelle, grâce à des grilles, des ventilateurs, …) fournit au contraire la quantité d’air frais juste nécessaire aux occupants, limitant ainsi les consommations énergétiques au minimum.

Notons en outre que le contrôle de la consommation énergétique liée à la ventilation est d’autant plus important que les bâtiments deviennent fortement isolés. En effet, dans ce cas la perte de chaleur par transmission diminuant, la perte de chaleur par ventilation prend une part plus importante dans la consommation globale du bâtiment. C’est donc elle qu’il faut surveiller pour avoir un impact sur la consommation totale.


Pourquoi la ventilation par les fenêtres n’est-elle pas adéquate ?

La ventilation par les fenêtres est une ventilation intensive périodique qui permet une élimination rapide des polluants émis dans l’ambiance.

Taux de CO2 mesuré dans une salle de classe dans laquelle
on ventile par ouverture de fenêtre lors des intercours.

Elle est inadéquate pour assurer une ventilation de base continue car

  • Elle est liée à la bonne volonté des occupants.
  • Elle est intermittente, ce qui signifie qu’entre les périodes d’ouverture le taux de CO2 va fluctuer fortement dans le local entre les périodes d’ouverture et les périodes de fermeture et dépassera bien souvent la valeur couramment admise de 1 000 ppm. Par exemple, le confinement de l’air d’une classe normalement occupée et ventilée uniquement aux intercours est atteint après un quart d’heure d’occupation.
  • Elle est source d’inconfort pour les occupants étant donné les débits importants d’air neuf, souvent froid.
  • Elle est difficilement réglable, exception faite des petits vasistas réglables.

Pourquoi exiger un système de ventilation alors que l’on n’est pas obligé de s’en servir ?

La norme NBN D50-001, relative à la ventilation des logements impose la présence de dispositifs corrects de ventilation, mais les habitants sont libres d’en faire usage ou non.

Cette approche ne garantit donc pas une ventilation permanente et suffisante du bâtiment. Elle est par exemple différente de l’approche française qui impose des entrées d’air non obturables.

La philosophie adoptée en Belgique consiste à laisser aux utilisateurs la possibilité de réduire les amenées en cas de courant d’air, de crainte de voir celles-ci complètement et définitivement obturées si aucune maîtrise n’est laissée à l’utilisateur.

La norme prévoit en outre que toute amenée d’air peut avoir un débit de fuite minimum en position fermée ce qui garantit quand même une ventilation minimum.

Les annexes C2 et C3 de la PEB prescrivent, respectivement pour les immeubles résidentiels et non-résidentiels, les débits de conception minimale à respecter. En outre, l’annexe C3 précise que les systèmes de ventilation mécaniques équipés d’un système de régulation appartenant à l’une des catégories suivantes sont interdits :

  • Sans régulation, le système fonctionne constamment
  • Régulation manuelle, le système fonctionne selon une commutation manuelle

De même, les systèmes de régulation basés sur la température de l’air et qui permettent de réduire le débit de ventilation sous le débit minimal ne sont pas autorisés.


Si, dans une école, on aménage une ancienne chapelle en classes, la réglementation impose-t-elle un système de ventilation ?

La réglementation wallonne fait la distinction entre « transformation avec changement d’affectation » et « transformation sans changement d’affectation ».

La notion de changement d’affectation s’adresse au bâtiment et non au local. Ainsi, la transformation d’une chapelle d’école ne modifie pas l’affectation de l’école, celle-ci restant un bâtiment scolaire. Dans ce cas, seules des amenées d’air naturelles sont à prévoir si les fenêtres sont modifiées (remplacement ou nouveau percement). Dans le cas contraire, la réglementation n’impose rien.

Ainsi dans la chapelle traitée ici, si aucune fenêtre n’est créée ou remplacée, la réglementation n’impose pas de système de ventilation.

Cependant, il faut faire preuve de bon sens. Ce n’est pas parce que la réglementation ne prévoit rien que la qualité de l’air sera d’office assurée. Les règles de l’art veulent ainsi qu’un système de ventilation correct soit prévu dans les nouvelles classes.

Pour le réaliser, on peut se baser sur les débits imposés dans le cadre des « transformations avec changement d’affectation ».


Faut-il tenir compte des débits de ventilation lors du calcul de l’installation de chauffage ?

