Automatiser les protections mobiles ?

Trois modes de manipulation

Il existe trois degrés de manipulation des protections solaires amovibles :

  • Manuelle (par manivelle, cordon ou chaînette),
  • motorisée (commande avec bouton poussoir ou télécommande, commande groupée ou individuelle),
  • automatisée.

Quel est le rôle de la gestion automatique ?

Augmenter la protection

Lorsque des apports solaires risquent d’entraîner des surchauffes des locaux et une production de froid importante ou l’éblouissement des occupants, la régulation peut décider le déploiement de la protection.

Cette action peut être préventive et intervenir avant que l’inconfort réel n’apparaisse. En hiver, la nuit venue, la régulation peut prendre en charge l’ajout d’une isolation complémentaire aux fenêtres.

Diminuer la protection

En période de chauffe, des apports extérieurs sont les bienvenus. La régulation peut décider la suppression de la protection pour diminuer les frais de chauffage.

L’automatisation permet en outre de ne pas exposer les protections à des contraintes extérieures excessives (vent, pluie, vandalisme).

La libération automatique des fenêtres en cas d’incendie est également un point à considérer.


Pourquoi automatiser la protection ?

Le rôle de la gestion automatique pourrait être assuré manuellement par un occupant consciencieux. Cependant, il existe plusieurs objections à cela :

    1. L’optimalisation des dépenses énergétiques n’est généralement pas le souci premier des occupants des bâtiments du secteur tertiaire.Exemple : en hiver, qui pensera à baisser son store le soir avant son départ ?
    2. L’oubli de la protection et la non-surveillance des conditions extérieures.

Exemple : une protection extérieure restant déployée durant la nuit alors que le vent se lève risque de se détériorer.

    1. Ou tout simplement l’absence d’occupant dans un local, alors que celui-ci est chauffé ou refroidi.
      Exemple : les apports solaires dans les locaux orientés à l’est peuvent devenir importants avant l’arrivée du personnel. Dans les locaux orientés à l’ouest, les apports les plus importants se produisent en fin de journée. Qui pensera alors à protéger la fenêtre pour empêcher toute accumulation inutile de chaleur après le départ des occupants ? De même dans des locaux inoccupés, il faut prévenir toute accumulation de chaleur qui augmentera ultérieurement ou sur le moment même la nécessité de refroidissement. Ces exemples peuvent être transposés en période de chauffe lorsque les apports extérieurs sont alors les bienvenus.

En conclusion

L’automatisation des protections solaires mobiles permet donc de suppléer à l’absence des occupants ou à leurs carences en matière de gestion des apports énergétiques extérieurs. Cependant, une dérogation est toujours recommandée pour offrir à l’occupant une possibilité d’interagir sur son environnement. Cela lui permettra, en autres, de se protéger d’un éventuel inconfort (dû à l’éblouissement par exemple) ou de satisfaire un besoin d’intimité.


Quelles caractéristiques pour le système d’automatisation ?

Les grandeurs de référence

L’ensoleillement

Un capteur mesure l’intensité lumineuse et active le système de protection en cas de dépassement des valeurs programmées.

La température extérieure

Une sonde de température extérieure empêchera le déploiement des protections en dessous d’une certaine valeur.

La température intérieure

Un thermostat d’ambiance peut commander la protection en fonction de la température intérieure.

La vitesse du vent

Un anémomètre mesure la vitesse du vent et commande un retrait des protections extérieures en cas de menace de tempête.

La présence de pluie

Une sonde détecte la présence de pluie et entraîne le retrait immédiat de la protection.

La date et l’heure

Une horloge quotidienne et hebdomadaire commandera à heures fixes les protections.

Le danger d’incendie

Un détecteur de fumée commande le retrait des protections pour garantir l’accès aux fenêtres et une évacuation possible.

Toutes ces grandeurs ne doivent pas forcément être reprises. Pour les protections extérieures la protection au vent sera la configuration minimale. Son association avec une sonde d’ensoleillement sera aussi couramment rencontrée. La protection contre la pluie n’est importante que pour les protections extérieures horizontales (auvents). Par contre le vent et la pluie n’ont pas d’influence sur les protections intérieures.

Lorsque plusieurs grandeurs sont prises en considération, le régulateur actionnera (en tout ou rien ou en modulation) les protections en fonction d’un des paramètres considéré comme prioritaire ou en fonction d’une combinaison de paramètres.

La temporisation

La temporisation des commandes de l’automatisme est indispensable. En effet, de petites variations passagères des paramètres ne peuvent entraîner des modifications incessantes des protections.

Exemple : le passage d’un nuage, légères variations de température, …

Si tel était le cas, l’abandon de l’automatisme pour un mode manuel serait rapidement opéré par les utilisateurs.

Commande centralisée et dérogation

Une centralisation permet de commander une série de protections pour des locaux d’orientation identique.

Exemple : toute l’aile d’un hôpital, …

Dans ce cas, un local de référence devra accueillir la sonde de température ambiante éventuelle.

Malgré l’automatisation, une dérogation doit rester possible pour les utilisateurs d’un local particulier. Cette liberté sera, au même titre que la protection proprement dite, source de confort et donc d’efficacité pour les occupants. Cependant la dérogation et le fonctionnement en mode manuel ne peuvent rester permanents un retour au mode automatique est obligatoire si on ne veut pas perdre tous les avantages de l’automatisation. Ce retour peut se faire en fonction du temps de dérogation, d’un horaire précis ou de la variation d’un des paramètres. Les paramètres prévenant toute détérioration (vent, pluie) des protections seront prioritaires et indérogeables.

Protection du système

L’automatisation doit être munie d’un système permettant de détecter tout mauvais fonctionnement de la sonde de vent. Par exemple si le régulateur ne détecte aucun mouvement de l’anémomètre durant une période déterminée, il commande le retrait immédiat de la protection et bloque l’automatisme.


Quel est le coût du système de commande ?

Il est difficile de fixer dans l’absolu le surcoût relatif à la motorisation et à l’automatisation des protections mobiles.

Paramètres

Cela dépend  :

  • Du nombre de protections manipulables et gérables simultanément,
  • de l’orientation des locaux,
    Exemple : un local avec une façade vitrée au sud et une à l’ouest devra disposer de deux capteurs d’ensoleillement
  • du nombre de grandeurs prises en compte,
  • du précâblage existant dans le bâtiment,

Pour fixer les idées

D’une manière générale, on peut dire que l’installation de protections motorisées a un coût semblable à l’installation de protections à commande manuelle. Lorsque le nombre de protections gérables simultanément devient important, la commande électrique peut même devenir moins onéreuse que la commande manuelle, grâce à des commandes groupées et à une main d’œuvre nécessaire moins importante (le branchement électrique est plus facile à réaliser que le placement d’une manivelle au travers du châssis ou du mur).

Notons également que la commande électrique des protections sollicite moins les parties mobiles que la commande manuelle et donc leur garantit une durée de vie plus longue.

En fonction du degré de sophistication demandé, le coût d’une gestion automatique se situe dans une fourchette de 250 à 1250 €. Lorsque le nombre de protections gérées est important, on se rend compte que le surcoût relatif de l’automatisation devient nettement moins lourd.

De plus, certains capteurs du système de gestion peuvent déjà faire partie de l’installation de chauffage ou de climatisation comme capteur principal ou de compensation.

Un projet d’installation de protections solaires peut être planifié sur plusieurs années. Si le besoin se fait ressentir, des protections motorisées peuvent être équipées d’une gestion automatique a posteriori sans surcoût important par rapport à un projet initial complet.


Exemple d’automatisation d’une protection mobile

L’exemple ci-contre, se rapporte à un bâtiment précis. Les valeurs de consigne qui y sont mentionnées peuvent varier en fonction de la saison et du type d’inertie du bâtiment. Si le bâtiment est sensible à l’ensoleillement même durant la saison de chauffe, la consigne de température extérieure peut être abaissée. De même, une anticipation face à la surchauffe peut être réalisée en diminuant la température de consigne intérieure. En effet plus le bâtiment est inerte thermiquement, plus l’apparition de la surchauffe sera retardée par rapport à l’ensoleillement.

Choisir une protection mobile, fixe ou permanente

Choisir une protection mobile, fixe ou permanente


Stores enroulables mobiles.

Brise-soleil fixes.

Films pare-soleil permanents.


Pourquoi moduler la protection ?

Des besoins variables

Les besoins de protection des locaux vis-à-vis des apports du soleil sont la plupart du temps variables sur une journée ou encore sur une année :

  • Les apports énergétiques peuvent être souhaités en hiver et au printemps (température extérieure moyenne < 8°C) mais risquent de devenir indésirables en été ou en automne (température extérieure moyenne > 15°C).
  • Les apports solaires seront importants le matin pour les locaux orientés à l’est et le soir pour les locaux orientés à l’ouest.
  • Une augmentation de l’isolation thermique des vitrages est souhaitable durant les nuits d’hiver mais au contraire défavorable au refroidissement du bâtiment durant les nuits en été.
  • L’éblouissement dépend très fort de la hauteur du soleil et donc de l’orientation et de la saison.
  • En absence de soleil, la lumière du jour est souvent la bienvenue.

Optimaliser les besoins de chaleur et de froid

Adapter le degré de protection à ces besoins permettra de gérer les apports gratuits et d’optimaliser les productions de chaud ou de froid (pour autant que celles-ci tiennent compte des apports externes : présence de vannes thermostatiques, sonde extérieure,…) et l’éclairage artificiel des locaux.

L’optimalisation de la protection solaire en fonction des besoins réels dépendra de plusieurs facteurs :

La mobilité de la protection elle-même : certaines protections peuvent être fixes, d’autres complètement amovibles. Le degré d’automatisation de la protection : la manipulation de nombreuses protections peut être motorisée et automatisée. Dans ce cas, le degré de protection sera automatiquement réglé en fonction de grandeurs représentatives des climats intérieurs et extérieurs.

Le comportement des occupants : dans le cas de protections manuelles, le rôle de l’occupant sur l’optimalisation de la protection est important et souvent difficile. Dans le cas de protections automatisées, il faut tenir compte de la liberté de l’occupant et de son pouvoir sur la mise en dérogation du système.


Les protections mobiles

La protection peut varier selon les souhaits de l’utilisateur, quelle que soit l’heure ou la saison.

Exemple : les stores vénitiens, enroulables, à lamelles.

L’adaptation aux besoins en protection ou en apports solaires peut se faire par retrait partiel ou complet (latéral ou vertical en fonction du type de store) ou par inclinaison des lamelles. Cette modulation peut être gérée par l’occupant de façon manuelle ou motorisée (il existe aussi des systèmes avec télécommande) ou de façon automatique grâce à un régulateur.

Store vénitien
intérieur.

Store enroulable
extérieur.


Les protections fixes

Le système est fixe et le degré de protection varie systématiquement en fonction de l’heure et de la saison.

Exemple : les brise-soleil, les avancées architecturales.

Souvent les éléments fixes sont des avancées horizontales au-dessus de la fenêtre, soit des avancées verticales de part et d’autre de la fenêtre.

Le pourcentage de protection de la fenêtre dépend :

  • De la position de la protection par rapport à la fenêtre,
  • de la hauteur du soleil,
  • du rapport entre la largeur de la protection et la hauteur ou longueur (en position verticale) de la fenêtre,
  • de l’espacement et de l’orientation des lames éventuelles.

