Un Système C de ventilation dans les nouvelles classes de l’institut Sainte-Marie à Jambes

Le trio gagnant: isolation + étanchité + ventilation

« Si par le passé, on se fiait aux fuites d’air pour assurer la ventilation des petits bâtiments, le perfectionnement des méthodes de construction, telle la pose de fenêtres plus tanches, de pare-vapeur continus, ainsi qu’un plus grand souci du détail, ont augmenté l’étanchéité à l’air des bâtiments. Les fuites d’air ne constituent donc plus une source de ventilation suffisante pour répondre aux besoins de ventilation, dans le cas des bâtiments récent et/ou rénovés. »
Jean-Marie Hauglustaine et Francy Simon, « La ventilation et l’énergie – guide pour les architectes », P.11

Dans cette logique d’étanchéisation des bâtiments qui permet un meilleur contrôle du climat intérieur, la ventilation fait partie d’un trio indissociable :

Le trio gagnant :

  • Isolation thermique ;
  • Etanchéité à l’air ;
  • Ventilation contrôlée.

+

  • Favoriser les apports solaires gratuits tout en évitant la surchauffe.

 

La qualité de l’enveloppe

La meilleure énergie est celle que l’on utilise pas.
Au plus l’enveloppe est performante, au plus les besoins en énergie sont réduits.

Et la PEB ? En cas de rénovation d’une PEN…

La réglementation PEB prévoit des exigences de ventilation pour tous types d’unités PEB quelle que soit la destination (résidentielle ou non-résidentielle) et la nature des travaux applicables.

DESTINATION NATURE DES TRAVAUX REFERENCE REGLEMENTAIRE
Neuf et assimilé Changement de destination Rénovation simple Rénovation importante
 

 

 

 

 

Mise en place d’un système de ventilation complet soit :

  • Alimentation et évacuation naturelle ;
  • Alimentation et mécanique ;
  • Alimentation naturelle, évacuation mécanique ;
  • Alimentation et évacuation mécanique.

Les dispositifs de ventilation installés doivent permettre d’assurer les débits requis  tant en alimentation qu’en évacuation  et ce, dans tous les espaces, qu’ils soient destinés à l’occupation humaine ou non.

NB : Dans les espaces destinés à l’occupation humaine, les débits  d’alimentation doivent  obligatoirement être réalisés avec de l’air neuf. Par contre, dans les locaux non destinés à l’occupation humaine, il est permis d’alimenter en air transféré sous certaines conditions.

 

 

 

Pour les locaux existants où des châssis de fenêtres ou de portes extérieurs sont placés ou remplacés, seules les exigences de ventilation relatives aux amenées d’air sont applicables.

Pour les locaux situés en extension, mise en place de dispositifs de ventilation permettant d’assurer les débits requis tant en alimentation qu’en évacuation et ce, dans tous les espaces, qu’ils soient destinés à l’occupation humaine ou non.

NB : Il est permis de faire mieux que la réglementation en prévoyant un système de ventilation complet.

 

 

 

Annexe C3* – VHN de l’arrêté qui fait référence, notamment, à la norme NBN EN 13779 : 2004.

Lien vers les textes réglementaires : Réglementation PEB à partir du 11/03/2021 – Site énergie du Service public de Wallonie.

Pour les dispositifs de ventilation des immeubles non résidentiels destins à l’usage humain – tels que les écoles – la classification de base de la qualité de l’air intérieure est reprise dans le tableau ci-dessous :

CATEGORIE DESCRIPTION CLASSIFICATION PAR LE NIVEAU E CO2

Niveau de co2  au-dessus du niveau de l’air fourni en [ppm]

VALEUR PAR DEFAUT
INT 1 Qualité d’air intérieur excellente < 400 350
INT 2 Qualité d’air intérieur moyenne 400 – 600 500
INT 3 Qualité d’air intérieur modérée 600 – 1 000 800
INT 4 Qualité d’air intérieur basse > 1 000 1 200

Lors du dimensionnement des systèmes de ventilation, le débit de conception ne peut pas âtre inférieur au débit minimal correspondant à la catégorie d’air INT3, qui correspond à 75 à 80 % de personnes satisfaites par la qualité de l’air.

Un aspect essentiel d’une installation de ventilation est la détermination du taux de renouvellement d’air ventilé. Pour maximiser les économies d’énergie, il faut réduire autant que possible le taux de renouvellement d’air durant la période de chauffe et, en été, utiliser le refroidissement de nuit, par une surventilation du bâtiment. La ventilation doit néanmoins rester suffisante afin d’empêcher l’accumulation d’agents contaminants dans l’air intérieur et de permettre aux occupants de respirer, de façon à assurer la bonne santé des occupants.

 

Système C

Amenée d’air naturelle
Extraction d’air naturelle
Apport d’air mécanisé
Extraction d’air naturel
Amenée d’air naturelle
Extraction mécanisée
Amenée d’air mécanisé
Extraction mécanisée
(+ échangeur de chaleur)

Dimensionnement

L’apport d’air neuf extérieur se fait dans ce cas-ci par une série répétée d’ouvertures d’amenée d’air réglables (AOR) sur châssis avec un débit de 100 m³/h/m sous 20 Pa

Etant donné que la façade se déploie sur plus de 70 m de long et que l’ensemble de la toiture est percée en continu sur toute sa longueur et sur ses deux côtés pour accueillir un ensemble de baies vitrées afin de faire pénétrer la lumière sous les toits du bâtiment, il y a un potentiel théorique de débit nominal de 70 m X 100 m³ / h /m, soit 7 000 m³.

Source = auteur de projet

L’aérateur de fenêtre auto-réglable à rupture thermique est un profil en aluminium doté d’une série de perforations de 2,9 X 20,3 mm de manière à servir de moustiquaire anti-insectes. Le profil perforé est totalement amovible, ce qui permet à l’aérateur d’être nettoyé complètement à la brosse ou à l’aspirateur.

Le profilé perforé constitue une faiblesse au niveau de la performance thermique du châssis. En effet, la valeur U du profil est de 3,0 W/m²K. Cette pièce d’aération a une hauteur de 92 mm. Cette faiblesse thermique engendrée par le profilé doit être au maximum compensée par les performances thermiques du reste du vitrage afin que l’ensemble du châssis (système d’aération compris) rencontre la performance demandée. Mais il ne faut également pas perdre de vue que que l’air entrant par ces grilles, ayant la même température que l’air extérieur, engendre des déperditions thermique dont il y a lieu de tenir compte. En période de chauffe, ce type de ventilation génère un apport d’air « froid » qui demande à être compensé au plus proche de ces pertes. Ce système, par ricochet, pèse sur le calcul global de la consommation énergétique du bâtiment étant donné que ces pertes occasionées par l’amenée d’air non pré-chauffé doivent être compensées ; ce qui n’est pas le cas dans avec un système de ventilation mécanique double flux avec récupération de chaleur. Dans chaque nouveau projet, une réflexion calculée sur les gains et les pertes permet d’étayer le choix vers tel ou tel système.

Comme le prévoit le cahier des charges, l’aérateur de fenêtre est de type autoréglable à rupture thermique et est prévu pour un montage sur vitrage.

  • Rupture thermique : Un profil porteur en plastique de haute qualité fait office de rupture thermique.
  • Autorégulation : pour éviter les courants d’air, un clapet autoréglable (exempt d’entretien) est appliqué dans le clapet de fermeture, ce qui rend l’aérateur autoréglable. Ce clapet réagit automatiquement aux différences de pression/à la force du vent et ne peut pas être manipulé par l’utilisateur.

Groupes de ventilation

Caisson extraction insonorisé de 470 m³/h.

Groupe de ventilation dans Aile A

Groupe de 1 845 m³/h avec sonde CO2 anti retour.

Ce groupe gère la ventilation de 3 classes (dont une grande classe de 140 m²).

Groupe de ventilation dans Aile B

Groupe de 1 405 m³/h avec sonde CO2 anti retour.

Ce groupe gère la ventilation (au niveau de l’extraction) de 3 classes et d’un 4ième local.

Un caisson d’extraction insonorisé réglable (0 -10 V)

Ce groupe est dédié à la nouvelle salle des professeurs. Son système 0-10 V permet de réguler manuellement l’extraction de l’air en fonction de la situation (variations météorologiques et/ou du taux d’occupation).

Comme le groupe est asservi à une sonde CO2 (en sortie), le système ne va tirer le dbit d’air nominal mais va s’adapter selon le taux de CO2. Il est préférable d’avoir une sonde CO2 pour chaque classe mais comme le groupe de ventilation est dédié à des locaux ayant la même affectation, il y a tout de même une logique cohérente au niveau de l’occupation des locaux.

La reprise d’air se fait au sein même du local via un réseau de gaines apparentes. Les flexibles jouent le rôle de silencieux.

 

Il y a une régulation temporelle plus un potentiomètre réglable manuellement qui permet la possibilité d’augmenté le débit en fonction de l’occupation.

 

 

 

 

 

Installation d’une ventilation double-flux à l’école communale de Wépion

Contextualisation des travaux

L’école communale de Wépion a entrepris des travaux de rénovation sur l’ensemble de ses bâtiments :

 

Source= https://www.le-nid.be/

  • La rénovation intérieure de partie dédiée à l’école maternelle
  • le remplacement de l’ensemble des châssis (lien vers l’article)
  • l’installation d’un système de ventilation double-flux
  • la rénovation des sanitaires

Le dossier bénéficie d’une subvention partielle du montant de l’investissement via le programme UREBA PWI qui a fait l’objet de l’appel à projet UREBA Exceptionnel 2019.

Dans le prolongement des travaux en toiture déjà réalisés et dans cette logique d’amélioration (thermique) de l’enveloppe, c’est à présent au tour des châssis d’être remplacés. Etant donné que les travaux d’isolation impliquent une prise en compte de l’étanchéité à l’air et qu’ils sont indissociables des travaux relatifs à la ventilation, un autre lot de ce chantier concerne la mise en place d’une ventilation.

 


Situation existante avant travaux

Pas de système de ventilation. (phrase)

Pas de plainte QAI mais point d’attention (voir dossier)

Statistique POE (sur les 25 élèves interrogés). Est-ce dû au fait que l’enveloppe (avant travaus) pas étanche à l’air?


VMC double-flux

« Une ventilation satisfaisante des locaux occupés, au moyen de l’air extérieur, est une exigence fondamentale pour obtenir des conditions environnantes acceptables à l’intérieur des bâtiments. Elle est, par conséquent, un élément essentiel de la conception d’un bâtiment et de ses équipements ».
Source : Guide bleu ventilation p 8.

 

Par le nombre et la surface de châssis remplacés, l’étanchéité du bâtiment a été renforcée. Par conséquence, un travail sur la ventilation hygiénique des locaux s’imposait.