La puissance de chauffage à installer doit compenser les pertes par transmission au travers des parois du bâtiment et les pertes par ventilation due au renouvellement de l’air intérieur.

La norme NBN B62-003 est utilisée pour le dimensionnement des chaudières, prend déjà en compte ces deux pertes.

Pour les pertes par ventilation, la norme utilise la formule :

Pch = 0,34 x qx (Tint – Text)

où :

  • Pch = puissance nécessaire au chauffage de l’air neuf [W],
  • 0,34 = capacité calorifique de l’air [Wh/m³.K],
  • q= débit d’air neuf [m³/h],
  • Tint = température intérieure de consigne [°C],
  • Text = température extérieure de base [°C].

En résumé, qv varie suivant les situations :

Type de ventilation

q=

Bâtiments sans ventilation mécanique 1 renouvellement par heure [vol/h] x volume des locaux [m³]
ou 10 [m³/h.pers] (locaux non-fumeurs) à 20 [m³/h.pers] (locaux avec fumeurs) x nombre de personnes
Bâtiments avec ventilation mécanique (taux de renouvellement d’air prévu par le concepteur [vol/h] + 0,3) x volume des locaux

À titre de comparaison, la réglementation wallonne de ventilation impose dans les bureaux un débit d’environ 2,5 [m³/h.m²] (dépendant du taux d’occupation minimal prévu), ce qui équivaut dans des locaux de 2,5 m de haut à un taux de renouvellement d’air de 1 [vol/h].

En conclusion, il n’est pas nécessaire de surdimensionner l’installation de chauffage pour tenir compte de la réglementation en matière de ventilation si cette installation a été dimensionnée suivant la norme NBN B 62-003.


L’évacuation de l’air vicié doit-elle toujours se faire en toiture ?

Dans le cas d’une évacuation d’air vicié naturelle, celle-ci doit toujours se faire via un conduit vertical débouchant en toiture, en respectant certaines dispositions d’emplacement par rapport au faîte du toit et par rapport aux bâtiments voisins.

Lorsque l’évacuation d’air est mécanique (on parle alors d’extraction d’air), le rejet d’air peut se faire aussi bien au niveau de la façade que de la toiture. Il faudra aussi veiller à son emplacement pour éviter les gênes pour le voisinage et pour la prise d’air neuf.


Comment calculer le débit d’évacuation des sanitaires dans les bureaux et les écoles ?

La réglementation wallonne indique qu’il faut respecter un débit de conception minimal dans les toilettes de 25 m³/h par wc (au minimum) ou 15 m³/h par m² de surface si le nombre de wc n’est pas connu lors du dimensionnement.


Doit-on prévoir des amenées d’air neuf dans les locaux sanitaires ?

Non !

Du point de vue qualité de l’air, le système de ventilation idéal consiste à pulser de l’air frais dans chaque local et d’en extraire l’air vicié. C’est le système de ventilation double flux unizone. Cependant, ce principe de ventilation est énergivore puisque c’est celui qui conduit au plus grand apport d’air neuf dans le bâtiment.

C’est pour cela que l’on admet le principe du « balayage ». Il consiste à ventiler les locaux dits « humides » avec l’air provenant des locaux dits « secs », grâce à un transfert de l’air d’une zone à l’autre.


Faut-il équilibrer les débits de pulsion et d’extraction ?

Lorsque l’on dimensionne une installation de ventilation suivant la réglementation wallonne, on ne parvient jamais à une égalité entre les débits d’amenée d’air neuf, les débits de transfert et les débits d’évacuation d’air vicié.

Faut-il, dés lors, surdimensionner l’une ou l’autre de ces trois composantes pour équilibrer le système ?

Raisonnons tout d’abord de manière théorique : « de l’air ne peut entrer dans un local que s’il ne peut en sortir ».

Ainsi, idéalement, il faut équilibrer les débits d’amenée et d’évacuation d’air, ce sera souvent en disposant des évacuations complémentaires aux évacuations sanitaires.