Brise-soleil.

Avancée architecturale.

Façades sud

Les façades d’orientation proches du sud seront les plus faciles à protéger. Une protection fixe est à même d’éliminer complètement le rayonnement direct estival sans pour autant porter une ombre indésirable en hiver.

Façades est et ouest

Par contre, aucune protection fixe, horizontale ou verticale, ne permet de résoudre le problème propre aux façades est et ouest. Dans ces situations, une protection mobile sera de loin la plus préférable.

En général, une protection optimale, c’est-à-dire adaptée toute l’année aux besoins en chaud ou en froid, est difficile à obtenir avec des protections fixes. En tout état de cause, une étude précise tenant compte des risques de surchauffe et d’éblouissement dus à l’ensoleillement en fonction de la position du soleil et de la saison doit être menée préalablement à tout projet.

calculs 

Pour obtenir une méthode de dimensionnement des protections fixes : cliquez ici !

Exemple : une protection fixe horizontale pour une fenêtre orientée au sud.

en été :
la protection est maximum lorsque le soleil est au zénith

en hiver :
la protection est inopérante

en mi-saison :
aux mois de septembre et de mars, la protection est partielle

En hiver

En hiver, l’absence de protection permet aux apports du soleil de diminuer les frais de chauffage. La situation est intéressante. Cependant, elle ne le sera que si la régulation de l’installation de chauffage tient compte des apports gratuits et que l’ensoleillement ne crée pas de surchauffe en saison froide. Par contre l’éblouissement dû au soleil bas en hiver ne peut être résolu par cette disposition. Pour limiter celui-ci, une protection légère intérieure (rideaux) peut être associée à une protection fixe.

En mi-saison

En mi-saison, on voit que l’ensoleillement des locaux sera le même au printemps qu’en automne, alors que les besoins sont différents. En effet, au mois de septembre, la température moyenne en journée est d’environ 18°C. L’ensoleillement peut dans ce cas devenir source de surchauffe. Au mois de mars, la température moyenne est de 8°C. Dans ce cas, les apports du soleil peuvent être les bienvenus.

Cas particulier : la végétation

La végétation à feuilles caduques apporte une protection qui est naturellement variable. En été, le feuillage apporte un ombrage aux fenêtres et en hiver, la chute des feuilles fait profiter les locaux des apports gratuits du soleil.

Schéma protection solaire végétale.


Les protections permanentes

Le système est fixe et le degré de protection est constant quelle que soit l’heure et la saison.

Exemple : les films collés contre le vitrage, les vitrages spéciaux (réfléchissants et/ou absorbants).

Photo films collés contre le vitrage. Sous notre climat belge, la probabilité d’ensoleillement est inférieure à 20 % en hiver (moins d’un jour sur cinq) et à 50 % en été (moins de un jour sur deux).
Une protection relativement efficace en été est inconciliable avec la valorisation de l’éclairage naturel en absence d’ensoleillement et des apports énergétiques gratuits en hiver.
Sauf exception (locaux informatiques où il faut gérer la surchauffe et l’éblouissement), ce type de protection est donc peu recommandable dans nos régions.

Conscients de ce problème, les fabricants de vitrages ont développé des vitrages présentant une protection contre l’énergie solaire correcte (FS = 0,39) et une transmission lumineuse qui se rapproche de celle des doubles vitrages clairs (TL = 0,71).

Signalons également que des vitrages anti-solaires dont les caractéristiques de protection peuvent varier automatiquement en fonction des besoins sont développés par les grands fabricants. Ils ne sont malheureusement pas accessibles à tout le monde !

Choisir une protection insérée dans un double vitrage

Choisir une protection insérée dans un double vitrage


La description du système

Schéma protection insérée dans un double vitrage. Schéma protection insérée dans un double vitrage. La protection, composée d’une toile enroulable ou d’un store vénitien, est intégrée dans l’espace entre les deux vitres d’un double vitrage.

Les avantages par rapport aux systèmes classiques

L’efficacité contre les surchauffes et l’éblouissement

Les performances face à l’ensoleillement sont semblables aux performances des protections intérieures réfléchissantes et peuvent se rapprocher des performances de protections extérieures parallèles au vitrage. Il faudra cependant se méfier de l’augmentation de la température interne de la surface du vitrage qui peut provoquer un léger inconfort (rayonnement chaud).

La résistance mécanique et à l’encrassement

Les éléments sont montés à l’intérieur d’une partie étanche. Ils ne sont soumis ni aux perturbations extérieures, ni aux perturbations intérieures. N’étant pas sujet à l’encrassement et à l’empoussièrage, ce système de protection peut s’appliquer aux locaux où une grande hygiène est souhaitée. Il ne demande aucun entretien.

L’esthétique

La présence de la protection est discrète. Elle ne modifie pas la structure des façades, ni à l’extérieur, ni à l’intérieur.

La ventilation naturelle

La liberté d’ouverture des fenêtres est totale.

Le pouvoir isolant

Le coefficient de transmission thermique U du double vitrage clair est amélioré, jusqu’à 20 à 30 % pour un double vitrage clair standard (air) grâce à une protection solaire insérée entre les vitres.


Les inconvénients par rapport aux systèmes classiques

Placement en rénovation

Le placement de la protection implique le remplacement du vitrage, ce qui limite son application dans le cadre de la résolution d’un problème de surchauffe ou d’éblouissement.

Diminution de la surface utile de la fenêtre

L’encombrement du mécanisme des systèmes escamotables (par exemple les stores enroulables) peut diminuer de façon non négligeable la surface utile de la fenêtre.

Dépannage et étanchéité du double vitrage

La position intégrée des protections rend difficile un dépannage en cas de dysfonctionnement du mécanisme de retrait. Il peut également en résulter une perte d’étanchéité du vitrage.

Choisir entre une protection intérieure ou extérieure

L’efficacité contre les surchauffes et l’éblouissement

L’effet de serre se produit lorsque les rayons du soleil sont absorbés par une matière située derrière le vitrage. Dès lors, une protection solaire sera efficace contre les surchauffes :

Protections extérieures Les protections extérieures seront toujours efficaces contre les surchauffes car elles arrêtent les rayons du soleil avant qu’ils n’atteignent le vitrage. Pour les stores de type « toile »,  une plus grande efficacité sera atteinte pour de facteur d’ouverture faible et des couleurs foncées.
Protections intérieures Les protections intérieures ne seront efficaces contre les surchauffes que si elles repoussent les rayons du soleil ayant traversé le vitrage. Pour cela, elle doit être non absorbante et réfléchissante (couleur clair au minimum).

Un même store en tissu (gris non réfléchissant avec un coefficient d’ouverture de 4.2) à l’extérieur ou à l’intérieur combiné à un double vitrage argon clair et basse émissivité :

FS = 0,05

FS = 0,55

Par contre, une même protection solaire installée à l’extérieur ou à l’intérieur, permettra un contrôle presqu’identique de la luminosité.


Les contraintes mécaniques

Protections extérieures Les protections extérieures sont soumises aux perturbations atmosphériques (vent, pluie) ou encore au vandalisme. La sensibilité de certaines de ces protections (notamment en toile) peut limiter leur utilisation pour les bâtiments élevés ou en zone exposée (vent important) ou encore à hauteur d’homme dans des lieux fréquentés (vandalisme).
Pour prévenir toute détérioration, notamment la nuit, il sera nécessaire de conscientiser les occupants à la nécessité de retrait de ces protections durant leur absence ou à envisager leur automatisation.
Par contre, il existe des protections extérieures conçues pour résister aux contraintes extérieures. C’est le cas par exemple des brise-soleil ou des stores vénitiens en aluminium.
En outre, dans les zones urbaines fort fréquentées, l’encrassement des protections extérieures peut être assez rapide.
Protections intérieures Les protections intérieures devront résister aux sollicitations des occupants qui peuvent être importantes notamment dans les locaux publics. La position intérieure des stores peut faciliter leur nettoyage notamment pour les bâtiments élevés.

L’esthétique

Protections extérieures Les protections extérieures modifient peu (stores enroulables) ou beaucoup (brise-soleil, avancées architecturales, stores vénitiens) la structure architecturale des façades. En ce sens, certaines protections extérieures risquent de ne pas s’adapter à une rénovation.

Protections intérieures Des protections intérieures ayant une efficacité limitée contre les surchauffes (par exemple, les stores vénitiens ou à lamelles) sont parfois installées uniquement pour leur aspect décoratif.

Les protections intérieures efficaces contre les surchauffes et les déperditions de chaleur auront un aspect réfléchissant qui peut ne pas être au goût de chacun.


Le pouvoir isolant

Protections extérieures Les protections extérieures n’apportent qu’une légère amélioration de l’isolation thermique supplémentaire à la fenêtre car elles ne sont généralement pas étanches..
Protections intérieures Certaines protections intérieures peuvent avoir un impact plus important sur la diminution des déperditions d’un vitrage. De plus, elles peuvent aussi avoir un impact plus important sur la sensation de confort à proximité de la baie (protection contre le rayonnement « froid » de la baie).

Pour autant que la surface intérieure de la protection soit réfléchissante, le coefficient de transmission thermique d’une fenêtre équipée de double vitrage peut diminuer de 25 %. Une diminution de 40 % peut être atteinte avec des stores réfléchissants insérés dans des guides étanches.

Remarquons que l’inétanchéité de la protection, outre la diminution de l’isolation par rapport à l’optimum, risque d’entraîner l’apparition de condensations importantes sur la surface intérieure de la fenêtre. Celles-ci peuvent endommager les menuiseries.


La ventilation naturelle des locaux

Le déploiement de certaines protections solaires rendra impossible l’ouverture des fenêtres pour pratiquer une ventilation naturelle des locaux.

Protections extérieures Aucune protection extérieure n’empêchera physiquement l’ouverture des fenêtres permettant ainsi une ventilation naturelle associée à la protection solaire. Une restriction existe cependant : les protections en toile déroulées devant les fenêtres risquent de ne pas résister aux contraintes mécaniques dues aux courants d’air éventuels.
Protections intérieures L’installation de protections solaires intérieures limite souvent les possibilités d’ouverture des fenêtres. Les protections peuvent être fixées aux ouvrants. Dans le cas de châssis oscillo-battants ou basculants, la combinaison de la protection solaire et de la ventilation naturelle est possible. Cependant, les fabricants de stores enroulables risquent de ne pas couvrir une détérioration due à de l’air s’infiltrant entre la protection et le vitrage du fait de fenêtres voisines ouvertes.

Si la protection est fixée sur le dormant, l’ouverture des fenêtres n’est guère possible lorsque la protection est déployée, que ce soit pour des raisons de maintien de la protection dans ses guides ou de leur résistance mécanique aux courants d’air. De même, lorsque la protection est abaissée, il est bon de prévenir l’ouverture subite d’une fenêtre suite à un courant d’air.

Lorsque la protection intérieure est relevée, il faut pouvoir conserver la liberté d’ouverture de la fenêtre :

  • Si la protection est fixée au dormant ou au linteau, l’ouvrant ne peut heurter ni la protection repliée, ni ses guides.
  • Si la protection est solidaire de l’ouvrant, les charnières latérales de la fenêtre doivent se situer suffisamment loin des retours de fenêtre pour garantir une ouverture complète.