 

Attention schéma double-flux, new photos Wépion


Norme et réglementation

L’Annexe C3-VHN de l’AGW PEB du 15/12/16 [GW -16- 2], et la norme NBN EN 13779 [IBN -07-1] définissent les exigences de ventilation pour les bâtiments non résidentiels destinés à l’usage humain. Les besoins de ventilation hygiénique de ces bâtiments varient en fonction de leur densité d’occupation, de l’utilisation du bâtiment, de la qualité de l’air intérieur demandée et de l’environnement extérieur.

La classification de base de la qualité de l’air intérieur est reprise dans le tableau ci-dessous.

Catégorie Description Classification par le niveau de CO2

Niveau de CO2 au -dessus du niveau de l’air fourni en [ppm]

Valeur par défaut [ppm]
INT 1 Qualité d’air intérieur excellente < 400 350
INT 2 Qualité d’air intérieur moyenne 400 – 600 500
INT 3 Qualité d’air intérieur modérée 600 – 1 000 800
INT 4 Qualité d’air intérieur basse > 1 000 1 200

Source : Guide bleu, p. 19.

Lors du dimensionnement des systèmes de ventilation, le débit de conception ne peut pas être inférieur au débit minimal correspondant à la catégorie d’air intérieur INT 3, qui correspond à 75 à 80 % de personnes satisfaites par la qualité de l’air. Dans les espaces destinés à l’occupation humaine, pour atteindre la catégorie d’air intérieur INT 3, il faut déterminer le nombre de personnes occupant un local et le multiplier par le débit de conception minimal correspondant à la catégorie d’air intérieur INT 3. Le débit de conception minimal dans les espaces destinés à l’occupation humaine doit être déterminé sur base du tableau ci-joint de la norme NBN EN 13779 (taux d’air neuf par personne).

Débit d’air neuf par personne
Catégorie Zone non fumeur
Plage type Valeur par défaut
INT 1 > 54 72
INT 2 36 – 54 45
INT 3 22 – 36 29
INT 4 < 22 18

On aboutit, ainsi, à un débit d’air neuf minimal de 22 m³/h par personne. Parallèlement à cette réglementation, la Réglementation Générale pour la Protection du Travail (RGPT) impose, dans tout local occupé par du personnel, que l’employeur prenne toutes dispositions pour qu’un débit d’air neuf de 30 m³/h par personne soit amené dans le local.

Extrait du tableau 11 de la norme NBN-13779 : 2004 qui fixe le taux d’air neuf par personne selon la catégorie de qualité d’air intérieur (ici, INT 3) :

Catégorie Unité Débit d’air neuf / personne
Zone non-fumeurs Zone fumeurs
Plage type Valeur par défaut Plage type Valeur par défaut
INT 3 m³/h par personne 22 – 36 29 43 – 72 58

Outil de simulation / Niveau de CO2 d’une classe

La Belgian Society for Occupational Hygiene est l’association scientifique belge pour l’hygiène du travail et met à disposition du grand public un outil de simulation sur la qualité de l’air d’un local en fonction de son volume, du taux d’occupation et du débit de ventilation de ce local.

Source : https://CO2sim.bsoh.be.


Régulation

la régulation de la qualité de l’air est assurée à un système de régulation de type IDAC6; ce qui correspond aux exigences du programme UREBA PWI 2019. Dans le cas l’installation de la VMC à l’école communale de wépion, chacun des quatres groupe de ventilation est asservie à une sonde CO2.

Catégorie Description
INT – C1 (IDA-C1) Sans régulation.
Le système de fonctionne constamment. PAS AUTORISE !
INT – C2 (IDA-C2) Régulation manuelle.
Le système de fonctionne selon une commutation manuelle. PAS AUTORISE !
INT – C3 (IDA-C3) Régulation temporelle.
Le système de fonctionne selon un programme temporel donné.
INT – C4 (IDA-C4) Régulation par l’occupation.
Le système de fonctionne en fonction de la présence (commutateur d’éclairage, détecteur à infrarouge, …).
INT – C5 (IDA-C5) Régulation par la présence (nombre de personnes).
Le système de fonctionne en fonction de la présence de personnes dans l’espace.
INT – C6 (IDA-C6) Régulation directe.
Le système est régulé par des détecteurs mesurant les paramètres de l’air intérieur ou des critères adaptés (détecteurs de CO2, gaz mélangés, COV, …) Les paramètres  utilisés doivent être adaptés à la nature de l’activité dans l’espace.

Types possibles pour la régulation de la qualité d’air intérieur (INT – C).
Source : PEB, page 210.


Dimensionnement adapté à la fonction des locaux

Selon la fonction du local (classe, cuisine, sanitaire), le dimensionnement de la VMC doit être adapté.

Source= architecte ville de Namur / BEP

La superficie d’une classe-type est de plus ou moins 55 m ². (volume estimé à 150 m³) Sur base d’un nombre moyen d’occupants de 23 personnes (22 élèves + 1 adulte), la simulation du taux CO2 couvrant une période continue de 120 minutes dessine une courbe qui plafonne à la limite des 1 000 ppm. Le taux de renouvellement d’air pris en compte pour cette simulation est le débit de conception minimal réglementaire, soit 22 m³/(h.pers).

 

simulation VMC classe-type à l’école communale de Wépion

Le débit d’air prévu dans le réfectoire (+/- 140 m²) est de 2 000 m³/h.

En prenant les 22 m³/h de référence, le dimensionnement correspond à une occupation de la pièce par 90 personnes.

Les normes imposent un débit de conception minimal plus élevé pour les espaces dédiés aux sanitaires. Le débit de conception minimal dans les toilettes est de :

  • 25 m³/h par WC (y compris les urinoirs)

ou

  • 15 m³/h par m² de surface au sol
    si le nombre de WC n’est pas connu au moment du dimensionnement du système de ventilation.

Quatre groupe de ventilation gèrent la ventilation de l’école.

 

Groupe 1 4 780 m³/ h
  • 7 classes (500 m³/h chacune)
  • Local sieste
  • Petit local polyvalent
  • Salle informatique
  • Secrétariat
Groupe 2 5 690 m³/ h
  • 9 classes (500 m³/h chacune)
  • Salle des professeurs
  • Bureau de la direction
Groupe 3 3 240 m³/ h
  • Salle de gymnastique
  • vestiaire
Groupe 4 2 500 m³/h
  • Réfectoire
  • Cuisine

Des plans d’architecture meublés « habités » pour une occupation réelle!

Source = bureau d’étude . Plan meublé pour une nouvelle construction dans le BW

Bien que la norme PEB impose un débit de conception minimal qui prenne en compte le nombre réel d’occupants, la mise en dessin sur plans du scénario d’occupation permet de lever les ambiguïtés possibles sur l’hypothèse de départ prise en compte dans le calcul de ce débit de conception minimal.

Encourager la maîtrise d’ouvrage, les porteurs de projet à dialoguer avec l’auteur de projet sur base de documents graphiques présentant l’occupation réel des locaux permet d’éviter d’avoir recours à la méthode se basant sur les m² minimum pas personne pour dimensionner le système de ventilation. Cette méthode aboutit généralement à une sous-estimation du nombre d’occupants.

 

Une nouvelle installation de ventilation – La Providence Herve

Une nouvelle installation de ventilation sous la loupe a Herve


L’institut scolaire de La Providence de Herve a mis en place un nouveau bâtiment équipé de systèmes de ventilation double flux avec récupération de chaleur.

Nous avons passé sous la loupe les nouvelles installations avec l’aide des différentes personnes concernées, occupants et spécialistes. La régulation simultanée de la température et du taux de CO2 pose problème…

Vous découvrirez dans la vidéo ci-dessous les résultats de notre enquête et les leçons à tirer pour un futur éventuel projet. Suivant les locaux (classes, salle de réfectoire, …), des solutions différentes apparaissent.

5 … 4 … 3 … 2 … 1 … Action !

Une nouvelle installation de ventilation sous la loupe

 

Des économies d’énergie par une ventilation efficace des auditoires

Un auditoire Montesquieu à Louvain-la-Neuve.

Revoir les systèmes de ventilation et de chauffage d’anciens auditoires cela peut rapporter gros !


Introduction

L’Université Catholique de Louvain (UCL) compte de nombreux auditoires à Louvain-la-Neuve qui ont été construits dans les années 1970. A l’époque on se souciait relativement peu de la consommation d’énergie malgré le premier choc du pétrole de 1973. Ces bâtiments, bien que confortables, sont donc thermiquement peu performants.

Monsieur D. Smits, responsable de la cellule énergie et environnement du patrimoine immobilier de l’université, en est bien conscient. En 2015, il décide d’agir. Il communique les données du problème à ses collègues et propose des pistes de solutions qui seront mises en œuvre.

Nous allons étudier une des réalisations qu’il a menée, la modification des systèmes de ventilation et de chauffage des auditoires du bâtiment MONTESQUIEU.

Le bâtiment Montesquieu à Louvain-la-Neuve.


La démarche

Évaluer

La première étape fut d’évaluer grossièrement les potentiels d’économie d’énergie.
Dans cinq bâtiments comptant de nombreux auditoires, la ventilation fonctionnait même lorsque les auditoires n’étaient pas occupés.
Il a été décidé de réguler, durant trois mois (octobre, novembre et décembre 2015) leur ventilation de manière manuelle en fonction de leur occupation. Lorsque l’auditoire n’était pas occupé, la ventilation était arrêtée.

Bien que les conditions climatiques aient été peu rigoureuses, les résultats mesurés furent spectaculaires.

Par rapport aux années précédentes :

  • la consommation électrique baissa de 313.175 kWh à 271.087 kWh, soit une économie d’environ 13 %;
  • la consommation thermique normalisée baissa de 1.179 MWh à 796 MWh, soit une économie d’environ 32 %.

Cela correspond en trois mois d’hiver à :

  • une économie financière de 26.572 € ;
  • une économie de 121 tonnes de CO2.

Et … aucune plainte des utilisateurs n’a été enregistrée 😉

Communiquer et convaincre

Avec des arguments pareils, le message était facile à faire passer

Il y a de belles économies à réaliser !

Tous les décideurs furent ainsi convaincus de la nécessité d’intégrer les paramètres d’occupation dans la régulation et que l’investissement financier a sans aucun doute un temps de retour optimal !

Agir

Le bâtiment MONTESQUIEU a été choisi pour effectuer les premiers travaux. Les tests de 2015 sur ce bâtiment avaient abouti à une économie de 19%, tant en matière de consommation électrique que de consommation thermique.

Vérifier

L’impact des travaux sera non seulement évalué sur les consommations d’énergie mais aussi sur le confort. Si les espoirs attendus se confirment, l’action sera ensuite étendue aux autres bâtiments susceptibles d’être facilement améliorés.


Le bâtiment

Le bâtiment Montesquieu a été terminé en 1978.

Il compte :

  • 4 auditoires de 168 places chacun ;
  • 2 grands auditoires de 356 et 396 places.

Les quatre auditoires de 168 places chacun au rez-de-chaussée.