La réglementation wallonne et la norme NBN D 50-001 relative au logement ne l’imposent cependant pas, et ce, pour plusieurs raisons :

  • Pour ne pas imposer des investissements trop importants, et tenir compte ainsi des difficultés constructives liées notamment à la rénovation de bâtiments existants.
  • Pour tenir compte des inétanchéités de l’enveloppe des bâtiments. En effet, le bâtiment existant moyen belge est relativement peu étanche à l’air. On en conclut que la différence de débit entre amenée et évacuation d’air pourrait être reprise par les infiltrations ou évacuations parasites.
  • Parce que l’impact de la qualité de l’air sur les occupants reste flou. Des essais de confort, réalisés dans le cadre de recherches internationales, montrent par exemple que de très grandes variations de taux de ventilation (de l’ordre de 200 %) ne modifient que peu le nombre d’occupants insatisfaits (variant de 15 à 30 %). Cette imprécision justifie d’ailleurs les différences existant entre les législations des différents pays.

Pourcentage de personnes insatisfaites de la qualité de l’air, lorsqu’elles rentrent dans un bureau individuel occupé en fonction du taux de renouvellement d’air du bureau (source : Rapport technique du Comité Européen de Normalisation (CEN), CR 1752, 1998).

Il faut dès lors comprendre la réglementation comme un minimum permettant un certain renouvellement d’air des locaux, mais sûrement pas comme une garantie de ventilation correcte des locaux comme l’exige, par exemple, le RGPT (soit 30 m³/h et par personne).

Par exemple, faire confiance aux infiltrations pour assurer une partie du débit d’air, c’est s’exposer à des éléments non maîtrisables comme l’étanchéité de l’enveloppe et la pression du vent.

En résumé, on peut établir une gradation dans la garantie d’obtenir une ventilation correcte des locaux en fonction de l’installation mise en œuvre :

  • Pas de garantie : aucun système
  • Garantie minimum : réglementation wallonne avec ventilation naturelle
  • Garantie maximum : système double flux équilibré

Pratiquement, certains bureaux d’études choisissent un compromis entre l’application stricte des débits recommandés par la réglementation qui conduit à des débits d’amenée d’air nettement supérieurs aux débits d’évacuation et le système totalement équilibré. Ils configurent l’installation de telle sorte qu’en fonctionnement :

Débit d’air neuf = Débit d’air évacué + Taux d’infiltration du bâtiment

Un taux d’infiltration de 0,5 vol/h est souvent choisi comme valeur usuelle. Ceci permet d’ « imaginer » que le surplus d’amenée d’air neuf prévu pourra effectivement sortir du bâtiment et donc … y entrer réellement.


Lors d’une rénovation de châssis, est-on obligé de prévoir des grilles d’amenée d’air ?

Oui !

Dans le cas de transformations sans changement d’affectation et demandant un permis d’urbanisme, la réglementation wallonne précise :

  • Pour les logements (et les zones d’hébergement), il faut respecter la norme NBN D50-001, avec au minimum des amenées d’air réglables (OAR) dans les châssis rénovés.
  • Pour les bureaux et les écoles, tous les locaux dont on remplace les châssis de fenêtres doivent au minimum être pourvus d’amenées d’air réglables (OAR) qui fournissent les débits recommandés pour une pression de 2 Pa.

Que faire si la qualité de l’air extérieur est mauvaise ?

Lorsque la qualité de l’air extérieur est insuffisante (pollution, bruit, …), il est nécessaire de traiter celui-ci avant son introduction dans le bâtiment.

Seule une filtration efficace de l’air permettra d’éliminer les particules extérieures. Cela ne sera possible que si on installe un système de ventilation avec pulsion mécanique (double flux). L’emplacement des prises d’air extérieures joue aussi un rôle sur la transmission possible des polluants au sein du bâtiment :

  • Ne pas aspirer du côté de rues à fort trafic.
  • Éviter les effets de by-pass entre prise d’air neuf et évacuation d’air vicié. Les aspirations doivent naturellement être faites loin des zones de refoulement d’air vicié ou réchauffé (le long des terrasses, toitures, ou murs soumis à l’insolation). Les prises d’air neuf doivent être faites plus bas que les sorties des rejets d’air vicié. De même, il faut s’éloigner des orifices d’évacuation des fumées de parking et tours aéroréfrigérantes.
  • Ne pas aspirer au niveau du sol, respecter une distance d’un mètre minimum.

Avec une ventilation simple flux, il est possible d’éviter le transfert de bruit au moyen de bouches d’amenée d’air isophoniques. Cependant, dans les zones les plus bruyantes, on évitera de créer des « trous » dans les façades. Dès lors, seul un système de ventilation double flux permettra le renouvellement de l’ intérieur tout en limitant le transfert de bruit.