Choisir le facteur lumineux


Transmission lumineuse d’un vitrage simple TL = 0,9.

Quelle transmission lumineuse faut-il choisir ?

La transmission lumineuse de la protection doit être suffisamment faible pour supprimer l’éblouissement des occupants et suffisamment élevée pour que la diminution de la quantité de lumière pénétrant à l’intérieur du local ne rende pas obligatoire l’utilisation de la lumière artificielle. La possibilité de vue de l’intérieur vers l’extérieur sera en outre souvent recherchée.

Fixons les ordres de grandeur par un exemple :

Définition d’un bureau type

Illustration bureau type.

Les murs sont de couleur claire et le sol recouvert de moquette.

Éclairement recommandé

Type d’activité Éclairement
Travail de bureau (attention soutenue). min. 500 lux
Activité ne demandant pas une attention soutenue
(ex : un séjour).
min. 200 lux
Travail sur ordinateur. max. 1 000 lux

Apports lumineux enregistrés dans le local

Schéma apports lumineux enregistrés dans le local.

La figure ci-dessus représente l’éclairement dans la pièce, au niveau d’un plan de travail, en fonction de la distance à la fenêtre, avec :

  • un double vitrage clair,
  • un double vitrage et une protection peu transparente (TL de la protection = 0,10),
  • un double vitrage avec une protection transparente (TL de la protection = 0,19).

Cette simulation se déroule le 15 juin à 16h, par ciel serein.
La fenêtre est orientée à l’ouest. Les conditions d’ensoleillement sont donc très favorables pour l’éclairage naturel du local (soleil fort pénétrant). Les valeurs minimum de transmission lumineuse déduites de cet exemple peuvent donc être considérées comme des extrêmes à ne pas dépasser sous peine de rendre le local trop obscur.

Transmission lumineuse recommandée

Le tableau suivant reprend les valeurs de transmission lumineuse minimum que doivent respecter les protections pour garantir un éclairement suffisant (300 lux) dans la pièce pour assurer le confort visuel lorsque la protection est déployée en période d’ensoleillement.

Ouest Sud Est
Distance à la fenêtre Juin
16 h (1)
Décembre
14 h
Juin
12 h
Décembre
12 h
Juin
7 h
Décembre
9 h
1 m 0.01 0.08 0.03 0.04 0.01 0.08
2 m 0.06 0.20 0.09 0.05 0.02 0.16
3 m 0.11 0.40 0.17 0.06 0.08 0.29
4 m 0.20 0.58 0.28 0.07 0.14 0.46
5 m 0.26 0.79 0.38 0.08 0.19 0.65

(1) Heure universelle; heure réelle en été = heure universelle + 2 h; heure réelle en hiver = heure universelle + 1 h.

Exemple.

Si l’on souhaite garantir 300 lux sur une table de travail, à 3 m de la fenêtre, dans un local orienté à l’ouest, on choisira un store dont le TL est :

  • Supérieur à une valeur de 0.11 si le store n’est utilisé qu’en été,
  • supérieur à une valeur de 0.40 si le store est aussi utilisé en hiver.

Choisir le facteur solaire (FS)


Facteur solaire d’un vitrage simple FS = 0,86.

Quel facteur solaire faut-il atteindre ?

Le choix du facteur solaire minimum à rechercher est fonction de chaque cas. Il n’est donc pas possible de citer un chiffre unique.

Fixons des ordres de grandeur par un exemple.

Valeur de référence

Dans les immeubles de bureaux, on peut estimer qu’un refroidissement devient nécessaire en été lorsque la somme des apports internes et externes atteint  60 W/m² au sol du local. Si on estime d’une manière générale les apports internes d’un bureau moyennement équipé comme suit : un ordinateur (+ 150 W/ordinateur), une personne (70 W/pers.), l’éclairage (10 W/m²) et 1 personne/13 m² au sol, les apports internes totalisent 27 W/m². Pour éviter le recours à la climatisation, il est donc nécessaire de limiter les apports solaires à 33 W/m² au sol.

Apports thermiques

Le tableau suivant représente pour une journée ensoleillée du mois de juillet, la puissance énergétique maximum due à l’ensoleillement, réellement transmise à l’ambiance d’un local de 30 m² au sol, en fonction de l’inertie du bâtiment. La fenêtre du local est équipée d’un double vitrage clair (de 6 m²) orienté respectivement à l’est, au sud et à l’ouest.

Bâtiment lourd Bâtiment moyen Bâtiment léger
Est 245 49 267 53 351 70
Sud 198 40 210
42
252
50
Ouest 250 50 263 53 356 71
W/m² de vitrage W/m² au sol W/m² de vitrage W/m² au sol W/m² de vitrage W/m² au sol

Facteur solaire recommandé

Bâtiment lourd Bâtiment moyen Bâtiment léger
Est 0.51 0.47 0.36
Sud 0.63 0.60 0.50
Ouest 0.50 0.47 0.35
FS FS FS

Facteur solaire minimum de l’ensemble vitrage + protection nécessaire
pour limiter les apports solaires à 33 W/m² au sol.

Choisir la fenêtre comme capteur de lumière naturelle [Les fenêtres]

Favoriser l’éclairage naturel extérieur

Dans une démarche de construction ou de rénovation lourde, on privilégiera l’utilisation de la lumière naturelle à la place de l’éclairage artificiel. La qualité « spectrale » de la lumière naturelle ainsi que sa variabilité et ses nuances offrent une perception optimale des formes et des couleurs. L’éclairage artificiel devrait donc être considéré comme un complément à la lumière naturelle. Aussi, d’un point de vue énergétique, l’utilisation de l’éclairage naturel comme « source » lumineuse est gratuite ; ce qui signifie que la facture en électricité sera d’autant plus réduite que l’éclairage naturel exploité.

Dans bien des projets de conception ou de rénovation de bâtiments tertiaires, en confort lumineux, l’objectif premier est de privilégier l’ouverture des espaces de travail vers la lumière naturelle tout en sachant qu’une trop grande ouverture des façades est souvent synonyme d’éblouissement, de surchauffe et déperditions thermiques au travers des baies vitrées. Le compromis reste de rigueur !

Bien des paramètres viennent influencer de manière plus ou moins significative la pénétration de la lumière dans les espaces de travail :

  • L’orientation des façades ;
  • La présence d’ombres reportées (bâtiments ou autres façades du bâtiment étudié faisant de l’ombre) ;
  • La taille, la forme et la position des baies vitrées dans les façades ;
  • La forme et les dimensions des trumeaux ;
  • Les caractéristiques des vitrages ;
  • La présence de protection solaire (fixe, mobile, …) ;
  •  …

Vitrage clair.           Vitrage sélectif.           Auvent.           Lamelles.           Ombre reportée.

Pour un projet de taille importante, une étude par un bureau spécialisé est toujours intéressante sachant qu’il est possible d’optimiser conjointement les conforts lumineux et thermiques par des simulations dynamiques tenant compte de l’ensoleillement et du climat à tout moment de l’année disponible sous forme de bases de données type « météonorm » par exemple.

L’éclairage naturel extérieur n’est pas uniforme

L’intensité de la lumière naturelle varie fortement en fonction du type de ciel, du moment de l’année, de l’heure dans la journée, de l’orientation de l’ouverture, de son inclinaison et de son environnement.

Les études d’éclairage naturel des locaux sont basées, conventionnellement, sur un ciel couvert donnant un niveau d’éclairement de 5 000 lux sur une surface horizontale en site dégagé (Commission Internationale de l’Énergie).

Or, en Belgique, un tel éclairement est dépassé 80 % du temps entre 8h00 et 16h00, par ciel couvert. Et ce ciel couvert ne se présente que 36 % du temps de l’année.

À l’extrême, en juin, à midi et par ciel serein, l’éclairement dépasse 100 000 lux! (Franchement, de quoi se plaint-on ?!)

Lumière solaire directe ou lumière solaire diffuse ?

La lumière solaire directe dispense un flux considérable, facile à capter et à diriger. Elle présente une dynamique intéressante (création de reliefs dans le bâtiment) et peut être utilisée en tant qu’énergie thermique. Par contre, le rayonnement solaire direct est souvent une source d’éblouissement et parfois de surchauffe du bâtiment. De plus, sa disponibilité est épisodique et dépend de l’orientation des ouvertures.

La lumière diffuse du ciel est disponible dans toutes les directions. Elle suscite peu d’éblouissement, ne provoque pas de surchauffe, mais elle peut être insuffisante dans de nombreux cas. En outre, elle crée peu d’ombres et de très faibles contrastes. Une lumière diffuse est donc idéale pour des locaux de travail où il est important d’avoir un éclairage constant, sans source d’éblouissement. La lumière du nord est assurément une lumière diffuse (depuis toujours exploitée dans les ateliers d’artistes). Mais il est possible de valoriser également la lumière directe venant des autres orientations, pour autant qu’une protection masque le disque solaire ou qu’un rideau intérieur diffuse la lumière incidente.

L’influence de l’environnement

Lors de la conception d’un bâtiment, il est donc important de mesurer l’impact de l’environnement existant sur le nouvel édifice afin de profiter au mieux des possibilités offertes par le terrain pour capter la lumière.

Le relief du terrain, les constructions voisines, … peuvent modifier fortement l’apport.

L’effet de rue est caractérisé par le masque solaire que créent les bâtiments situés de l’autre côté de la rue. Il dépend de la hauteur de ces constructions et de la distance qui sépare les deux côtés de la rue.

Des surfaces réfléchissantes placées au sol telles qu’un dallage brillant ou un plan d’eau peuvent contribuer à capter davantage de lumière. Ainsi, l’eau, en réfléchissant le ciel et l’environnement, intensifie l’impression lumineuse d’un lieu.

Mais la présence d’un bâtiment voisin équipé de vitrages réfléchissants, précisément pour se protéger de l’ensoleillement, risque de provoquer un éblouissement excessif des occupants.

Des éléments liés au bâtiment lui-même, tel que des murs de refends, des surplombs, des light shelves, … peuvent aussi provoquer un ombrage en fonction de leur taille, de leur réflectivité et de leur orientation.

La végétation se distingue des autres écrans parce qu’elle peut être saisonnière, ce qui est le cas des arbres à feuilles caduques, et que par ailleurs elle ne possède qu’une opacité partielle. Elle se contente de filtrer la radiation lumineuse plutôt que de l’arrêter.


Sélectionner la fenêtre comme espace capteur de lumière

Pour quels locaux ?

A priori, tous les locaux devraient disposer d’un éclairage naturel (sauf archives et locaux techniques). On peut parler de nécessité pour les « locaux de vie » (où les occupants séjournent plusieurs heures par jour) et de souhait pour les sanitaires et les circulations (où les occupants ne font que passer).

Voici deux couloirs du même bâtiment, avec les mêmes orientations.
Dans le premier cas, l’architecte a introduit une dissymétrie dans la distribution des locaux, et des ouvertures vers l’extérieur pour introduire de la lumière naturelle.
Faut-il préciser que la première mise en œuvre est plus chère ?..
On parle ici de qualité de l’ambiance intérieure dans un lieu de travail.

Ouverture latérale ou zénithale ?

Ouverture latérale et ouverture zénithale.