Les deux grands auditoires de l’étage.

Coupe transversale des auditoires.

  1. Plénum de pulsion des petits auditoires,
  2. plénum de reprise des petits auditoires,
  3. plénum de pulsion des grands auditoires,
  4. plénum de reprise des grands auditoires.
  5. radiateurs.

Grand auditoire de 359 places.

Les systèmes existants

Chauffage

Le chauffage des auditoires est assuré par deux systèmes :

1. Les radiateurs implantés dans les auditoires et les autres locaux du bâtiment étaient alimentés par des circuits branchés sur le réseau de chauffage urbain de Louvain-la-Neuve.

Chauffage statique par des radiateurs.

2. L’air de ventilation des auditoires était réchauffé dans les groupes de pulsion par des circuits connectés au même réseau.

Ventilation

L’air neuf est amené dans les auditoires par des fentes sous les sièges reliées à un plénum de pulsion.

 

Les ouvertures de pulsion sous les sièges.

Les ouvertures vues depuis le plenum.

Il est extrait par des grilles aux plafonds qui communiquent avec un plénum de reprise.

Les grilles d’extraction.

Les sanitaires possèdent leur propre groupe d’extraction.

Chaque auditoire possède son propre groupe de pulsion et son propre groupe d’extraction.
L’air était chauffé dans les groupes de pulsion. Les groupes d’extraction sont distants des groupes de pulsion. Les groupes de pulsion sont situés au sous-sol, tandis que les groupes d’extraction sont situées au dernier étage. La chaleur de l’air extrait n’est pas récupérée.

Un des groupes de pulsion.

Les groupes ne fonctionnaient qu’à un seul régime durant toute la journée d’occupation des auditoires.


Les travaux réalisés

L’objectif de ces travaux est d’optimiser :

  1. le fonctionnement du chauffage de manière à obtenir dans les auditoires les températures nécessaires en fonction des occupations horaires ;
  2. la ventilation (alimentation – extraction) de manière à obtenir une qualité de l’air suffisante.

Cette optimisation entraine une diminution de la consommation d’énergie (chauffage et électricité) tout en maintenant le confort.

La régulation du chauffage et de la ventilation a été connectée au programme centralisé de l’UCL pour la gestion de l’occupation des auditoires ADE Expert. De cette manière, les apports en chaleur et en air frais peuvent être régulés en fonction de l’utilisation et de la température dans le local, et anticipé en fonction des conditions atmosphériques extérieures.

Le planning d’occupation d’un auditoire.

Les radiateurs ont été remplacés et redimensionnés de manière à fournir la puissance nécessaire pour assurer le chauffage des auditoires indépendamment de la ventilation lorsque celle-ci n’est pas nécessaire.

Radiateur ajouté.

Radiateur remplacé.

Chaque auditoire possède son propre circuit de chauffage alimenté par une vanne à deux voies connectée à la régulation. Tous les auditoires ne sont donc pas chauffés si certains sont inoccupés.

Les vannes à deux voies règlent le débit des circuits des radiateurs.

Les moteurs des groupes de pulsion et d’extraction ont été remplacés par des moteurs asynchrones à haut rendement. Des variateurs de fréquence sont installés.

Le variateur de fréquence.

Ils sont commandés par des nouvelles sondes de température et de qualité de l’air (CO2) qui ont été placées dans les auditoires ainsi que par le boîtier pompier.

La sonde T° & CO2 placée dans un auditoire.

De cette manière, la ventilation varie en fonction des besoins en air frais uniquement indépendamment des besoins en chauffage. Les batteries de chauffe des groupes de pulsion assurent une température confortable de l’air pulsé et peuvent aussi servir de complément en cas de grand froid et d’insuffisance des circuits de chauffage statique.

Principe de la régulation du système ventilation-chauffage

Chaque auditoire est régulé séparément.
Le programme centralisé d’occupation des auditoires (ADE Expert) indique si l’auditoire est occupé.

-> S’il n’est pas occupé, la ventilation et le chauffage sont arrêtés.

-> S’il est occupé,

  • S’il fait froid, le chauffage de l’auditoire se met en route (y compris anticipation). La sonde de température à l’intérieure de l’auditoire règle l’ouverture de la vanne à deux voies du circuit de chauffage.
  • La ventilation se met en route en fonction des informations reçue de la sonde CO2 qui se trouve dans l’auditoire. Le débit du groupe est déterminé par le taux de CO2 constaté. S’il fait froid, la température de l’air de ventilation est réglée par une sonde de température placée dans le groupe de pulsion. Il est réchauffé par la batterie de chauffe du groupe alimenté par une vanne à trois voies reliée au circuit de chauffage.

Un des nouveaux tableaux de commandes.

Récupération de la chaleur sur l’air extrait. Une piste pour le futur

Un échange de chaleur n’a pas pu être installé entre l’air entrant et l’air sortant à cause du coût important des adaptations nécessaires et à la distance entre les circuits des gaines d’extraction et de pulsion et des groupes GE et GP. Plus tard, un système d’échangeur à eau glycolée pourrait être installé si le temps de retour de l’investissement le justifie et si les moyens sont disponibles.

Schéma échangeur à eau glycolée.


Le confort

Aucune plainte d’inconfort n’a été enregistrée. Des appareils de mesure ont été placés dans un des grands auditoires pour vérifier l’efficacité de la régulation. Un appareil a également été placé à l’extérieur pour connaître les conditions atmosphériques au moment où les mesures sont effectuées à l’intérieur.

 

Data logger fixé sur un baffle d’un grand auditoire.

Data logger extérieur – abri ventilé.

Le niveau de CO2 n’a jamais dépassé les 1000 ppm sauf lorsque les installations sont arrêtées (par exemple, un dimanche lorsque l’auditoire a été utilisé sans que le système de ventilation ait été mis en fonctionnement).

Concentration CO2 durant une semaine.
Le 18/06 l’auditoire a servi sans ventilation.

Concentration CO2 durant une semaine de cours
lorsque la ventilation est arrêtée.

La température de l’air est restée entre 22 °C et 25 °C pendant les périodes d’utilisation

Températures durant une semaine.

L’humidité relative de l’air a été maintenue aux environs de 50 % (entre 40 % et 60 %) durant ces mêmes périodes.

Humidité relative durant une semaine.


Les économies d’énergie

Les économies d’énergie ont été obtenues grâce à :

Une économie d’énergie électrique due à un fonctionnement réduit des groupes d’extraction et de pulsion en fonction des besoins exacts, tant en ce qui concerne le temps de fonctionnement que le débit.

Une économie en chauffage puisque, en hiver, la quantité d’air propre froid est limité aux besoins.
Les années qui viennent nous montreront les économies qui auront pu être réalisées.


Informations complémentaires

Cette étude de cas a été développée grâce à l’aide, les informations et les documents fournis par la cellule énergie et environnement du patrimoine immobilier (CEPI) de l’Université Catholique de Louvain.
Nos interlocuteurs furent Monsieur Didier Smits, Madame Céline Purnelle et Monsieur Pierre Allard.

www.uclouvain.be/cepi

Ventilation de l’antenne communale de Louvain-la-Neuve

Ventilation de l'antenne communale de Louvain-la-Neuve


Présentation du projet

La commune d’Ottignies-Louvain-la-Neuve a pris l’initiative de se doter d’un bâtiment exemplaire sur le plan énergétique lors de la construction de son antenne communale à Louvain-la-Neuve. L’appel à projet du bâtiment date du 2 septembre 2008 et a été obtenu par le cabinet d’architecture DELTA. Le bureau d’étude Matriciel s’est chargé des études énergétiques et le bureau BSolutions des techniques spéciales. Le chantier a été terminé en septembre 2013.

 

L’antenne communale de Louvain-la-Neuve est située au 1 voie des hennuyers à Louvain-la-Neuve.

Le bâtiment neuf abrite certains services de l’administration communale de la ville d’Ottignies-Louvain-la-Neuve ainsi que des locaux pour le CPAS et l’antenne de police. Il possède de nombreux bureaux individuels et paysagers et plusieurs salles de réunion. Il est également équipé d’une cafétéria, de plusieurs cuisines, de douches au rez-de-chaussée et de toilettes à chaque étage.
Le bâtiment est divisé en deux parties distinctes marquées par la matérialité de ses façades et de sa forme :

  • la « tour » qui fait office de hall d’entrée, d’accueil, de salle d’attente et de circulation verticale dans le bâtiment et intègre la cafétéria au dernier étage et ;
  • les plateaux où se situent les bureaux, salles de réunions et sanitaires. Les locaux techniques et l’antenne de police sont situés au rez-de-chaussée.

 

Vues intérieures de la salle d’attente située dans la « tour » et des bureaux du CPAS.

Ce bâtiment a été pensé et construit avec l’objectif d’atteindre des performances énergétiques passives. Cependant, durant les phases d’analyses, il a été nécessaire de ne pas intégrer la partie cafétéria et hall d’entrée (la tour du bâtiment) dans le modèle passif afin de pouvoir obtenir les performances énergétiques souhaitées. Une petite astuce qui a permis d’obtenir, pour une partie seulement du bâtiment, le label passif !

Le tableau suivant présente un récapitulatif des valeurs cibles pour un bâtiment passif et les résultats obtenus par simulation lors de l’avant-projet de l’antenne communale.

Indicateur Objectifs Résultats
Vitrages G > 50% 52%
Besoin net de chauffage  ≤ 15 kWh/m²an 13 kWh/m²an
Besoin net de refroidissement ≤ 15 kWh/m²an 3 kWh/m²an
Surchauffe estivale << 10% 8 %
Puissance d’éclairage < 8 W/m² 7,8 W/m²
Étanchéité à l’air n50 < 0,6 Atteint par hypothèse
Absence de ponts thermiques coefficients de transmission linéaires < 0,01 W/mK Atteint par hypothèse
Ventilateur à courant continu consommation <0,45 W/(m³/h) 0,35 W/(m³/h)
Récupération de chaleur haut rendement > 75 % > 80 %
Consommation d’énergie primaire < 85 kWh/m²an 67 kWh/m²an

La ventilation de ce bâtiment est son point particulier. En effet, il possède deux modes de ventilation. Le premier est une ventilation mécanique double flux et le second une ventilation naturelle manuelle réalisée par ouverture des fenêtres et cheminées centrales. L’alternance de ces deux modes se fait suivant des conditions bien précises.


Régulation de la température et du renouvellement d’air

Le bâtiment est équipé, pour le chauffage :

  • d’une chaudière au gaz modulante fonction de la température extérieure suivant un régime nominal 50/30 °C,
  • de radiateurs avec vannes thermostatiques,
  • d’une régulation intégrée pour moduler la température de l’air soufflé grâce à un récupérateur de chaleur à plaques de rendement supérieur à 75 % et d’une batterie à eau,
  • de sondes de température intérieurs et extérieurs.

et pour le renouvellement d’air (mécanique) :

  • d’un groupe de ventilation de pulsion et d’extraction de 3600 m³/h,
  • d’une régulation par horloge,
  • d’une sonde de pression de gaine 500 Pa permettant de faire varier la vitesse des ventilateurs en fonction de l’ouverture (et fermetures) des registres et clapets,
  • de trois sondes de qualité d’air ambiant agissant, notamment, sur les ouvertures des cheminées et trémies,
  • d’un capteur de pluie.