Existe-t-il d’autres possibilités d’amenées d’air naturelles que les grilles dans les châssis ?

Une amenée d’air naturelle est définie par la norme NBN D 50-001 relative à la ventilation des locaux d’hébergement sous le terme « ouverture d’alimentation réglable pour alimentation naturelle ou libre (OAR) ».

Les critères de définition sont :

  • être pratiquée dans une paroi extérieure (maçonnerie ou menuiserie);
  • ne pas augmenter les risques d’effraction;
  • être réglable en 3 positions minimum entre la position ouverte et la position fermée;
  • posséder un débit de fuite minimum en position fermée (critère facultatif).

Plusieurs systèmes peuvent répondre à ces critères et peuvent donc être utilisés comme amenée d’air naturel :

  • les grilles placées dans les fenêtres, soit entre vitrage et châssis, soit dans le châssis, soit entre châssis et maçonnerie;
  • les grilles disposées dans la maçonnerie, principalement au dos des émetteurs de chaleur;
  • les vasistas, c’est-à-dire des petites fenêtres basculantes.

Existe-t-il des installations de ventilation mécanique silencieuses ?

On repère différentes sources de bruits dans une installation de ventilation : en provenance de l’extérieur, du ventilateur, des locaux voisins (notamment technique), du réseau de distribution, …

Évaluer

Pour visualiser la qualité acoustique d’une installation.

Chacune de ces sources de bruit peut être maîtrisée moyennant une conception correcte de l’installation (choix correct du ventilateur, du silencieux, de la vitesse de l’air, des bouches, …). Le calcul acoustique d’une installation de ventilation est cependant complexe et doit souvent être réalisé par un spécialiste, ce qui est peut-être parfois négligé.

Calculs

Pour visualiser un exemple de calcul acoustique d’une installation de ventilation.

La correction d’une installation existante est également possible mais demandera des investissements souvent plus importants.

Améliorer

Pour visualiser les possibilités d’amélioration acoustique d’une installation existante.

Quelles sont les interactions entre l’obligation de ventilation et la réglementation incendie ?

L’A.R. du 19 décembre 97 impose que toute paroi séparant un lieu d’occupation (bureau, classe, dortoir, …) d’un chemin d’évacuation (en gros les couloirs) soit classée « Rf 1/2 h ».

Cela signifie que les ouvertures de transfert prévues entre les locaux où l’air neuf est amené et les couloirs par lesquels l’air transite vers les sanitaires doivent avoir la même résistance au feu.

Cela est possible grâce à des grilles de transfert coupe-feu. Pour ce qui est du détalonnage des portes, cela peut prêter à discussion.

Cependant, si on désire aller plus loin dans l’analyse des risques liés aux incendies, il faudrait également se poser la question du transfert des fumées. En effet, les grilles coupe-feu, comprennent un élément qui bouche la grille lorsque la température dépasse 70°C. Entre-temps, les fumées ont peut-être pu envahir les couloirs.

Bien que cela ne soit pas imposé par la législation, on peut dans ce cas se demander s’il n’est pas nécessaire d’équiper chaque local d’une amenée et d’une évacuation d’air local par local et d’éviter ainsi tout transfert entre locaux. Ceci est évidemment nettement plus onéreux.

En outre, pour les bâtiments d’une hauteur comprise entre 25 et 50 m, il est imposé de maintenir les cages d’escalier en surpression en cas d’incendie. À cela vient s’ajouter le désenfumage obligatoire des couloirs par pulsion et extraction pour les bâtiments de plus de 50 m de haut. Ces deux exigences se réalisent par un système de ventilation tout à fait indépendant de la ventilation hygiénique qui met en œuvre des débits nettement plus importants, de l’ordre de 10 renouvellements d’air par heure. De plus en cas d’incendie, la ventilation hygiénique doit être coupée pour limiter au maximum les transferts de fumée.

Enfin, tous les bâtiments doivent être compartimentés en cas d’incendie. Un compartiment est un plateau de maximum 2 500 m² et délimité à un étage. Les parois séparant les compartiments doivent être « Rf 2 h ». Ceci implique notamment que tout transfert d’air entre deux étages est soit interdit (pas de pulsion à un étage et d’extraction à un autre), soit obturable automatiquement (porte coupe-feu automatique, clapet coupe-feu).