Au niveau de l’apport de lumière naturelle, une ouverture zénithale s’ouvre sur la totalité de la voûte céleste. Elle induit une meilleure pénétration de lumière, particulièrement par temps nuageux. La distribution lumineuse obtenue par une ouverture zénithale est aussi beaucoup plus homogène que celle produite par une fenêtre latérale. De plus, la lumière entre dans les locaux par le plafond, ce qui limite a priori les phénomènes d’éblouissement. L’éclairage zénithal convient spécialement à la pénétration de la lumière naturelle dans les bâtiments bas et profonds.

Distribution de lumière très homogène,
mais défavorable à la perception du relief.

Mise en évidence du relief par l’éclairage latéral,
malgré un couloir rectiligne.

Par contre, la lumière latérale est favorable à la perception du relief. L’entretien est également plus facile que pour une ouverture zénithale. De plus, le bilan thermique est en faveur d’une ouverture verticale. En été, les apports peuvent être limités (particulièrement au sud, via une « casquette » architecturale).

Tandis que les apports d’été sont toujours excédentaires au niveau d’une ouverture en toiture.

Seule solution : la décapotable ! Si la coupole ou la verrière peut être largement ouverte en été, le problème peut être résolu. Reste la gestion de la pluie et du vent…

Quelle orientation de la fenêtre latérale ?

Les pièces orientées au nord bénéficient toute l’année d’une lumière égale et du rayonnement solaire diffus. Il est judicieux de placer des ouvertures vers le nord lorsque le local nécessite une lumière homogène, peu variable ou diffuse, et lorsque les apports internes sont élevés.

Les pièces orientées à l’est profitent du soleil le matin, mais le rayonnement solaire est alors difficile à maîtriser, car les rayons sont bas sur l’horizon. L’exposition solaire y est faible en hiver, mais elle permet d’apporter des gains solaires au moment où le bâtiment en a le plus besoin. Par contre, en été, l’orientation est présente une exposition solaire supérieure à l’orientation sud, ce qui est peu intéressant.

Une orientation ouest présente un risque réel d’éblouissement et les gains solaires ont tendance à induire des surchauffes. En effet, les vitrages tournés vers l’ouest apportent des gains solaires l’après-midi, au moment où le bâtiment est depuis longtemps en régime.

Une orientation sud entraîne un éclairement important. De plus, les pièces orientées au sud bénéficient d’une lumière plus facile à contrôler. En effet, en hiver, le soleil bas (environ 17°) pénètre profondément dans le bâtiment, tandis qu’en été, la hauteur solaire est plus élevée (60°) et la pénétration du soleil est donc moins profonde. En été, les apports solaires sur une surface verticale sont également nettement inférieurs au sud qu’à l’est ou à l’ouest, car ils sont diminués par un facteur égal au cosinus de l’angle d’incidence.

Les dimensions de l’ouverture

On peut quantifier l’apport de lumière naturelle dans un local par le facteur de lumière du jour (FLJ). Exprimé en %, il exprime le rapport entre l’éclairement intérieur sur le plan de travail dans le local, et l’éclairement extérieur sur le plan horizontal, en site dégagé, par ciel couvert.

Plus le facteur de lumière du jour est élevé, plus le temps d’utilisation des locaux avec la lumière naturelle est élevé, limitant ainsi la consommation d’éclairage artificiel.

Un objectif raisonnable est d’arriver à un temps d’utilisation de l’éclairage naturel d’au moins 60 %. Ceci entraîne un facteur de lumière du jour de 2,5 (exigence de 300 lux) à 4 % (exigence de 500 lux) dans les locaux de vie, et de 1,5 % dans les circulations et sanitaires (exigence de 100 lux).

Une méthode approchée permet d’évaluer le Facteur de Lumière du Jour moyen d’un local donné, en fonction de sa surface vitrée.

L’emplacement de l’ouverture

Bien sûr, plus la surface est importante, plus l’éclairage naturel est élevé. Mais on sait que les apports solaires augmenteront eux aussi et donc le risque de surchauffe du local. Il nous faut donc optimiser l’efficacité lumineuse de la fenêtre.

Pour évaluer l’influence de l’emplacement de la fenêtre sur la répartition de la lumière dans un local, nous comparons trois fenêtres identiques, situées à 3 hauteurs différentes.

Plus la fenêtre est élevée, mieux le fond du local est éclairé et plus la zone éclairée naturellement est profonde. Si le fond du local (situé à 7 m de la façade dans notre test) reçoit une valeur de référence 100 pour la fenêtre basse, il recevra 128 pour la fenêtre à mi-hauteur et 143 pour la fenêtre haute.

A surface égale, l’efficacité lumineuse d’une fenêtre est donc maximale au niveau d’un bandeau horizontal, situé en partie supérieure de la paroi.

Une telle fenêtre en hauteur procure les avantages suivants :

  • Une répartition très uniforme de la lumière dans l’espace ainsi qu’un bon éclairage du fond du local.

 

  • Une source de lumière au-dessus de la ligne de vision, ce qui réduit les risques d’éblouissement direct.

Cependant, le seuil se trouve au-dessus du niveau de l’oeil, la vue sur l’extérieur est impossible. La fenêtre ne peut jouer son rôle de lien entre un local et son environnement. De plus, une zone d’ombre est formée à proximité du mur de fenêtre. En général, il est préférable de coupler une telle fenêtre avec une fenêtre classique, équipée de protections solaires.

Pour maximiser les apports de lumière naturelle, on peut également interrompre un faux plafond à proximité de la fenêtre pour favoriser la pénétration de la lumière naturelle par cette ouverture. Ce procédé est connu sous le nom de « plafond biaisé ».

De cette étude, on peut déduire une autre conclusion très intéressante : c’est la zone inférieure d’une fenêtre qui est la moins efficace en matière d’éclairage naturel. La présence d’une allège opaque est donc thermiquement préférable (présence d’une isolation pour diminuer les pertes en hiver et opacité vis-à-vis des apports solaires).

La forme de la fenêtre

Analysons l’influence de la forme de la fenêtre en comparant la répartition lumineuse fournie par trois fenêtres de proportions différentes, pour une surface vitrée identique et une hauteur de l’allège constante.

Lorsque la largeur de la fenêtre diminue, la répartition devient moins uniforme, bien que l’éclairement moyen soit pratiquement le même dans les trois cas étudiés. Par contre, l’éclairement du fond du local augmente avec la hauteur de la fenêtre. Pour une même surface vitrée, une fenêtre haute éclaire davantage en profondeur. L’idéal réside donc dans une fenêtre horizontale, mais dont le linteau est élevé. En première approximation, une pièce est convenablement éclairée jusqu’à une profondeur de 2 à 2,5 fois la hauteur du linteau de la fenêtre par rapport au plancher.

Analysons l’influence de la répartition des ouvertures dans une façade : comparons la grande fenêtre centrée et deux fenêtres plus petites, placées symétriquement.

Dans les deux cas, les fenêtres ont une superficie vitrée totale identique et la même hauteur; leur allège est située au même niveau par rapport au sol. La moyenne des éclairements varie peu, mais la répartition de la lumière dans la partie du local avoisinant les fenêtres est différente. Dans le cas de deux fenêtres séparées, une zone d’ombre apparaît entre celles-ci, ce qui peut créer des problèmes de confort visuel pour les occupants.

Le type de châssis

Le type et la taille du châssis modifient la vue vers l’extérieur et la quantité de lumière admise dans un édifice.

Le châssis fixe sera sans conteste le plus mince mais il empêche le plaisir du contact direct avec l’air extérieur…

Le matériau utilisé pour le châssis détermine également son encombrement : en général, un châssis en bois est plus mince qu’un cadre en aluminium à coupure thermique. Les châssis en PVC sont les plus larges.

Mais les innovations récentes permettent de plus en plus de diminuer l’impact visuel des châssis et d’augmenter ainsi la quantité de lumière captée.

Cafétéria dans un lycée.


Valoriser l’éclairage naturel capté

Les dimensions du local

La profondeur du local ne devra pas dépasser le double de la hauteur du linteau de la fenêtre, puisque l’intensité de la lumière naturelle décroît très rapidement en fonction de l’éloignement de la fenêtre.

Ainsi, la profondeur des bureaux devrait être limitée à 6 mètres.

À noter qu’une variation de la hauteur sous plafond (pour une même baie vitrée et une surface de plancher identique) induit une très faible différence dans la répartition lumineuse du local. Le niveau d’éclairement est cependant un petit peu plus élevé dans les pièces ayant un plafond plus bas.

La réflexion sur les parois

La nature et la couleur des surfaces intérieures influencent directement l’éclairage naturel dû aux réflexions intérieures. Une bonne distribution de la lumière nécessite des parois et du mobilier de couleurs claires.

L’importance de la clarté des surfaces est due à un double effet

  • les facteurs de réflexion plus élevés permettent à la lumière d’être davantage réfléchie.

 

  • l’œil humain analyse des niveaux de luminance : sous les mêmes conditions d’éclairage, une surface claire est donc subjectivement perçue comme mieux éclairée qu’une surface foncée.

On peut dire que si le facteur de réflexion moyen des murs d’un volume quelconque est inférieur à 50 %, la lumière pénétrera difficilement en profondeur dans cet espace. Or la plupart des matériaux architecturaux ont de faibles facteurs de réflexion. Un plancher clair peut avoir un facteur de réflexion de 30 %, mais pas beaucoup plus, ce qui est nettement plus bas que les murs (~ 50 % ) et que les plafonds (~ 70 %).

Dès lors, pour favoriser la pénétration de la lumière dans un local, on adoptera un revêtement du sol et du mobilier relativement clair, possédant donc un facteur de réflexion élevé. De plus, la clarté des tables de travail s’avère un élément favorable au confort visuel dans la mesure où la réduction du contraste entre le papier et le support de la table induit une diminution des efforts d’accommodation que l’œil doit effectuer à chacun de ses mouvements.

En revanche, les sols sont souvent de couleur relativement sombre afin de faciliter leur entretien. Il faut donc envisager un compromis susceptible de satisfaire simultanément les exigences de confort et de maintenance.

Comme le plafond ne reçoit la lumière naturelle que de manière indirecte, son influence sur la répartition de la lumière est relativement faible. En revanche, lorsqu’un dispositif de distribution lumineuse dévie la lumière vers le haut, par exemple à l’aide d’un  light shelf, le plafond reçoit une grande quantité de lumière qu’il doit répartir dans toute la pièce; le facteur de réflexion de cette surface doit alors être élevé (> 70 %), valeur correspondant à celle du plâtre blanc propre.

Lorsque les matériaux de revêtement présentent une certaine brillance, la lumière arrive plus facilement en fond de pièce.

En contrepartie, les surfaces en question acquièrent une luminance élevée et peuvent donc devenir des sources d’éblouissement.

De manière générale, les surfaces brillantes sont donc à conseiller comme moyen de transmission de la lumière naturelle, mais elles sont à éviter dans les locaux de travail, dans la mesure où les activités (lecture, écriture,…) peuvent être perturbées lorsque l’environnement lumineux est fort contrasté.

Distribuer l’éclairage dans les locaux

L’inconvénient de la lumière naturelle par rapport à la lumière artificielle réside dans la grande inhomogénéité des éclairements qu’elle induit. La répartition de la lumière représente donc un facteur clef pour assurer un éclairage de qualité.

Un éclairage naturel direct engendre des risques importants d’éblouissement et entraîne une répartition des luminances très irrégulière dans le local.