Consignes de températures et de confort

De façon générale, la température de confort prévue pour le bâtiment se situe entre 20 et 25 °C. Un programme horaire pour la température de consigne est prévu :

Températures de consignes
Horaire « Bureaux » « Tour »
Lundi à vendredi de 7h30 à 17h30 et samedi de 8h à 20h 20 °C 15 °C
La nuit et les Week-ends 15 °C 10 °C

La ventilation hygiénique, ventilation de base, est coupée les nuits et les week-ends.

Du point de vue technique : les principes et valeurs de régulation

Chauffage

La modulation du confort intérieur est réalisée grâce à la chaudière, à un thermostat d’ambiance intérieur, à des vannes thermostatiques et à l’aide d’un programme horaire indiquant le régime d’occupation.

Si la température extérieure est négative, l’activité de la chaudière est maintenue en permanence. Au contraire, si la température extérieure est supérieure à 20 °C ou si l’on travaille en ventilation naturelle, la chaudière est mise à l’arrêt.

Ventilation

Pour la ventilation, le passage d’un mode à l’autre est principalement fonction de la température extérieure. Toutefois, des dérogations sont possibles : en cas de pluies, du dépassement d’un seuil critique pour la qualité de l’air, d’incendie, etc.

Le mode de fonctionnement de la ventilation est le suivant   :

Régulation de la ventilation
Température extérieure Ventilation mécanique Ventilation naturelle avec ouverture des fenêtres
inférieure à 15 °C Débit nominal non
entre 15 °C et 24 °C Débit minimal Possible
supérieure à 24 °C Débit nominal + Free cooling non
  • Le débit nominal correspond au débit de conception en s’adaptant aux débits recommandés (pulsés et extraits) de l’annexe C3 de la PEB, elle-même basée sur la norme NBN 13799. Ce type de ventilation suppose que l’air est pulsé et extrait entièrement grâce au système mécanique, les trémies des cheminées centrales sont donc fermées.
  • Le débit minimal correspond à la ventilation minimale requise pour les sanitaires. Celle-ci est effectuée par extraction. Lorsque la ventilation passe en débit minimal, les ouvrants pour la ventilation naturelle sont ouverts et celle-ci est donc permise dans les bureaux et la tour.
  • Le free cooling permet le refroidissement du bâtiment durant les périodes chaudes. Il est estimé à 4 vol/h.

Plusieurs dérogations à cette régulation existent, en cas :

  • de pluies : la ventilation (re)passe en débit nominal et les ouvertures pour la ventilation naturelle sont fermées.
  • de dépassement du seuil défini de qualité de l’air intérieur : la ventilation (re)passe en débit nominal durant minimum 1h.
  • de dérogation grâce à un bouton manuel dans la salle de réunion : la ventilation mécanique nominale est forcée dans tout le bâtiment.

 

Capteur de pluie et bouton de la salle de réunion permettant de déroger à la ventilation naturelle et de forcer la ventilation mécanique.

Finalement, le by-pass du récupérateur de chaleur est activé si la température extérieure est supérieure à 15 °C et qu’elle est inférieure à la température intérieure.

Du point de vue des occupants : une régulation par indicateur lumineux et vannes thermostatiques

Chauffage

Les occupants sont invités, grâce à des affiches, à placer leurs vannes thermostatiques sur la position 3 pour avoir une température équivalente d’environ 20 °C.

Ventilation

Une particularité du site est la présence de témoins lumineux. Ces indicateurs lumineux servent à prévenir les utilisateurs du bâtiment de l’état de fonctionnement de la ventilation :

  • Lumière verte : la ventilation mécanique est minimal, ouverture des fenêtres autorisée.
  • Lumière rouge : la ventilation mécanique est nominal, ouverture des fenêtres interdite.

Sous chaque témoin lumineux est disposée une note explicative du fonctionnement de la ventilation et des consignes d’utilisations optimal.

    

Indicateur lumineux et note explicative disposée dans les couloirs du bâtiment.

Cet affichage visuel est intéressant, car il est simple à comprendre et à mettre en place. De plus, il ajoute un aspect participatif et pédagogique qui permet aux utilisateurs de comprendre le fonctionnement des mécanismes de ventilations au sein de leur bâtiment.

Cependant, cela pourrait être encore plus efficace si le témoin lumineux n’était pas seulement situé dans le couloir où il est uniquement visible si les occupants sortent de leur bureau.


La ventilation naturelle par cheminées centrales

Le bâtiment est équipé d’un système de plusieurs cheminées centrales permettant la ventilation naturelle des locaux, étage par étage suivant les affectations du bâtiment, les bouches d’extraction étant situées dans le couloir.

Organisation des cheminées d’extraction pour la ventilation naturelle de l’antenne communale

Bouches de rejet des cheminées situées en toitures

Ce mode de ventilation naturelle est très intéressant car économique et théoriquement très efficace. Il fonctionne suivant le principe du tirage thermique.

L’air extérieur étant plus frais que l’air intérieur, les fenêtres vont être ouvertes afin de refroidir les locaux. Cet air étant réchauffé monte et finit par être évacué par les bouches d’extraction de la cheminée créant ainsi une circulation de l’air intérieur. En outre, au plus la différence de température sera élevée entre l’intérieur et l’extérieur, au plus le tirage thermique sera efficace et donc augmentera le débit de ventilation. Il est autoadaptatif !

Circulation de l’air dans les locaux en ventilation naturelle

Chaque niveau du bâtiment possède son système de cheminée qui permet un taux de renouvellement d’air théorique de 1.5 vol/h en journée. Théoriquement, on aura donc un débit à chaque étage de :

Étage Superficie [m²] Hauteur sous plafond [m] Estimation du débit [m³/h]
Rez-de-chaussée 209 4 1254
Premier 262 3,22 1265
Deuxième 348 3,22 1680
Troisième 348 3,92 2046

La ventilation mécanique double flux

La ventilation naturelle est couplée à une ventilation mécanique double flux permettant un débit total de 3600 m³/h pour les bureaux.

La ventilation mécanique double flux est là pour assurer la ventilation hygiénique des locaux fonctionnant en parallèle de la ventilation naturelle lorsqu’elle est en fonctionnement, ainsi que la ventilation intensive lorsque les conditions extérieures ne permettent pas une ventilation naturelle. Seules la salle informatique et la cafétéria sont sous ventilation mécanique double flux constante.

L’ensemble des conduits horizontaux passe par de faux plafonds. Les conduits verticaux se situent soit dans des gaines techniques soit directement dans les cheminées centrales. Idéalement, il faudrait vérifier que dans ce dernier cas, les conduits n’entravent pas le bon fonctionnement de la ventilation naturelle.

Les bouches de pulsions sont situées dans les locaux telles que les bureaux, salles de réunion et salles informatiques et l’extraction se fait dans les sanitaires et les cuisines (zones humides).

Circulation de l’air dans les locaux en ventilation mécanique

La centrale de traitement d’air (CTA) est située en toiture. Elle est équipée d’un récupérateur de chaleur à haut rendement (> 80 %) composé d’un échangeur à plaques en aluminium à contre-courant qui permet d’obtenir de bonne économie d’énergie en préchauffant l’air entrant grâce à l’air extrait du bâtiment. Elle possède également une batterie chaude alimentée par la chaudière centrale du bâtiment.

Après la récupération de chaleur et le préchauffage par batterie chaude de 12,2 kW, l’air pulsé dans les locaux est à une température maximale de 24 °C.

Cette CTA ne prévoit finalement pas d’humidificateur ni de déshumidificateur et donc pas de batterie froide. En effet, le climat de la région et la possibilité de free cooling devraient permettre de se dispenser d’un système de refroidissement.


Campagne de mesures

Une petite campagne de mesures des ambiances intérieures a été lancée en août 2015 afin de vérifier les conditions de confort (température, humidité relative et concentration en CO2) du bâtiment. Cette campagne a consisté en une mesure objective de paramètres d’ambiance, mais aussi en un relevé des ressentis des occupants vis-à-vis de la qualité de l’air intérieur et de leur confort thermique.

Monitoring du bâtiment

Ce monitoring a consisté en la pose de 6 dataloggers (sondes de mesures avec enregistrement des données) dans le bâtiment afin d’observer l’évolution des ambiances intérieures.

Les 6 loggers étaient :

  • 2 sondes mesurant la température, l’humidité relative, la concentration en CO2,
  • 3 sondes mesurant la température et l’humidité intérieure des locaux,
  • 1 sonde d’extérieur mesurant la température et l’humidité du climat sur site.

Datalogger avec capteur permettant la mesure de la température, de l’humidité relative et de la concentration de CO2

La mesure du CO2 a plusieurs intérêts, il permet :

  • de jouer le rôle d’indicateur de la qualité de l’air,
  • de mesurer indirectement la concentration des autres polluants par corrélation,
  • détecter la présence de personnes dans le local,
  • de déduire l’amené d’air neuf : 30m³/pers/h permet de maintenir 1000 ppm dans l’ambiance avec une concentration extérieure en CO2 d’environ 400 ppm.

L’ensemble des sondes intérieures ont été réparties dans les bureaux au premier et deuxième étages sous des orientations différentes et également aux fréquentations diverses de manière à représenter la majorité des zones thermique et d’ambiances possibles du bâtiment :

Datalogger Type de bureau Superficie Orientation Occupation Apports solaires Charges hygrothermiques
Température, humidité et CO2 n°1 Open-space et guichets de la commune 98 m² nord-ouest variable limités fortes
Température, humidité et CO2 n°2 Bureau individuel 18 m² nord-ouest 1 personne limités faibles
Température, humidité n°1 Bureau collectif n°1 28 m² sud-est 3 personnes importants moyennes
Température, humidité n°2 Bureau collectif n°2 25 m² nord-ouest 2 personnes limités moyennes
Température, humidité n°3 Bureau d’accueil avec fenêtre ouverte sur le couloir 18 m² nord-ouest 2 personnes limités moyennes

Relevé d’impression d’ambiance par les occupants

Dans chacun des bureaux où un datalogger a été placé, il a été demandé aux occupants de remplir quotidiennement, midi et soir, un relevé d’ambiance intérieur. Les informations récoltées sont de type :

  • Ouvertures des fenêtres suivant une position ouverte ou fermée;
  • Ressenti de la qualité de l’air suivant une échelle de valeurs à 5 niveaux de très mauvaise à bonne;
  • Ressenti de la température suivant une échelle de valeurs de 7 niveaux de très chaud à très froid;
  • Commentaires ou sensations spécifiques.