L’éclairage naturel indirect utilise les réflexions des rayons lumineux sur une paroi pour obtenir une distribution lumineuse plus homogène. Cependant, le niveau d’éclairement assuré dépend fortement du coefficient de réflexion de la paroi et donc de sa maintenance régulière.

Le Kimbell Art Museum, conçu par L. Kahn, renferme un exemple d’éclairage naturel indirect fabuleux.

De longs plafonds cylindriques laissent pénétrer la lumière naturelle en leur centre grâce à un système filtrant et réfléchissant, qui redirige la lumière solaire éclatante du Texas sur les voûtes du musée.

L’aménagement des parois intérieures

La distribution de l’éclairage dépend aussi de l’organisation des espaces intérieurs. Utiliser des cloisons transparentes ou translucides permet à la lumière de se répandre dans les deux pièces séparées par la surface vitrée. À l’intérieur d’un bâtiment, l’architecte est tributaire des effets de lumière qui se créent : il dote les espaces intérieurs de l’atmosphère désirée par une disposition étudiée des ouvertures et des obstacles à la lumière. Par exemple, un local disposé à l’est peut, par le truchement des baies intérieures, recevoir un peu de lumière de l’ouest.

Dans un long couloir, la présence de fenêtres translucides donne un relief agréable et permet d’éviter l’éclairage artificiel (bandes verticales à côté des portes ou impostes au-dessus des portes).

Les meubles sont parfois de réels obstacles qui empêchent la transmission de la lumière vers certaines parties de la pièce. Il est donc essentiel de réfléchir au type de meubles, ainsi qu’à leur emplacement, de manière à favoriser la pénétration de la lumière naturelle.

Ces deux modes d’éclairage peuvent aussi être combinés pour créer un éclairage direct/indirect, alliant une ouverture directe à la lumière naturelle à un système d’éclairage indirect. Un exemple de ce type d’éclairage est une façade qui unit une fenêtre normale et un light shelf. Ce mode d’éclairage possède, en général, les avantages de l’éclairage indirect, mais la partie directe permet en plus de créer des ombres, qui mettent en valeur le relief des objets. D’autre part, la maintenance des coefficients de réflexion des parois est un peu moins critique vu qu’une partie de l’éclairage entre de manière directe dans l’espace.

Gérer l’éclairage artificiel en fonction de l’éclairage naturel

Force est de constater que les occupants d’un bâtiment tertiaire sont peu motivés à éteindre leurs luminaires, même si l’éclairage naturel est suffisant. De plus, la modulation ON-OFF n’est pas souple et provoque un choc psychologique lors de l’extinction.

      

Par exemple, il est possible aujourd’hui de placer une cellule sensible à l’intensité lumineuse en dessous du luminaire. Si, en présence de soleil, celle-ci dépasse les 500 Lux souhaités, l’alimentation électrique du luminaire est automatiquement réduite. Sans que l’occupant ne s’en rende compte, l’éclairage naturel est directement valorisé. C’est « la vanne thermostatique » du luminaire !

Concevoir

Pour plus d’informations sur la mise en place d’une technique de gestion de l’éclairage artificiel.

Renforcer l’éclairage naturel à l’intérieur du bâtiment

Le puits de lumière

Certaines zones centrales dans un bâtiment n’ont pas d’accès direct à la lumière du jour. Dès lors, un conduit de lumière, passant à travers différentes pièces, permet de répandre la lumière naturelle captée en toiture ou en façade dans ces locaux aveugles.

Signalons toutefois que les puits de lumière risquent d’occuper un assez grand volume dans le bâtiment. Leur surface interne doit être d’autant plus réfléchissante que la lumière naturelle doit être amenée profondément dans le bâtiment. Pour limiter au maximum les pertes par absorption, il faut utiliser des matériaux très performants au niveau photométrique.

Architecte : M. Botta.

Utilisation du verre
dans des éléments de sol ou d’escalier.

Si le puits de lumière prend de plus larges dimensions, on parle d’atrium. Sa gestion thermique est souvent difficile (refroidissement par la surface vitrée en hiver, surchauffe par l’excès d’apports solaires en été). Un équilibre dans le degré d’ouverture doit donc être trouvé pour favoriser l’éclairage des pièces centrales, tout en évitant un déséquilibre thermique … coûteux en climatisation !

   

Exemple d’un atrium bien dimensionné.

Au Lycée Vinci de Calais, une dynamique est donnée par les 3 ouvertures : bandeau lumineux sur toute la longueur, coupole en toiture, pignons vitrés aux deux extrémités.

Si toute la toiture avait été ouverte, l’énergie incidente aurait entraîné des surchauffes en été.

Le conduit solaire

Un conduit solaire transmet la lumière solaire directe au cœur même du bâtiment. Le rayonnement solaire est capté au moyen d’un système de miroirs et de lentilles ou de capteurs paraboliques, éléments qui se meuvent en fonction de la trajectoire du soleil. La transmission du rayonnement solaire se fait par des systèmes de miroirs, de lentilles, de prismes réflecteurs, de fibres optiques, de baguettes acryliques, de fluides de cristaux liquides ou des conduits creux, dont les faces intérieures sont recouvertes de métaux polis. Les faisceaux lumineux ainsi obtenus peuvent alors être dirigés sur une surface précise ou diffusés dans l’espace.

Ce conduit, beaucoup moins volumineux qu’un puits de lumière, peut facilement atteindre une longueur de 15  mètres. Il est parfois associé à un puits de lumière.

Le conduit solaire apporte un flux lumineux nettement plus important et plus concentré que le puits de lumière. Cependant, tous ces systèmes de gestion du rayonnement solaire direct sont relativement chers à installer et s’appliquent donc plus particulièrement aux régions fortement ensoleillées.

Le « light shelf »

Un light shelf est un auvent, dont la surface supérieure est réfléchissante.

L’objectif est double

  1. Rediriger la lumière naturelle vers le plafond, ce qui permet de faire pénétrer la lumière profondément dans la pièce.
  2. Protéger l’occupant des pénétrations directes du soleil (éblouissement et rayonnement direct).

La surface du light shelf doit être aussi réfléchissante que possible, mais peut-être mate, brillante ou spéculaire. Une surface spéculaire renvoie théoriquement plus de lumière, mais il faut pour cela qu’elle soit nettoyée très régulièrement, ce qui n’est pas toujours aisé. En pratique, un light shelf brillant (semi-spéculaire) est sans doute le meilleur choix.

La couleur du plafond doit être aussi claire que possible, car il joue le rôle de distributeur de la lumière naturelle réfléchie par le light shelf. Sa pente a également de l’importance : un plafond incliné vers le fond du local ou de forme arrondie incurvée vers l’intérieur de l’espace augmentera fortement la profondeur de pénétration de la lumière dans le local.

Architecte : Michael Hopkins and Partners.

Dans nos régions, il est surtout applicable pour des locaux profonds d’orientation sud. Ses performances sont fortement réduites pour des orientations est et ouest, pour lesquelles le rayonnement solaire a un angle d’incidence plus faible.

De manière relative, plus le local est sombre, plus l’apport d’un light shelf peut être intéressant. Si la composante réfléchie interne est déjà grande dans un local, le même système sera proportionnellement moins efficace. L’emploi d’un light shelf en rénovation sera particulièrement profitable dans les pièces dont les murs ont des coefficients de réflexion faibles et un mobilier foncé (à noter qu’il sera moins cher de commencer par repeindre les murs !).

Le choix de la meilleure configuration de light shelf résulte d’un équilibre entre les demandes d’éclairage naturel et les besoins d’ombrage d’un local.

Un light shelf est habituellement situé à environ deux mètres de hauteur, divisant la fenêtre de façade en deux parties. Sa position dépend de la configuration de la pièce, du niveau des yeux et de la hauteur sous plafond pour permettre une vue vers l’extérieur et ne pas causer d’éblouissement. Une position basse augmente la quantité de lumière réfléchie vers le plafond … mais accroît les risques d’éblouissement.

L’augmentation de la profondeur du light shelf limite l’éblouissement, mais diminue aussi la pénétration de la lumière et la vue vers l’extérieur. Le light shelf, affectant la conception architecturale et structurelle d’un édifice, est de préférence introduit au début de la phase de conception puisqu’il nécessite un plafond relativement haut pour être efficace.

Les light shelves horizontaux sont un bon compromis entre une inclinaison du système vers le centre de la pièce ou vers l’extérieur. Tournée vers l’extérieur, le light shelf crée un plus grand ombrage, mais tournée vers l’intérieur il éclaire mieux le fond de la pièce.

On peut classer un light shelf selon sa position : intérieur, extérieur ou combiné.

Ainsi que le montre les simulations de l’éclairage d’un local, sans et avec light shelf,

  • Le light shelf extérieur donne les meilleurs résultats du point de vue du niveau d’éclairement en fond de pièce, tout en ombrant la grande fenêtre.

 

  • Placé à l’intérieur, il réduit le niveau d’éclairement moyen du local, mais offre toutefois un ombrage pour la partie supérieure du vitrage.

 

  • Enfin, le light shelf combiné assure la distribution lumineuse la plus uniforme dans le local; il se révèle également la meilleure protection solaire.

Choisir la fenêtre comme capteur d’énergie solaire [Les fenêtres]

L’architecture participe à la juste captation des apports solaires, plus recherchés pour leur lumière que pour leur chaleur dans un immeuble tertiaire.

L’immeuble tertiaire se distingue de l’immeuble domestique

Les besoins thermiques d’un immeuble tertiaire (bureaux, écoles, …) sont très différents de ceux d’un bâtiment domestique.

Bâtiment tertiaire Bâtiment domestique

En hiver

Des apports internes élevés sont apportés par les occupants, par l’éclairage et les appareils de bureautique. Les apports internes sont limités, exceptés dans la cuisine.
Le profil de demande de chaleur est essentiellement concentré sur la relance du matin, avant l’arrivée des occupants.

Lorsque le soleil arrive, le bâtiment est déjà chaud, particulièrement pour les locaux orientés à l’Ouest (soleil l’après-midi).

Dans une classe d’école par exemple, il n’est plus nécessaire de chauffer lorsque les élèves sont présents (nous parlons bien ici d’un nouveau bâtiment bien isolé).

Le profil de demande de chaleur est variable suivant l’occupation, mais il est marqué par une demande qui se prolonge en soirée, après le coucher du soleil.

Un des objectifs sera de stocker la chaleur solaire de la journée dans les parois, pour lisser la pointe de température en journée et libérer la chaleur en soirée.

En été

L’exigence de confort est importante afin d’améliorer la productivité des occupants. L’occupant accepte plus facilement un inconfort temporaire et attend la fraîcheur de la soirée.

Il peut facilement adapter sa tenue vestimentaire et son activité.

L’environnement extérieur ne permet pas toujours une ouverture des fenêtres (bruit, air pollué, …) Généralement, l’environnement permet plus facilement l’ouverture des fenêtres.

Conclusions

En hiver, le profil de demande thermique d’un immeuble tertiaire est peu en coïncidence avec le profil de l’apport solaire, surtout pour les immeubles de bureaux dont les apports internes sont élevés.

Le profil de demande de chaleur est essentiellement concentré sur la relance du matin, avant l’arrivée des occupants.