De plus, afin de déterminer si des écarts de températures sont dus à une mauvaise utilisation des locaux ou à un mauvais réglage des installations, nous avons demandé à quelques utilisateurs de noter, de manière régulière (midi et soir), la position des fenêtres (ouvertes ou fermées), et leurs ressentis de la température et de la qualité d’air. En plus de déterminé si les installations sont bien utilisées ou non, c’est relevé devraient permettre de comprendre les évolutions de températures relevées par les loggers.


Observations des résultats

Relevé des mesures

Institution CPAS Ville Climat

extérieur

Orientation Nord – ouest Sud – est Nord – ouest
Programme Secrétariat Bureau Open space
Surface 18 m² 18 m² 28 m² 25 m² 98 m²
Occupation 2 pers. 1 pers. 3 pers. 2 pers. Variable
Températures 24h/24 Min 20,9 °C 21,3 °C 21,2 °C 20,8 °C 20,9 °C 11,9 °C
Max 28,2 °C 27,7 °C 28,2 °C 31,2 °C 26,6 °C 30,4 °C
Horaire de travail Min 20,9 °C 21,3 °C 21,2 °C 20,8 °C 20,9 °C 12,4 °C
Max 27,5 °C 27,3 °C 27,2 °C 25,7 °C 25,6 °C 27,9 °C
Humidité relative 24h/24 Min 40 % 37 % 42 % 40 % 38 % 29 %
Max 61 % 60 % 61 % 63 % 60 % 93 %
Horaire de travail Min 40 % 37 % 42 % 41 % 38 % 29 %
Max 61 % 54 % 59 % 63 % 57 % 89 %
Concentration en CO2 24h/24 Min 398 ppm 432 ppm
Max 1254 ppm 805 ppm
Horaire de travail Min 483 ppm 486 ppm
Max 1254 ppm 805 ppm

Observations

en humidité relative

L’humidité relative intérieure est toujours située dans ou proche (à 3 % près) des plages recommandées par la réglementation à savoir 40 – 60 % sur les lieux de travail.

Aucune incohérence dans son évolution vis-à-vis de l’humidité extérieure et de la température intérieure n’a été relevée.

Dans plusieurs locaux en certaines périodes, l’humidité relative intérieure est quasiment identique à l’humidité relative extérieure ce qui peut attester d’une ouverture des fenêtres prolongée et/ou intensive.

La régulation de l’humidité relative du bâtiment semble donc être correctement réalisée.

en température

Durant les heures de travail, la température intérieure ne dépasse jamais la limite haute de température acceptable définie par la théorie du confort adaptatif. Toutefois dans trois locaux, la température intérieure dépasse 25 °C sur plus de 40 % de la période travail ce qui atteste d’une surchauffe plus importante que prévue.

Globalement, l’on remarque que la température diminue en matinée avec l’enclenchement de la ventilation, puis avec l’arrivée des usagers et l’ouverture des fenêtres, ce jusqu’en milieu et fin de matinée. À partir de là, la température croit jusqu’en fin de journée de travail. Durant la nuit et le week-end, le bâtiment se décharge lentement de sa chaleur interne.

On remarque l’impact de la ventilation mécanique le matin avec la chute de température dès 7h30.

Lorsque la température extérieure dépasse les 24 °C, les fenêtres sont sensées être fermées et la ventilation mécanique active. Or aucune indication dans le relevé des températures n’indique une diminution ou une stagnation à ces périodes. Cela arrive dans les trois locaux qui subissent le plus de surchauffes (Tint > 25 °C).

Dans l’open space et dans le petit bureau individuel du CPAS, l’évolution de la température reste très stable par rapport aux trois autres locaux qui subissent des variations plus importantes (vers le haut) généralement l’après-midi.

L’évolution de la température au cours du temps dans les locaux est difficile à appréhender étant donné que tant le climat extérieur, le fonctionnement de la ventilation et le comportement des occupants vont influencer celle-ci. Toutefois, il est à noter que même si les températures restent dans les limites acceptables de confort, elles dépassent trop souvent les 25 °C surtout que la température extérieure chute appréciablement durant la nuit. Un refroidissement nocturne du bâtiment grâce aux cheminées centrales pourrait peut-être abaisser la température pour démarrer la journée à 20 °C ou tout du moins à la limite basse de température de confort acceptable suivant la théorie du confort adaptatif et donc limiter les surchauffes dans l’après-midi.

en concentration de CO2

Dans l’open space, la concentration de CO2 semble ne pas dépasser les 800 ppm soit respecter les réglementations. Toutefois, même les périodes hautes correspondent aux heures d’ouverture de la commune, aucun plafond ne permet d’indiquer qu’une occupation accrue n’entrainera pas le dépassement des 1000 ppm. Il est à noter que l’open space est un espace de près de 100 m² qui est totalement ouvert sur le couloir traversant le bâtiment dans la longueur.

Le deuxième local où une sonde mesurant la concentration de CO2 a été placée est le bureau individuel orienté nord-est. Dans celui-ci, la variation de CO2 est beaucoup plus importante et la concentration dépasse durant 2 périodes les 1000 ppm. Une ouverture de la fenêtre marque clairement une chute du CO2 du local.

Conclusion

Les quelques mesures effectuées ne permettent pas de dire si les principes innovants de ventilation prévus dans l’antenne communale de la ville de Louvain-la-Neuve sont efficaces pour garantir une qualité de l’air optimale et un confort thermique idéal durant l’été. La réponse semble positive dans un premier temps, mais quelques observations isolées devraient être étudiées plus en profondeur et expliqués pour en déterminer l’impact de la régulation de la ventilation.

Ecole Tanga

Ecole Tanga


Le bâtiment

L’école, située dans une zone suburbaine, se compose de 4 bâtiments de 2 niveaux, pour une surface totale de 9 350 m2 :

Schéma plan école.

  • l’aile A réunit le réfectoire et la cuisine, ainsi que des bureaux.
  • l’aile B contient principalement des classes.
  • l’aile C réunit principalement des salles de travail.
  • l’aile D abrite la salle de sports.

Les bâtiments datent de 1968. Ils ont été partiellement rénovés en 1989 (nouvelles fenêtres) et en 1991 (amélioration de l’isolation thermique). Une nouvelle rénovation a eu lieu en 2000.

Nous nous intéresserons ici particulièrement à l’aile B, d’une surface de 3 672 m². Elle était équipée d’un système de ventilation double flux qui a été remplacé, lors de cette dernière rénovation, par un système de ventilation hybride : une ventilation naturelle avec cheminée solaire, mais assistance d’un ventilateur lorsque nécessaire.

Photo école.

Les caractéristiques thermiques actuelles du bâtiment B :

  • toiture : 0,12 W/m2K
  • fenêtres double vitrage : U = 1,76 W/m2K
  • Murs extérieurs : 0,47 W/m2K

Le système de ventilation

Schéma de fonctionnement de la ventilation hybride dans les classes.

Les classes sont ventilées avec de l’air extérieur. Il est introduit par des grilles en façade (3 ou 4 par classe), et réchauffé dans des conduits circulant au-dessus des convecteurs, avant d’être libéré dans le local. Les grilles de façade sont dessinées et équipées pour éviter l’intrusion de pluie, neige, insectes, etc. Elles peuvent, ainsi que les conduites d’air, être nettoyées facilement manuellement. Les occupants peuvent ouvrir une partie des fenêtres.

Cette ventilation avec de l’air extérieur non filtré est possible grâce à l’environnement suburbain de l’école, sans bruit ou pollution significative.

Convecteur par où l’air est introduit dans les classes.
(Photo Christer Nordström).

L’air est extrait naturellement par des cheminées solaires de 6 m de haut : un vitrage au pied de la souche de cheminée réchauffe l’air extrait ce qui favorise l’effet d’aspiration. Lorsque les conditions extérieures ne sont pas favorables et que le débit d’air extrait naturellement n’est pas suffisant, un ventilateur à fréquence variable permet de compenser.

 

Photo de la cheminée solaire (photo Christer Nordström) et section transversale.

Il y a une cheminée pour plusieurs classes réparties sur deux niveaux. Lorsque le ventilateur ne fonctionne pas, il est by-passé pour limiter la perte de charge de l’air extrait. Pour obtenir un effet d’aspiration identique aux deux étages, la section d’extraction d’air des classes du premier étage est inférieure à celle des classes du rez-de-chaussée.

Pour éviter les surchauffes, l’éclairage artificiel, de puissance limitée (13 W/m² dans les classes, 8 W/m² dans les couloirs) est géré automatiquement par des détecteurs de présence. Des protections solaires sont prévues mais n’ont pas encore été placées. De plus, un free cooling de nuit peut être organisé en été.


La régulation du système

Schéma régulation du système.

Les registres d’entrée et d’extraction d’air de chaque classe sont gérés automatiquement en fonction d’une sonde CO2. Ils commencent à s’ouvrir lorsque la concentration de CO2 dépasse 1 000 ppm, et sont complètement ouverts au-delà de 1 500 ppm. Le professeur a toujours la possibilité de déroger au mode automatique et d’ouvrir ou de fermer manuellement les registres dans une plage de 50 à 100 % d’ouverture. Pour l’aider dans cette gestion manuelle, une lampe rouge s’allume dans la classe si le niveau de CO2 dépasse 1 000 ppm.

Le tirage des cheminées est aussi régulé automatiquement en fonction de la différence de température mesurée entre le pied de la souche de cheminée et l’extérieur. Si elle n’est pas suffisante, le ventilateur démarre et le registre du by-pass est fermé.

Une ventilation nocturne est aussi organisée automatiquement en été lorsque la température intérieure dépasse une valeur de consigne.

Les convecteurs sont contrôlés par des vannes thermostatiques.


Le confort

Le confort des classes ventilées naturellement a été évalué par des mesures (température, vitesse d’air, concentration de CO2…) et par des questionnaires remis aux occupants avant et après rénovation.

Le confort thermique

La température intérieure mesurée pendant un an dans les six classes ventilées naturellement varie entre 20 et 24°C, avec quelques pointes au-dessus de 24°C lorsque la température extérieure est supérieure à 25°C.

L’interrogation des occupants a montré une amélioration du confort, principalement le matin où la température était parfois trop basse, mais une augmentation des courants d’air. Ils apparaissent les jours ensoleillés et froids d’hiver, lorsque les registres sont totalement ouverts pour répondre aux besoins d’une classe remplie.

La qualité de l’air

La concentration de CO2 est la plupart du temps autour de 1 000 ppm ou en dessous. Elle ne dépasse ce niveau que pour de courtes périodes, et est très rarement au-dessus de 1 500 ppm. D’autre part, le pourcentage d’élèves « souvent gênés par une mauvaise qualité de l’air » a baissé de 25 % avant la rénovation à 16 % après la rénovation.

L’acoustique

La qualité acoustique des bâtiments est jugée comme relativement bonne par les occupants. On note néanmoins une légère augmentation du pourcentage d’occupants « souvent gênés par le bruit » : de 1 % avant rénovation à 5 %. L’amélioration de l’atténuation des bruits extérieurs ne devrait pas être difficile puisqu’il n’y a pour le moment aucun absorbeur de bruit dans les grilles d’entrée d’air des façades.

La gestion

Les membres du personnel apprécient que la ventilation puisse être gérée manuellement, ce qu’ils font souvent.


Les économies d’énergie

Consommation de chauffage

Voici les chiffres de consommation annuelle de chauffage normalisée en kWh/m² :

Avant rénovation Prédictions Mesures après rénovation
85 59 90 …58

Ces deux derniers chiffres appellent à commentaire. La consommation mesurée la première année est supérieure à ce qu’elle sera pendant la vie du bâtiment. En effet, pendant cette première année d’occupation, une ventilation non négligeable est organisée pendant la nuit et les week-ends pour sécher le bâtiment (ouverture complète des registres pendant 10 minutes toutes les heures). Selon les calculs réalisés, une consommation normalisée de 58 kWh/m² devrait être atteinte ensuite.

La réduction des consommations atteinte sera alors de 30 %.

Consommation électrique des ventilateurs

voici les chiffres de consommation annuelle d’électricité pour la ventilation en kWh/m² :

Avant rénovation Prédictions Mesures après rénovation
22 17 10

La réduction des consommations atteinte est de 55 %.

Notons que la consommation des ventilateurs du bâtiment B reprend non seulement les ventilateurs des cheminées solaires, mais également les ventilateurs d’un système traditionnel qui ventile les salles de repos, ce qui représente une consommation annuelle de 9,5 kWh/m². Si on ne regarde que les classes équipées maintenant d’un système de ventilation hybride, la consommation des ventilateurs est donc passée de 12,5 à 0,5 kWh/², soit une économie de 96 % !

Rentabilité

Le prix d’investissement et les économies d’énergie réalisées sur le chauffage grâce au système de ventilation hybride utilisé sont du même ordre de grandeur que ceux qui résulteraient du choix d’un système de ventilation traditionnel double flux avec récupérateur de chaleur et simple gestion horaire. Par contre ce système permet une économie conséquente sur les consommations électriques des ventilateurs.

De plus, le système prévu ici peut être géré manuellement, et est plus silencieux qu’une ventilation mécanique. Par contre, le risque de bruits dus à l’environnement extérieur peut représenter un problème.

Le temps de retour calculé sur l’ensemble des investissements est de l’ordre de 17 ans. Mais ce calcul ne tient pas compte du fait qu’un renouvellement était de toute façon nécessaire à cause de la vétusté du matériel, ni de l’amélioration du confort.


Les améliorations à envisager

Pour diminuer encore les consommations …

Un timer devrait être intégré pour limiter la durée de la dérogation manuelle.

Pour améliorer le confort …

Un meilleure adéquation entre la régulation des convecteurs et la température de l’air extérieur introduit dans la classe devrait être mise en place afin d’éviter les courants d’air ponctuels. À terme, il serait souhaitable que la ventilation ne soit pas gérée uniquement en fonction du taux de CO2 mais également en fonction de la température ambiante.

Enfin, des absorbeurs de bruit devraient être intégrés dans les grilles de prise d’air, surtout pour les classes orientées vers la route.


Conclusion

L’expérience de l’école Tanga montre qu’il est possible de ventiler des classes avec un système hybride relativement simple, pour un coût comparable à celui d’un système de ventilation double flux traditionnel. Le confort est assuré et l’économie d’énergie conséquente. Le système est apprécié par les utilisateurs, particulièrement la possibilité de déroger au contrôle automatique.

Remarque : cette feuille a été rédigée sur base des 2 rapports techniques du groupe de travail de l’annexe 35 de l’AIE suivants :

  • « Pilot study report : Tanga – Falkenberg, Sweden » – Ake Blomsterbers, Asa Wahlstrom, Mats Sandberg, Sweden
    ouverture d'une nouvelle fenêtre ! http://hybvent.civil.auc.dk/
  • « Technical report : Hybrid Ventilation and Control Strategies in the Annex 35 – Case Studies » – July 2002 – Soren Aggerholm from Danish Building and Urban Research, Denmark.
    ouverture d'une nouvelle fenêtre ! http://hybvent.civil.auc.dk/

Une autre publication existe sur le sujet :

  • « Hybrid Ventilation in the Tanga School »: Asa Wahlstrom, John Rune Nielsen : actes de la conférence « Performance of Exterior Envelopes of Whole Buildings » VIII, Orlando, USA, Décembre 2-7, 2001

Bâtiment de la société Iveg

Bâtiment de la société Iveg


Description du bâtiment

Le siège central de la société IVEG (intercommunale de distribution d’électricité et de gaz) est situé à Hoboken, un quartier suburbain d’Anvers. Ce bâtiment, achevé en 1999, a été conçu dans le but d’optimiser la consommation d’énergie et le confort intérieur du bâtiment. C’est pourquoi un système de ventilation naturelle y est installé. Le bâtiment IVEG, conçu par l’architecte Mussche, a été choisi comme construction-pilote du projet HybVent de l’Agence Internationale de l’Energie (AIE) et du projet Kantoor 2000 du programme VLIET-bis du gouvernement flamand.

Photo bâtiment société IVEG.

Ce nouveau bâtiment est situé le long d’une rue dont la circulation est relativement élevée et vient s’intégrer entre deux bâtiments existants. Le plan du bâtiment IVEG est rectangulaire. Ses deux façades principales sont parallèles à la rue : la façade avant est orientée N à NO alors que la façade arrière est orientée S à SE. D’une superficie de 1 800 m², il doit accueillir environ 70 employés.


Les objectifs

Les objectifs de base du projet sont :

  • Un climat intérieur confortable (confort thermique, qualité de l’air intérieur, …).
  • Une faible consommation d’énergie (chauffage, refroidissement actif,…).
  • Une conception pragmatique et économique(utilisation de matériaux standards et de techniques accessibles pour tous).

Les systèmes thermiques adoptés sont un chauffage par radiateurs, une ventilation hygiénique mécanique et un refroidissement par ventilation naturelle. Le système de ventilation est donc hybride : une ventilation mécanique assure la qualité de l’air tandis que, pour atteindre le confort thermique d’été, le bâtiment est refroidi par un système de ventilation naturelle, essentiellement basé sur l’effet de cheminée.

Les dépenses énergétiques en hiver sont réduites grâce à un chauffage efficace et une bonne isolation thermique.

Photo système de chauffage central.

Le chauffage central est assuré par deux chaudières à condensation, d’une puissance installée de 60 kW chacune, soit 19.6 W/m³. Les radiateurs, équipés de vannes thermostatiques, sont plats et d’une superficie double de la normale pour augmenter l’échange de chaleur par rayonnement, perçu comme plus confortable par les occupants que la convection. Les cheminées, très bien isolées, sont toujours fermées en hiver.

Photo bureau.

L’isolation du bâtiment a été soignée dans tous ses détails pour éviter les ponts thermiques. Les épaisseurs d’isolants valent 12 cm en toiture, 7 cm dans les murs et 4 cm pour les planchers. Des doubles vitrages basse-émissivité dont la cavité est remplie de gaz (k = 1,1 à 1,3 W/m²K) ont été installés sur toutes les façades. Le niveau d’isolation global correspond à un K35.

Photo cheminée de ventilation.

La ventilation hygiénique est assurée par une ventilation mécanique à débits variables, régulés en fonction de l’occupation grâce à des détecteurs de présence. L’air est pulsé dans les locaux de travail à un débit de 30 m³/h par personne pour les bureaux paysagers et 40 m³/h par personne pour les bureaux individuels; il est extrait par les sanitaires.

Une attention toute particulière a été portée à l’étanchéité du bâtiment. En outre, un échangeur de chaleur a été placé sur le circuit de reprise d’air pour récupérer une partie de la chaleur de l’air extrait. Il a toutefois été mal conçu et ne fonctionne donc pas correctement.

Le refroidissement du bâtiment IVEG est géré par son système de ventilation naturelle. En été, une ventilation intensive de nuit est organisée. L’air est introduit dans le bâtiment par des ouvrants opaques, placés derrière les grilles murales des façades.

Photo système de ventilation naturelle - 01.   Photo système de ventilation naturelle - 02.

Une bonne distribution de l’air frais à travers tout le bâtiment nécessite l’ouverture des portes de tous les locaux.

L’air est extrait naturellement par deux cheminées en toiture. La photo ci-dessous montre les clapets qui permettent la sortie de l’air au sommet des tours. Les fenêtres fixes en partie supérieure des cheminées n’ont aucun rôle dans la ventilation mais elles éclairent en partie le hall et l’escalier.

Photo cheminée en toiture, intérieur.   Photo cheminée en toiture, extérieur.   Photo cheminée en toiture, intérieur.

Le concept de la ventilation naturelle intensive de nuit a nécessité l’utilisation de deux tours de ventilation séparées pour des raisons de sécurité incendie. Le rez-de-chaussée et le premier étage forment un premier compartiment relié à la grande cheminée tandis que le deuxième étage est un compartiment séparé, ventilé par sa propre cheminée.

Le bon fonctionnement de la stratégie de la ventilation naturelle utilisée dans ce bâtiment est basé non seulement sur le débit de ventilation naturelle intensive de nuit assuré par les tours de ventilation mais aussi sur :
  • la réduction des pics de surchauffes des locaux par l’inertie thermique des matériaux utilisés,
  • la limitation des gains solaires par l’intégration de vitrages sélectifs et de stores extérieurs mobiles,
  • la diminution des charges internes par le choix d’appareils électriques performants,
  • la diminution des charges internes grâce au contrôle de l’éclairage artificiel en fonction de la lumière naturelle et de l’occupation du local.

La masse thermique accessible dans les bureaux du bâtiment IVEG est importante. Il n’y a pas de faux plancher et le sol est principalement carrelé. De plus, les faux plafonds ne couvrent qu’une partie de la surface de chaque local et ils sont fortement ajourés pour que l’air puisse circuler le long du plafond.

Photo sol carrelé.  Photo système de ventilation.

La limitation des gains solaires est assurée par le choix de vitrages sélectifs et de stores extérieurs mobiles, dont la régulation automatique centralisée offre une possibilité de dérogation à l’occupant.

Photo bâtiment extérieur.

Des appareils électriques performants, tels que des ordinateurs munis d’un mode économique, ont été placés afin de diminuer les charges internes. Les luminaires présentent des réflecteurs à haute efficacité et des lampes fluorescentes équipées de ballasts électroniques.

Photo plafond avec lampes performantes.

Enfin, une diminution des charges internes est également obtenue par un contrôle de l’éclairage artificiel en fonction de la lumière naturelle et de l’occupation du local. L’allumage (on/off) de l’éclairage est géré par des détecteurs de présence décentralisés par bureau tandis que le flux des lampes est « dimmé » en fonction du niveau d’éclairement du local. La régulation du système de dimming de l’éclairage artificiel est également décentralisée par local et elle a pour consigne d’assurer un éclairement des bureaux de 500 lx.