En été, , et de plus en plus en mi-saison, la sensibilité du bâtiment et des occupants au risque de surchauffe est élevée.


Quelle place pour les apports solaires de chauffage ?

De ce qui est dit ci-dessus, et des conséquences de l’isolation des bâtiments sur le profil de demande, on déduit que les apports solaires sont peu recherchés pour leur appoint en chauffage dans un nouveau bâtiment bien isolé et avec des apports internes moyens ou élevés (immeubles de bureaux, par exemple).

Concrétisons par un exemple

Voici les résultats d’une simulation réalisée sur un immeuble de bureau-type.

Ramenons à 100 la demande en chaud et en froid de l’immeuble dans sa version de base (50 % de vitrage) et analysons l’impact d’une modification de la surface vitrée :

Pourcentage
de vitrages
Demande
de chauffage
Demande
de refroidissement
0 % 77 80
50 % 100 100
70 % 110 108

Il apparaît :

  • que l’augmentation globale de la surface vitrée augmente les déperditions en hiver,
  • que l’apport solaire ne compense pas ces déperditions,
  • que la demande de refroidissement est logiquement en hausse en été.

Avec les modes constructifs actuels, le bâtiment qui aurait le moins besoin de chauffage et refroidissement est celui que n’aurait pas d’ouvertures !

À noter que cette évolution est identique quelle que soit l’orientation du local :

Local Nord Local Sud
Pourcentage
de vitrages
Demande de chauffage Demande
de refroidissement
Demande de chauffage Demande
de refroidissement
0 % 84 73 71 84
50 % 103 79 90 120
70 % 116 81 103 134

La valeur 100 correspond à la demande moyenne des locaux, avec 50 % de vitrages.

A noter :

  • L’importance de la demande de refroidissement dans les locaux au Nord, demande essentiellement liée à la présence des apports internes.
  • Une simulation des locaux avec des apports internes faibles présente la même tendance à l’augmentation des consommations avec l’augmentation de la surface vitrée.
  • Le placement de vitrages réfléchissants au Sud génère une diminution de la demande de refroidissement nettement plus forte que l’augmentation de la consommation de chauffage.

Constats (essentiellement pour des immeubles de bureaux)

  • L’idéal thermique restera toujours le vitrage clair équipé d’un store extérieur mobile : la chaleur solaire est captée si nécessaire et le store est abaissé le reste du temps. Toutefois, la convivialité intérieure et l’apport lumineux lorsque les stores sont abaissés laissent à désirer…

 

  • Dans un bâtiment tertiaire vérifiant la réglementation thermique en matière d’isolation et disposant d’apports internes normaux (> 25 W/m²), il y a peu intérêt à capter l’énergie solaire pour diminuer les besoins de chauffage et beaucoup de risque de surchauffe et d’éblouissement.

 

  • Par réalisme, le critère thermique impose une limitation des espaces vitrés dans un bâtiment tertiaire, quelle que soit son orientation; ouvrir la façade « du sol au plafond », c’est créer un problème et devoir user d’artifices coûteux pour gérer l’excédent solaire. Et finalement, c’est nier toute architecture d’une façade, comme succession de pleins et de vides…

 

  • Le pourcentage de vitrage à choisir est essentiellement fonction des besoins d’éclairage naturel et de convivialité recherchée dans le bâtiment.

 

  • Idéalement, les surfaces vitrées seront choisies avec un faible coefficient de transmission thermique pour limiter les pertes en hiver et équipées d’une protection solaire en été. Toutefois, vu la difficulté d’une bonne gestion des protections solaires et le coût des protections automatisées, il est possible également de sélectionner des vitrages avec un faible facteur solaire (FS = 0,4 au maximum) et un bon rendu lumineux (FL = 0,7).

Conclusions : quel pourcentage d’ouverture de la façade ?

Si l’on ne prend en compte que le seul critère thermique, et si une protection solaire très efficace n’est pas prévue, une limitation des espaces vitrés s’impose dans un bâtiment tertiaire bien isolé, quelle que soit son orientation.

Le pourcentage de vitrage à choisir de prime abord pourra généralement être compris entre 30 et 45 % de la surface de façade, cette fourchette variera essentiellement fonction :

  • du rapport au contexte dans lequel le bâtiment s’inscrit,
  • du besoin d’éclairage naturel,
  • du souhait de contacts visuels avec l’extérieur,
  • de la recherche de repères visuels dans le bâtiment.

Voici deux couloirs du même bâtiment, avec les mêmes orientations.
Simplement, dans le premier cas, l’architecte a introduit une ouverture vers l’extérieur pour introduire de la lumière naturelle…
C’est ce qui fait la qualité de l’ambiance intérieure.

A la limite, on peut comprendre une compagnie d’assurance anglaise, qui, vu les apports internes très élevés, a décidé de s’ouvrir principalement au Nord, réservant au Sud l’emplacement de la cafétéria.

Vue des espaces vitrés côté nord.

Remarque importante.

Dans nos conclusions, le vitrage apparaît mal adapté comme capteur d’énergie solaire dans les bâtiments tertiaires. Par contre, et tout particulièrement lorsque le bâtiment présente des besoins d’air neuf élevés (laboratoires, salles de conférence, salles de réunion,…), il est utile d’étudier la valorisation de l’apport solaire pour le préchauffage de l’air neuf. Le principe est alors de placer la prise d’air neuf dans un espace qui par lui-même récupère la chaleur solaire ou la chaleur du bâtiment. On pense tout particulièrement ici à un système de type « double-peaux », mais l’atrium ou le puits canadien sont d’autres manières d’appliquer ce principe.


Une très grande sensibilité aux apports internes

Le résultat des simulations thermiques est très variable en fonction d’un paramètre : la charge interne.

Un bâtiment actuel est souvent à l’équilibre entre ses pertes thermiques et ses apports internes. S’il faut chauffer par période de gel, et refroidir en période de canicule, entre ces 2 extrêmes il existe une large plage où le bâtiment est proche de l’équilibre thermique : les résultats seront alors fonction des hypothèses choisies.

Exemple.

Reprenons l’analyse d’

un immeuble de bureau-type.

Si 100 est la demande en chaud et en froid de l’immeuble dans sa version de base (50 % de vitrage-apports internes moyens), analysons l’impact d’une modification des apports internes :

Apports
internes
Demande
de chauffage
Demande
de refroidissement
– 50 % 146 52
moyens 100 100
+ 50 % 23 226

Exemple de diagramme énergétique établi pour cet immeuble de bureaux :

Face à une telle sensibilité, il apparaît

  • Qu’une analyse des besoins thermiques spécifique au bâtiment et à son utilisation (simulation dynamique) est indispensable pour une conception correcte du bâtiment et de ses équipements.
  • Que face à l’incertitude sur le fonctionnement réel du bâtiment (demain et après-demain), même si le refroidissement naturel du bâtiment est recommandé en priorité, l’adjonction éventuelle future d’un système mécanique de refroidissement doit être étudiée dès le début d’un projet d’immeuble de bureaux.

Exemple de situation dont les occupants se plaignent :

Une grande baie vitrée orientée au sud, une faible inertie (tapis et plafond acoustique)… … et la présence de nombreux PC génère de la surchauffe en été.


Une sensibilité aux masques solaires

Toutes les conclusions tirées ci-dessus sont en partie dépendantes de la présence d’un masque solaire éventuellement créé par les bâtiments voisins.

Par exemple, le bilan énergétique du dernier étage est sensiblement différent de celui du rez-de-chaussée.

On peut donc imaginer que le choix du vitrage puisse évoluer en fonction de l’étage.


L’influence de l’orientation de la façade

Lorsque l’apport solaire est recherché (bâtiment avec faibles apports internes), il est important de sélectionner une surface vitrée dont l’efficacité est maximale : capter un maximum d’énergie en hiver et un minimum en été.

Gains solaires par ciel serein en Belgique,
à travers un double vitrage.

(La lettre indique l’orientation et le nombre est l’inclinaison. Les orientations ouest et sud-ouest correspondent approximativement aux orientations est et sud-est.)

À première vue, la surface vitrée verticale orientée au sud (= S 90) paraît très intéressante, puisque plus d’apports en mi-saison qu’en été.

À l’opposé, on trouve la surface horizontale (coupole en toiture) dont la spécificité est de capter très peu d’énergie en hiver et de provoquer de la surchauffe en été.

Les surfaces à l’est et à l’ouest (= E 90) présentent également un bilan contraire à l’évolution des besoins du bâtiment.

Par contre, si la façade ne comporte pas de masques, un bâtiment de bureaux avec des apports internes moyens ou élevés sera en surchauffe très rapidement, dès l’arrivée du soleil.

Dans ce cas, l’apport solaire total étant plus important au Sud, c’est cette orientation qui sera la plus défavorable en matière de refroidissement annuel (malgré une légère diminution des consommations d’hiver).

C’est ce que montre notre exemple de

bureau-type :

Local Ouest Local Sud
Pourcentage
de vitrages
Demande de chauffage Demande
de refroidissement
Demande de chauffage Demande
de refroidissement
50 % 103 104 90 120

La valeur 100 correspond à la demande moyenne des locaux, avec 50 % de vitrages.

Exemple de protection architecturale très efficace sur une façade Sud… et qui participe à l’architecture de la façade !

Mais l’avantage de la façade au Sud est de profiter d’un soleil très haut sur l’horizon. Les auvents créés par l’architecture de la façade formeront une protection solaire efficace.

Au contraire, les protections architecturales ne sont pas efficaces à l’Est et à l’Ouest : le soleil est trop bas sur l’horizon pour être arrêté par le masque architectural.

Un éblouissement important en résulte.

Seuls des stores sont possibles, mais le coût et la maintenance en sont élevés.

Conclusions

Partons d’un bâtiment rectangulaire dont on se poserait la question : quelles orientations des façades des grands côtés du rectangle ?

 Sans protections solaires, le choix de l’orientation d’un bâtiment est à faible impact énergétique : la consommation totale (chaud + froid) plus importante au Sud est compensée par une consommation totale plus faible au Nord.

Il est préférable :

  • Soit de privilégier l’ouverture au nord pour favoriser l’éclairage naturel (et de limiter les espaces vitrés au sud et à l’ouest),

 

  • Soit de placer pour les orientations sud, est et ouest, des vitrages réfléchissant le rayonnement solaire toute l’année. Il existe des vitrages qui ne laissent passer que 40 % de l’énergie solaire thermique, tout en laissant passer 70 % de la lumière.

 Si des protections solaires sont prévues, les grands côtés Nord et Sud sont plus faciles à gérer : une protection architecturale fixe est très efficace au Sud et ne nécessite que peu d’entretien.

Par contre, les grands côtés est et ouest demanderaient des protections mobiles pour limiter les apports de chaleur et l’éblouissement des occupants. C’est plus coûteux, mais cela peut induire plus de vie dans le bâtiment, car la lumière est toujours présente dans les locaux.

En simplifiant, on pourrait dire que dans des locaux d’hébergement, on privilégierait les côtés est et ouest avec protections solaires, et que dans les immeubles de bureaux, on choisirait les façades nord et sud, avec avancées architecturales.


L’influence de l’inclinaison du vitrage

Ce diagramme montre évolution de l’énergie captée par une surface orientée au Sud en fonction de l’inclinaison.

Conclusions

On limitera les surfaces vitrées horizontales (coupole, toiture d’atrium, …) aux seuls besoins d’éclairage naturel des locaux situés au dessous.