Photo plafond avec lampes performantes.

En été, les dépenses énergétiques sont donc limitées par l’utilisation d’un refroidissement passif basé sur la ventilation naturelle de nuit, rendu possible par la masse thermique accessible, la réduction des gains solaires et la diminution des charges internes du bâtiment. Une batterie de froid a tout de même été installée par précaution dans le caisson de préparation de l’air mais elle n’a pas encore été utilisée.

Dans le bâtiment IVEG, la ventilation naturelle, la ventilation mécanique ainsi que la régulation des stores et de l’éclairage artificiel sont gérés de manière automatique. Cependant, les occupants peuvent agir directement sur les stores et sur l’ouverture des fenêtres classiques pour adapter leur environnement. Les utilisateurs peuvent aussi ajuster le chauffage d’un local à leurs besoins grâce aux vannes thermostatiques des radiateurs.


Quelques chiffres

La réduction des consommations d’énergie est l’élément essentiel de la conception du bâtiment IVEG. Sa consommation électrique spécifique vaut 35 kWh/m².an (à comparer à la norme habituelle de Novem : 60 kWh/m²An), ce qui donne un bâtiment à faible consommation d’énergie électrique. Sa consommation spécifique en gaz vaut 272 MJ/m²An (à comparer à Novem : 520 MJ/m²An), résultat toutefois facilement obtenu par une isolation adéquate du bâtiment.

Il peut également être intéressant de savoir que le coût total du bâtiment, honoraires et TVA compris, a été de 3 492 255 €. La superficie du bâtiment étant d’environ 1 800 m², le prix de ce bâtiment, TVA incluse, est donc de 1 940 €/m².


Les intervenants

Signalons enfin que le CSTC a joué le rôle de consultant extérieur lors de la conception du bâtiment IVEG. La coordination du projet et le travail de bureau d’étude au niveau de l’électricité, de l’informatique, de la ventilation naturelle, du chauffage et de l’éclairage ont été réalisés par la société IVEG. Le bureau d’études Air-Consult a étudié la ventilation mécanique et la protection incendie de ce projet.

IVEG
Antwerpsesteenweg, 260
2660 Antwerpen – Hoboken
03/820 05 11ouverture d'une nouvelle fenêtre ! http://www.iveg.be
Architecte
Monsieur Herman Lemaire (ou Marc Mussche)

Buas-Suter
Avenue Pasteur 21
Zone Noord
B-1300 Wavre
010/24 44 24
CSTC
Centre scientifique et technique de la constructionouverture d'une nouvelle fenêtre ! http://www.bbri.be
AIR CONSULT ENGINEERING SA (?)
quai Fernand Demets 4
1070 Anderlecht
02/523 65 29
Agence Internationale de l’Energie (AIE)

ouverture d'une nouvelle fenêtre ! http://www.iea.org/

Kantoor 2000 (programme VLIET-bis)

Bâtiment PROBE du CSTC

Bâtiment PROBE du CSTC


Introduction

Le bâtiment de bureaux « PROBE » (Pragmatic Renovation of Office building for a Better Environment)se situe sur le site du CSTC à Limelette.

Photo bâtiment.

Ce bâtiment fit l’objet d’une rénovation énergétique dans le cadre d’un projet de démonstration cofinancé par le Ministère de la Région wallonne.

Ce projet a comme objectif de montrer comment il est possible, dans les immeubles de bureaux, de diminuer les consommations énergétiques et d’améliorer le confort intérieur :

  • par des mesures simples et des technologies éprouvées (pas de « high-tech »),
  • avec un coût limité,
  • sans grands travaux, ni grande perturbation des activités de bureau.

Les actions ainsi menées dans le bâtiment « PROBE » peuvent facilement être appliquées à d’autres immeubles de bureaux.


Situation d’origine

Le bâtiment PROBE est un immeuble de 1 120 m², construit en 1975. Il comprend 36 bureaux répartis sur 2 étages (surface de bureaux : 672 m²) qu’occupent environ 55 personnes.

Étage type du bâtiment PROBE.

Lors de sa construction, le bâtiment ne fit l’objet d’aucune mesure visant à maîtriser les consommations, ni le confort intérieur : aucune isolation, pas de ventilation, pas de protection solaire, installation de chauffage minimaliste.

Les conditions de confort n’y sont pas optimales : manque de chaleur en hiver, surchauffe en été, médiocre qualité de l’air et médiocre éclairage. Cette situation n’est évidemment pas une exception car rencontrée dans de nombreux immeubles de bureaux de cette époque.


Résumé des mesures prises

Les mesures prises tant au niveau de l’enveloppe du bâtiment que des équipements ont pour objectif de garantir un confort correct (confort visuel, thermique, acoustique et respiratoire) tout en tenant compte du comportement des occupants et des consommations énergétiques.

Chauffage

Remplacement des chaudières par des chaudières à haut rendement
Rénovation de la régulation et placement de vannes thermostatiques

Isolation

Isolation de la toiture
Remplacement de certains châssis
Remplacement des simples vitrages par des vitrages HR (dans les anciennes menuiseries)

Protection contre les surchauffes

Protections solaires extérieures automatisées
 

Ventilation nocturne intensive

 

Vitrages réfléchissants

Qualité de l’air

Ventilation double flux avec détection de présence

Éclairage

Luminaires haut rendement avec ballasts électroniques
Régulation en fonction de la présence et de la lumière naturelle

Pour évaluer les résultats des différentes actions menées, plusieurs campagnes de mesures (consommation, températures de l’air, des parois, niveaux d’éclairement, …) ont été réalisées en exploitation réelle.


Ventilation à la demande

Principe de ventilation

Le bâtiment PROBE a été équipé d’un système de ventilation mécanique

  • L’air neuf est pulsé dans les bureaux avec un débit nominal total de 1 250 m³/h (25 m³/h par personne).

Réseau de pulsion d’air neuf parcourant les faux plafonds des couloirs.

  • Cet air est transféré en partie par les couloirs vers les sanitaires où un débit nominal de 300 m³/h est extrait. Ce transfert d’air permet de ne pas alimenter les sanitaires en air neuf et donc une économie d’énergie.
  • Le solde de débit entre la pulsion et l’extraction est évacué par les inétanchéités (portes d’entrée, …),mettant le bâtiment en légère surpression, ce qui limite les infiltrations d’air parasites dans le bâtiment.

Bouches de pulsion et régulation

Photo bouche de pulsion.

Les bouches de pulsion sont disposées dans la retombée du faux plafond des couloirs. Il n’y a donc pas de gainage parcourant les bureaux, la distribution se faisant par les faux plafonds techniques des couloirs.
Les bouches de pulsion choisies permettent d’origine :

  • Un réglage manuel en 4 positions du débit nominal : 25, 50, 75, 100 m³/h. Ce réglage est réalisé une fois pour toutes en fonction du nombre d’occupants normal du bureau, par rotation du cylindre se trouvant devant l’ouverture.
  • Une fermeture de la bouche en cas d’absence dans le local, par un détecteur de présence disposé sur la bouche. Si après 10 minutes, le détecteur n’a enregistré aucun mouvement dans le local, la bouche de pulsion passe en position fermée (action en tout ou rien).

Chaque bouche est autonome. Son système de détection fonctionne sur batteries longue durée et ne demande que peu d’énergie. Il n’y a donc pas de câblage à prévoir entre les bouches, ce qui s’adapte particulièrement bien à la rénovation.

L’utilisation de telles bouches impose des dispositifs de régulation de débit tant au niveau des bouches que du ventilateur. En effet, dans ce type de régulation de la ventilation à la demande, lorsqu’une bouche de ventilation se ferme, la pression dans le circuit de distribution augmente. Il en résulte une augmentation du débit dans les bouches restées ouvertes. L’impact de la fermeture d’une bouche sur le débit total, donc sur la consommation globale, n’est pas alors celui escompté.

Pour remédier à cela, il faut d’une part agir sur le ventilateur en lui imposant le maintien d’une pression constante en un point du circuit et placer des éléments auto-régulateurs de débit au niveau des bouches de pulsion.

Photo bouche de pulsion.

Elément auto-régulateur de débit :
lorsque la pression et le débit augmentent,
la membrane se gonfle et rétablit débit d’origine.

Dans ce bâtiment, les bouches de pulsion comportent d’origine une auto-régulation des débits dans une plage de pression allant de 70 à 130 Pa (pression nominale de fonctionnement des bouches = 100 Pa), c’est-à-dire une constance des débits, malgré la fermeture de certaines bouches dans le circuit.

La pression dans le circuit de distribution est contrôlée au niveau du ventilateur d’une part grâce à un ventilateur à courbe caractéristique plate et d’autre part grâce à un filtre mobile placé derrière le ventilateur. Ce filtre est composé d’une manchette mobile faisant varier la surface active du filtre et donc sa perte de charge, maintenant ainsi une pression constante au début du circuit quel que soit le nombre de bouches de pulsion ouvertes dans le circuit. Durant la nuit, le ventilateur est mis à l’arrêt par une horloge.

Cette régulation par étranglement n’est cependant pas optimum du point de vue des consommations énergétiques (cela revient à accélérer et freiner en même temps pour régler la vitesse d’une voiture !). On lui préférerait à l’heure actuelle une régulation du ventilateur par variation de vitesse.

Filtre à surface active variable.

Circuit de distribution

La distribution de l’air neuf se fait via un gainage disposé dans les faux plafonds des couloirs.

À l’origine, la distribution se faisait via des conduites de section rectangulaire. Après installation, il s’est avéré impossible d’atteindre les débits demandés dans les différents bureaux. La cause première de ce problème était l’inétanchéité importante (mais non exceptionnelle !) du réseau de distribution. Ainsi, lorsque toutes les bouches de pulsion sont fermées, le ventilateur pulse quand même dans le bâtiment son débit nominal. De même, lorsque toutes les bouches sont ouvertes, le ventilateur doit fournir 1 300 m³/h pour obtenir le débit d’air neuf recommandé par étage, soit environ 650 m³/h pour l’ensemble des bureaux. Il en résulte une multiplication par 2 de la consommation nécessaire au chauffage de l’air neuf. Le bénéfice d’une gestion de la ventilation à la demande est alors perdu.

Evolution de l’étanchéité des conduits de distribution en fonction des améliorations apportées, le cas 1 étant la situation d’origine. L’étanchéité obtenue est comparée aux classes d’étanchéité définies par le standard Eurovent 2/2.

Dans un premier temps, un calfeutrage a été tenté au moyen de bandes adhésives et de mastic. Ce fut un travail laborieux (notamment pour détecter les fuites) qui ne donna que peu de résultats (cas 2 à 5).

Photo ancien réseau de distribution rectangulaire. Photo nouveau réseau de distribution circulaire.

Ancien réseau de distribution rectangulaire et nouveau réseau de distribution circulaire plus encombrant, mais nettement plus étanche.

 

Conduit circulaire à double joint aux raccords.

Pour pouvoir comparer les technologies, les conduites rectangulaires d’un étage furent remplacées par des conduits circulaires avec double joint aux raccords (cas 6). Ces conduites, nettement plus simple à installer, ont presque permis d’atteindre, sans effort supplémentaire, la meilleure des classes d’étanchéité du standard Eurovent. Les fuites ont ainsi pu être réduites à 2,5 % du débit nominal.

Résultats

L’objectif du système de ventilation est de fournir un débit total d’air neuf de 650 m³/h, lorsque le bâtiment est occupé au maximum et d’adapter ce débit au taux d’occupation réel du bâtiment.

Débits obtenus grâce à la gestion de la ventilation à la demande comparée à un système à débit constant et au système de gestion parfait.

En moyenne, les bureaux de 1 personne sont occupés durant 52 % du temps de travail, tandis que les bureaux de 2 personnes le sont durant 72 %.
La régulation des débits de ventilation en fonction de cette occupation a entraîné une réduction des débits d’air neuf et donc des consommations de chauffage qui y sont liés de 35 % par rapport à un système à débit constant fonctionnant durant les heures de travail.

Les mesures de débit prises dans le bâtiment montrent la réponse du système à la variation de l’occupation. On voit que pour les faibles réductions de débit, le débit d’air neuf suit bien la demande et fonctionne parfaitement. Par contre, des surdébits apparaissent lorsque peu de locaux sont occupés. Ceci est lié à :

  • L’augmentation trop importante de la pression dans le circuit lorsque plus de 50 % des bouches sont fermées. On sort de la zone d’autorégulation des bouches de pulsion.
  • La part importante prise par les inétanchéités.

Résultat des différentes actions menées au niveau de la ventilation du bâtiment PROBE

Action Débit d’air neuf au niveau du ventilateur Économie d’énergie sur le chauffage de l’air neuf
[m³/h] [kWh/m².an]
[kWh/an]
%
Situation d’origine : ventilation constante durant les heures de bureau, réseau de distribution rectangulaire de départ 1 800
Placement de conduits circulaires étanches 1 500 2,4
2 695
17 %
Transfert d’air des bureaux vers les sanitaires (la ventilation des sanitaires se fait avec l’air des bureaux) 1 200 2,3
2 590
20 %
Ventilation à la demande 3,0
3 396
35 %
Économies cumulées 7,7
8 681
environ 50 %

Graphe de consommation de chauffage de l'air neuf.

Consommation de chauffage de l’air neuf en fonction des améliorations successives possibles, dans le bâtiment PROBE.

Cette économie est réalisée par rapport à une situation correspondant à la situation moyenne des immeubles de bureaux belges et peut donc être extrapolée à bien d’autres bâtiments.

Aspects financiers

Lorsqu’un bâtiment n’est équipé d’aucun système, l’installation d’une ventilation nécessite un investissement financier et conduit souvent à une augmentation des consommations énergétiques (chauffage de l’air neuf et consommation des ventilateurs).

Il est donc difficile de parler dans ce cas de temps de retour de l’investissement : le bénéfice se mesure en terme d' »amélioration de la qualité de l’air », donc de « meilleur environnement de travail » et d' »augmentation de la productivité ».

On peut cependant comparer la ventilation à la demande installée dans le bâtiment PROBE avec la même ventilation sans gestion des débits.

Dans le cas de PROBE, les surcoûts occasionnés par la ventilation à la demande consistent en :

  • Bouches avec détection de présence, batterie et autorégulation des débits en fonction des variations de pression dans le réseau de distribution. Surcoût minimum de 75 € par rapport à des bouches classiques de la même gamme.
  • Gestion de la pression au niveau du ventilateur.

Les conduits circulaires directement étanches se sont, quant à eux, avérés moins chers que les conduits d’origine, grâce à leur facilité de placement.


Ventilation nocturne

Avant rénovation, le bâtiment PROBE, comme beaucoup d’immeubles de bureaux subissait d’importantes surchauffes en été, du fait de sa superficie de vitrages et de l’accroissement considérable des équipements de bureau.
Un des objectifs de la rénovation est de montrer qu’il est possible de rétablir un confort d’été correct sans avoir recours à une installation de climatisation.

L’un des critères utilisés pour objectiver le confort d’été est (prescription pour les bâtiments publics hollandais) : la température intérieure ne peut dépasser 25°C durant plus de 100 heures par an et ne peut dépasser 28°C durant plus de 20 heures par an.

Première action : réduire les apports de chaleur

Plusieurs actions ont d’abord été menées pour réduire les gains de chaleur tant externes qu’internes :

  • Placement de protections solaires automatiques (intégrées dans les doubles vitrages au sud, inclinées extérieures à l’est et verticales extérieures à l’ouest) réduisant les apports solaires de plus de 80 %.
  • Isolation de la toiture diminuant de 63 % les apports de chaleur au travers du toit ensoleillé.

Deuxième action : refroidir le bâtiment par ventilation naturelle

Durant les nuits d’été, un free cooling nocturne est appliqué : le bâtiment est ventilé naturellement et de façon intensive au moyen de grandes grilles fixées en été dans les châssis sur les deux façades du bâtiment.

Photo free-cooling.   Photo free-cooling.

Grilles de ventilation nocturne intensive associées à des protections solaires automatiques.

La nuit, les portes de bureaux sont ouvertes, permettant une ventilation transversale importante entre les façades grâce à la pression du vent.

Ventilation transversale intensive de nuit.

Une ventilation par effet cheminée aurait aussi pu être appliquée en pratiquant des évacuations naturelles verticales mais cela demandait des aménagements beaucoup plus importants dans la structure du bâtiment.

Ventilation intensive de nuit par effet cheminée.

Si les portes des bureaux doivent rester fermées, une ventilation par bureau est aussi possible étant donné la taille des grilles placées dans les châssis.

Ventilation intensive de nuit avec portes fermées.

Taux de renouvellement d’air moyen obtenu dans « PROBE » en fonction de la stratégie de ventilation nocturne appliquée

Ventilation transversale : fenêtres (avec grille) et portes ouvertes en grand 13 [vol/h]
Ventilation par bureau : fenêtres (avec grille) ouvertes en grand et portes fermées 3,4 [vol/h]
Ventilation par bureau : fenêtres (avec grille) ouvertes en position basculante et portes fermées 2,2 [vol/h]
Infiltrations : fenêtres et portes fermées 0,2 [vol/h]

Une ventilation intensive donne les meilleurs résultats si les portes et les fenêtres restent ouvertes durant la nuit. À défaut, on peut imaginer le placement de grilles de transfert dans les portes ou des petites fenêtres au-dessus de celle-ci. Il importe donc, pour la réussite totale du refroidissement nocturne, que les occupants soient clairement informé de leur rôle dans la gestion du confort, ce qui marche bien dans le bâtiment PROBE.

Il faut également que les ouvertures en façade soient suffisantes. Voici les recommandations en matière d’ouverture minimum pour la ventilation intensive comparées à ce qui est réalisé dans le bâtiment PROBE :

Ouvertures minimum nécessaires à la ventilation naturelle intensive en % de la surface au sol des locaux

NBN D50-001 pour les locaux d’hébergement Projet

NatVent

Ouverture effective dans PROBE
Ventilation par des ouvertures sur une seule façade 6,4 % 4 % de 1,9 à 3 %
Ventilation par des ouvertures sur des façades opposées 3,2 % 2 % 1,7 %

Résultats

Graphe des résultats obtenus.

Nombre d’heures pendant lesquelles la température intérieure dépasse 25°C et 28°C dans plusieurs bureaux de PROBE. Les bureaux les plus chauds sont de bureaux contenant un nombre important de personnes, d’ordinateurs et d’imprimantes fonctionnant souvent 24h/24. Notons que le comportement des occupants est variable selon les bureaux, notamment lorsqu’il s’agit, le soir, d’ouvrir les portes et fenêtres, d’éteindre les équipements de bureau, …

Salle de conférence équipée d’une sonde CO2

Salle de conférence équipée d'une sonde CO2


Description

Il s’agit d’une salle de conférence de 150 places en gradins située en Alsace.

Cette salle a fait l’objet d’une instrumentation par le COSTIC et les résultats de l’analyse, fort intéressants, ont été publiés dans Les Actes du COSTIC n°155 : Les capteurs de qualité d’air pour réguler la ventilation à la demande.

En voici un extrait :

La salle de conférence est alimentée par une centrale de traitement d’air indépendante, à débit constant, sans contrôle d’humidité.

Une sonde CO2, placée dans le conduit de reprise, assure la régulation du volet d’air neuf, avec entière satisfaction de l’exploitant.


Régulation

L’ouverture des registres d’admission d’air neuf répond à deux exigences :

> La présence des occupants, par l’intermédiaire de la lecture du taux de CO2. La consigne est réglée sur 1 200 ppm, avec une bande proportionnelle de 500 ppm autour de cette valeur.

> Le free cooling de la salle, par rafraîchissement par l’air extérieur. Si la température intérieure est dépassée et si l’air extérieur est plus frais que l’air intérieur, un maximum d’air neuf extérieur est fourni aux occupants (principalement en mi-saison).

Un sélecteur permet d’attaquer les registres avec la demande la plus forte.

La régulation doit de plus prévoir un renouvellement minimum, même en cas d’absence totale d’occupants.


Résultats

Le bâtiment ayant été équipé dès l’origine de ce type de système, il n’est pas possible d’estimer l’économie résultant de cette régulation.

Par contre, il est intéressant d’observer les résultats du monitoring (une journée de juin) :

Enregistrement des paramètres

Il apparaît clairement une utilisation très partielle de la salle durant la matinée, puis une occupation élevée à partir de 11h00. Dès 12h30, la salle s’est probablement vidée.

Ce n’est que vers 11h15 que la teneur en CO2 de la salle a dépassé les 950 ppm, seuil minimum d’ouverture des registres d’air neuf

Durant la matinée, la température extérieure est inférieure à la température de l’air repris.

On peut en profiter pour rafraîchir la salle.

Commande du volet d’air neuf

Le volet d’air neuf est bien ouvert au matin (modulé par les besoins de rafraîchissement), puis fermé à 11h00 (T°ext > T°int).

Les pics correspondent à la demande d’ouverture pour les besoins hygiéniques des occupants (avec un maximum à 30 % d’ouverture, correspondant bien au 1 100 ppm de CO2 enregistrés).

Enfin, dans l’après-midi, quelques ouvertures périodiques afin d’assurer un minimum d’air neuf hygiénique.

On imagine clairement l’économie résultant de l’utilisation adéquate du free cooling et du contrôle optimal du débit d’air neuf extérieur à refroidir (ou à réchauffer en hiver) !!!