Dans l’immeuble ci-contre, il paraît énergétiquement peu opportun de créer une telle surface de captation. Elle risque d’entraîner soit une surchauffe élevée, soit une consommation d’énergie frigorifique importante

concevoir

Pour plus d’informations sur le choix des vitrages.

Quelle protection contre les apports solaires d’été ?

Dans un bâtiment bien isolé et avec des apports internes élevés, la limitation des surchauffes devient une priorité du concepteur, dès le stade de l’esquisse.

La meilleure protection solaire… c’est une surface de vitrage limitée !

La façade est aujourd’hui libérée de la fonction de portance. Elle ne doit plus remplir qu’une fonction d’enveloppe. La mode est à « la transparence », à l’ouverture des façades du sol au plafond… Or la zone inférieure d’une fenêtre est très peu efficace en matière d’éclairage naturel. La présence d’une allège opaque est donc thermiquement préférable (présence d’une isolation pour diminuer les pertes en hiver et opacité vis-à-vis des apports solaires en été).

Cette transparence totale de la façade va générer une sensibilité très forte à la surchauffe (les agriculteurs en sont bien conscients dans leur serre…). D’où la mise en place de doubles façades coûteuses, … pour gérer le problème que l’on a créé !

Double peau globale et double peau par étage.

En hiver, l’intérêt est réel grâce au préchauffage possible de l’air neuf et à la diminution des déperditions de la paroi vitrée. Mais en période de refroidissement, un store doit être placé dans la lame d’air et la double peau peut devenir alors une contrainte pour éliminer la chaleur emprisonnée (par rapport à un simple store extérieur).

Cette technique semble à réserver aux bâtiments nécessitant un apport d’air neuf fort élevé, pour lesquels la double-peau constitue un moyen de préchauffer l’air.

Les surcoûts sont importants et, sans vouloir tirer ici des conclusions trop rapides, on est en droit de se poser la question si ce budget ne serait pas mieux utilisé dans d’autres améliorations énergétiques, plus efficaces et plus simples à gérer dans le temps ? À titre d’exemple, un récupérateur de chaleur sur l’air extrait apporte lui aussi une possibilité de préchauffer l’air neuf, mais avec un coût d’installation incomparable…

Aula Magna de Louvain La Neuve.

Détail de la double peau,  qui n’est pas en communication avec l’ambiance intérieure.

La présence d’une protection solaire

On ne peut imaginer la conception d’un immeuble, climatisé ou non, sans l’organisation d’une protection solaire efficace.

Dans un bâtiment climatisé, elle permet une diminution drastique des coûts d’exploitation. Dans les autres, elle limite le risque de surchauffe.

Dans les deux cas, elle permet de gérer l’éblouissement, tout particulièrement pour faciliter le travail sur ordinateur. Des stores intérieurs compléteront utilement le dispositif.

Les éléments architecturaux (balcons, débords de toiture, décrochements, …) sont particulièrement efficaces au Sud puisque le soleil est alors haut sur l’horizon.

En été…   … et en hiver.

   

Stores verticaux, simultanément capteurs solaires photovoltaïques.

   

Bâtiment Sedilec à LLN.

Certaines protections architecturales tentent de stopper le soleil, tout en privilégiant la réflexion du rayonnement lumineux vers le plafond (« light-shelves« ).

Les stores mobiles extérieurs sont les plus efficaces pour contrôler le flux solaire en fonction du besoin réel. Mais ils sont délicats en terme de maintenance et nécessitent un contrôle automatique pour être relevés en cas de vent. La réduction du champ visuel de l’occupant en est un autre inconvénient.

Se croirait-on sur la Poztdammer Platz de Berlin ?

Panneaux de bois coulissants.

concevoir

Pour plus d’informations sur la mise en place de protections solaires.

Protections végétales ?

Des végétations plantées à proximité du bâtiment peuvent participer à la gestion des apports solaires.

Les arbres à feuilles caduques ont l’avantage de perdre leurs feuilles et de permettre ainsi l’exposition au soleil en hiver.

Mais il s’agit là d’un appoint, plutôt à vocation domestique, et non d’une solution complète, ne fut-ce que pour les étages supérieurs.


Annexe : les paramètres du bureau-type

L’immeuble de bureaux-type utilisé ci-dessus présente les caractéristiques suivantes :

Dimensions extérieures : 60 x 18 m, sur 3 plateaux, soit un total de 3 240 m²

Dans la version dite « de base » :

  • l’orientation des façades principales est Nord-Sud,
  • le pourcentage de vitrages est de 50 % sur toutes les façades,
  • le vitrage est double avec un traitement basse émissivité (k = 1,9 W/m².K),
  • l’isolation est de 6 cm en façade, 12 cm en toiture et 3 cm dans les planchers sur sol,
  • les apports internes dans les bureaux sont de 35 W/m² (un PC de 160 W, une lampe individuelle de 18 W, un éclairage généralisé de 13 W/m² et une personne dont le métabolisme apporte 81 W pour une surface de travail de 12 m²).

Comparer les critères de choix [protection solaire]

Récapitulatif des protections et des critères de choix

+ + Très bon + Bon 0 Moyen – Mauvais – – Très mauvais

Protections extérieures

Brise-soleil

+ + + + + + – – + + 0 + + 0 – – + +

Stores
vénitiens

+ + + + + – – + + + + + + +
Stores
enroulables
+ + + + 0 – – + + + + + + + +
Eléments
architecturaux
+ + + + + + – – + + 0 + + – – – – + + +
Auvents + + + + + + – – – – + + + + + + – – +
Stores
projetés à
l’italienne
+ + + + + – – – – + + + + + + +

Protections intérieures

Stores
enroulables
et plissés

en tissu
+ + 0 0 + + + – – + + + + +
Stores
enroulables
et plissés
réfléchissants
+ + + + + 0 + + – – + + + +
Stores
vénitiens
et à lamelles
verticales
– – + + + + – – + + + + + + +
Films
adhésifs
– – à + + – à + + – à + – – à + + + + – – + + + + – à + + + +

Protections intégrées au vitrage

Stores
vénitiens
+ + + + + + + + + + + + + – – + – –
Stores
enroulables
+ + + + + + + + + + + + – – + + – –

Outil PROSOLIS, comparaison des complexes vitrages-protections solaire

copie écran PROSOLIS

Vous devez choisir une protection solaire spécifique ? un type de vitrage et une protection solaire ? L’outil PROSOLIS est là pour vous aider !

Développé par l’UCL (Architecture et Climat) et le Centre Scientifique et Technique de la Construction (CSTC) en 2015, cet outil est accessible gratuitement à l’adrese : www.prosolis.be

Il permet de comparer facilement et en fonction du contexte (orientation – type de bâtiment) les performances thermiques et visuelles de différents complexes « vitrages – protections solaires parallèles au vitrage « .

Eté 2008 : Brieuc.
22-08-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
22-09-2008 : WinMerge ok – Sylvie

Choisir le vitrage

La performance énergétique et lumineuse du vitrage

Un vaste choix de vitrages sur le marché

La technologie des vitrages est variée :

Comment sélectionner les performances adéquates pour un bâtiment donné ? C’est ce que nous allons tenter de réaliser ci-dessous.
Le premier rôle d’une baie vitrée est :

  • D’assurer le confort visuel et thermique des occupants.
  • De gérer les apports solaires en toute saison en optimisant l’énergie disponible.

De ce point de vue, les vitrages sont caractérisés par 3 facteurs :

Les interactions entre les facteurs :

A première vue, plus le facteur solaire d’un vitrage est bas, plus il est opaque au rayonnement solaire et donc moins il est transparent à la lumière. Lorsque le facteur solaire diminue, le coefficient de transmission lumineuse devrait diminuer lui aussi.

Mais en réalité,

  • le rayonnement solaire est composé pour moitié de lumière et pour moitié de rayonnement infrarouge,
  • dans le local, la lumière se transforme en chaleur,
  • le rayonnement infrarouge apporte, lui, seulement de la chaleur.

Aussi, avec des filtres spécifiques, on peut donc diminuer le passage du rayonnement infrarouge sans freiner le passage de la lumière. Le FS diminuera, mais le FL restera presque intact. Avec une limite : il y a un moment où on aura arrêté tout le rayonnement infrarouge et où, pour diminuer encore l’apport de chaleur, il faudra diminuer l’apport de lumière en parallèle.

Pour connaître les caractéristiques énergétiques et lumineuses des différents types de vitrages, cliquez ici !

Par contre, le fait de rendre un vitrage moins perméable au rayonnement solaire (c’est-à-dire diminuer son facteur solaire et parfois sa transmission lumineuse), n’a pas de conséquence sur la valeur de son coefficient de transmission thermique U.

> Pour connaître les caractéristiques thermiques des différents types de vitrages, cliquez ici !

Le dilemme : facteur solaire – transmission lumineuse

Les souhaits de l’utilisateur varient selon les périodes de l’année et sont contradictoires. En effet :

  • En hiver, il désire maximiser les gains solaires, et donc avoir une transparence maximale au rayonnement solaire (TL et FS élevés).
  • En été, il désire limiter au maximum les gains de chaleur (FS faible) qui sont la cause de surchauffe, tout en assurant un éclairage suffisant des locaux (TL élevé).

Le graphique ci-dessous montre les différentes combinaisons possibles des valeurs TL et FS des vitrages.

La zone supérieure grise :
Correspond aux combinaisons de TL et FS qu’il n’est pas possible d’atteindre, le facteur solaire n’étant jamais inférieur à la moitié de la transmission lumineuse.

La zone inférieure grise :
Correspond aux combinaisons qui présentent peu d’intérêt, le facteur solaire FS étant élevé (apports énergétiques importants) et transmission lumineuse TL faible (peu d’apports lumineux).

La zone centrale claire :
Correspond aux caractéristiques qu’il est théoriquement possible de réaliser, certaines zones présentant plus d’intérêt selon les périodes de l’année.

Par leur facteur solaire faible, certains vitrages empêchent, par réflexion ou absorption, la chaleur solaire de pénétrer dans le bâtiment, et conviennent donc bien pour les bâtiments où les gains solaires sont à minimiser (c’est à dire, les bâtiments fortement exposés ou les bâtiments aux gains internes importants). Ils rejettent malheureusement en même temps la lumière, entraînant une transmission lumineuse généralement très faible.

De plus, les vitrages absorbants sont teintés dans la masse. Ceux de couleur bleue claire ou verte, ont un coefficient de transmission lumineuse plus élevé que les vitrages teintés traditionnels de couleur bronze ou grise mais ont un facteur solaire moins élevé que ces derniers.

Les vitrages absorbants sont moins efficaces contre le rayonnement solaire que les verres réfléchissants, c’est pourquoi ils ne sont pratiquement plus utilisés à l’heure actuelle.

Quel coefficient de transmission lumineuse choisir ?

Plus le facteur de lumière du jour est élevé, plus le temps d’utilisation des locaux avec la lumière naturelle est élevé, limitant ainsi la consommation d’éclairage artificiel.

Les valeurs nécessaires varient d’un cas à l’autre : de nombreux facteurs interviennent tels la profondeur du local, le pourcentage de surface vitrée, l’orientation du local…. Le graphique ci-dessous illustre l’influence du coefficient de transmission lumineuse sur la consommation d’éclairage artificiel pour une façade vitrée à 50 %, en fonction de l’orientation du bâtiment.

l'influence du coefficient de transmission lumineuse sur la consommation d'éclairage artificiel pour une façade vitrée à 50 %

On constate que :

  1. Plus le coefficient de transmission lumineuse augmente, moins on consomme d’éclairage artificiel.
  2. Les locaux situés au Nord nécessiteront toujours plus d’éclairage artificiel que respectivement l’Est, l’Ouest et le Sud.

On peut quantifier l’apport de lumière naturelle dans un local par le facteur de lumière du jour (FLJ). Exprimé en %, il exprime le rapport entre l’éclairement intérieur sur le plan de travail dans le local, et l’éclairement extérieur sur le plan horizontal, en site dégagé, par ciel couvert.

Un objectif raisonnable est d’arriver à un temps d’utilisation de l’éclairage naturel d’au moins 60 %. Ceci entraîne un facteur de lumière du jour de 2,5 (exigence de 300 lux) à 4 % (exigence de 500 lux) dans les locaux de vie, et de 1,5 % dans les circulations et sanitaires (exigence de 100 lux).

Quel facteur solaire choisir ?

Le choix du facteur solaire minimum à rechercher est fonction de chaque cas (surface vitrée, orientation, …). Il n’est donc pas possible de citer un chiffre unique. C’est une simulation thermique qui peut optimaliser ce choix.

Fixons un ordre de grandeur par un exemple.

Objectif : éviter la climatisation du local.

Dans les immeubles de bureaux, on peut estimer qu’un refroidissement devient nécessaire en été lorsque la somme des apports internes et externes atteint  60 W/m² au sol du local. Si on estime d’une manière générale les apports internes d’un bureau moyennement équipé comme suit : un ordinateur (+ 150 W/ordinateur), une personne (70 W/pers.), l’éclairage (10 W/m²) et 1 personne/13 m² au sol, les apports internes totalisent 27 W/m². Pour éviter le recours à la climatisation, il est donc nécessaire de limiter les apports solaires à 33 W/m² au sol.

Apports thermiques

Le tableau suivant représente pour une journée ensoleillée du mois de juillet, la puissance énergétique maximum due à l’ensoleillement, réellement transmise à l’ambiance d’un local de 30 m² au sol, en fonction de l’inertie du bâtiment. La fenêtre du local est équipée d’un double vitrage clair (de 6 m², soit 4 m x 1,5 m) orienté respectivement à l’est, au sud et à l’ouest.

Bâtiment lourd Bâtiment moyen Bâtiment léger
Est 245 49 267 53 351 70
Sud 198 40 210
42
252
50
Ouest 250 50 263 53 356 71
W/m² de vitrage W/m² au sol W/m² de vitrage W/m² au sol W/m² de vitrage W/m² au sol

Facteur solaire recommandé

Bâtiment lourd
Bâtiment moyen
Bâtiment léger
Est 0.51 0.47 0.36
Sud 0.63 0.60 0.50
Ouest 0.50 0.47 0.35
FS FS FS

Facteur solaire minimum de l’ensemble vitrage + protection nécessaire
pour limiter les apports solaires à 33 W/m² au sol.

On peut donc préconiser un vitrage dont le facteur solaire est limité à 40 %, tout en atteignant une transmission lumineuse de 70 %.

Contrôle solaire … oui, mais il faut savoir que :

  • La réflexion ou absorption solaire au moyen de vitrage à contrôle solaire est constante et définitive. Aucune adaptation n’est possible en fonction de l’ensoleillement, contrairement aux protections solaires mobiles sous forme de stores, intérieurs ou extérieurs.
  • Mais, le choix du confort thermique ne doit pas se faire exagérément au détriment du confort lumineux. Sous nos latitudes, la probabilité d’ensoleillement est inférieure à 20 % en hiver (moins d’un jour sur cinq) et à 50 % en été (moins de un jour sur deux). Un vitrage très efficace contre le rayonnement solaire en été est inconciliable avec la valorisation de l’éclairage naturel en absence d’ensoleillement et des apports énergétiques gratuits en hiver. Sauf exception (locaux informatiques où il faut gérer la surchauffe et l’éblouissement), certains vitrages trop absorbants ou réfléchissants seront écartés dans nos régions à climat variable.
    Conscients de ce problème, les fabricants de vitrages ont développé des nouveaux vitrages présentant une protection contre l’énergie solaire correcte (FS = 0,40) et une transmission lumineuse qui se rapproche de celle des doubles vitrages clairs (TL = 0,70).
  • Plus un verre absorbe ou réfléchit le rayonnement solaire, plus il a tendance à s’échauffer. Il est ainsi exposé à la casse thermique. Des précautions sont à prendre pour éviter l’échauffement de ces types de verres.

Le coefficient de transmission thermique « U »

Un simple vitrage a un coefficient U de 5,8 W/m²K. On améliore son pouvoir isolant, c’est à dire on diminue son coefficient de transmission thermique U, par les interventions suivantes :

Type d’amélioration Type de vitrage

Coefficient U
[W/m²K]

Insertion de lames d’air entre des couches de verre. Le double vitrage Le triple vitrage U = 2,8 U = 1,9
Action sur les caractéristiques de la surface du verre. Le double vitrage basse émissivité
(= à haut rendement )
U = 1,6
Remplacement de l’air entre les couches de verre par un mélange gazeux plus isolant. Le double vitrage basse émissivité avec gaz (argon, krypton, …) U = 1,1 à 1,3

Le facteur coût intervient dans le choix du vitrage, mais un vitrage bien isolé permet de réaliser des économies d’énergie. En première approximation, le supplément de prix au m² est rentabilisé en 6 ans.

Au départ, consommation annuelle d’1 m² de simple vitrage :

= 6 W/m².K [coefficient de déperdition du vitrage] x (15 – 6) [delta de température moyenne intérieure et extérieure] x 5 800 h [nombre d’heures de chauffe] / 0,8 [rendement du système de chauffe (on évalue une consommation et non un besoin)] = 400 kWh/m² = l’équivalent de 4 seaux de fuel/m².an !

Consommation annuelle d’1 m² de double vitrage basse émissivité :

= 1,1 W/m².K x (15 – 6)

x 5 800 h / 0,8 = 72 kWh/m²

Rentabilité du remplacement d’un châssis simple vitrage ?

Économie : 328 kWh/m² = 33 litres fuel
Pour un fuel à 0,8€/l, cela revient à 26,4€/m².an
Investissement : 300 €/m²
Temps de retour : 300 € / 26,4 € /an = 11 ans…

C’est donc souvent le confort amené qui justifie le remplacement du simple vitrage.

En pratique

  • Le simple vitrage n’est plus utilisé. En construction neuve comme en rénovation, la réglementation impose pour les fenêtres un Ufenêtre maximum, ce qui implique l’utilisation du double vitrage basse émissivité (dénommé aussi « vitrage à haut rendement HR »).
  • Sans hésiter et dans tous les cas, nous recommandons le choix d’un plus faible coefficient de transmission thermique pour limiter les pertes en hiver. Cette limitation est nettement plus importante que la limitation du refroidissement du bâtiment en été, car la période d’été est plus courte et le delta T°Int-ext est nettement plus faible.
  • Le triple vitrage est de plus en plus utilisé (surtout pour le résidentiel). C’est un vitrage d’épaisseur et de poids importants, s’adaptant à des menuiseries spécifiques.

Interaction entre U et FS ?

Le coefficient de transmission thermique U est peu influencé par les caractéristiques d’absorption ou de réflexion d’énergie. Le facteur solaire FS et le coefficient de transmission lumineuse TL sont indépendants de U.

Les couches à basse émissivité peuvent donc être combinées avec les couches de contrôle solaire réfléchissantes. Il s’agit alors de vitrages combinant les deux effets d’isolation et de contrôle solaire avec les contraintes visuelles que cela entraîne.
Remarques.

  • La performance d’un simple vitrage n’est pratiquement pas améliorée par son épaisseur.
  • Rien ne sert d’améliorer les performances isolantes d’un vitrage si les performances du châssis ou du raccord châssis-mur ne sont pas équivalentes et compatibles avec celles du vitrage. En effet, le calcul du coefficient de transmission thermique d’une fenêtre (Ufen) tiendra compte du coefficient de transmission thermique U du vitrage (Uv), du châssis (Uch) et des effets de bords.

Théories

Pour évaluer le coefficient de transmission thermique U d’une fenêtre, cliquez ici !

Première synthèse

Économie énergie Confort visuel et thermique
… plus le vitrage laisse passer de la lumière, c’est à dire plus son facteur .de transmission lumineuse TL est grand.
  • moins grande est la consommation d’éclairage électrique.
  • plus l’éclairage est naturel et le contact visuel avec l’extérieur agréable.

mais par contre,

  • plus grand sont les risques d’éblouissement si aucun dispositif de protection solaire n’est prévu.
… plus le vitrage est isolant, c’est à dire plus son coefficient de déperdition thermique U est bas.
  • plus les déperditions thermiques seront réduites à travers sa surface en hiver.
  • plus le vitrage est chaud sur sa face intérieure et donc moins la température de l’air intérieur doit être élevé pour assurer le confort en hiver.
… mieux le vitrage contrôle le rayonnement solaire entrant, c’est-à-dire plus son facteur solaire est petit.
  • plus les frais de conditionnement d’air en été sont réduits.

mais, par contre,

  • moins les apports d’énergie gratuite en hiver sont importants.
  • plus les risques de surchauffe du à l’effet de serre sont diminués.

 

  • moins la lumière naturelle pénètre dans le local.

Choix du vitrage en fonction des caractéristiques du bâtiment

Démarche pour le choix

Lors du choix d’un vitrage, les paramètres déterminants seront :

  • l’orientation du bâtiment,
  • l’implantation du bâtiment,
  • les gains internes,
  • la climatisation éventuelle des locaux,
  • le pourcentage de surface vitrée,
  • la taille du local et la photométrie des parois.

L’orientation du bâtiment

Si la performance thermique doit être élevée pour toutes les façades, les besoins en contrôle solaire et lumineux varient suivant l’orientation.

Idéalement, il est conseillé de changer de vitrage à chaque orientation si l’aspect financier et esthétique n’est pas un problème pour le constructeur, mais ce n’est pas souvent le cas. Aussi il est plus intéressant :

  • De déterminer la famille de vitrage la plus performante pour le bâtiment plutôt que le vitrage lui-même, pour avoir une certaine marge de manœuvre.
  • De choisir ensuite dans cette famille, le vitrage le plus polyvalent possible pour ne pas multiplier les vitrages différents.

Pour raisonner plus avant dans ce domaine, on peut avoir 2 hypothèses en tête :

  • Soit le bâtiment est mal isolé ou présente peu d’apports internes (hébergement au sens large) : le chauffage du bâtiment se fait tout au long de la journée et les apports solaires sont les bienvenus.
  • Soit le bâtiment est bien isolé ou présente des apports internes élevés (bureaux au sens large) : le chauffage du matin permet de remettre le bâtiment en température après l’arrêt de la nuit et dès l’arrivée des occupants, les apports internes suffisent pour maintenir la consigne intérieure. Tout apport solaire supplémentaire génèrera de la surchauffe.

… au Nord

Les pièces orientées au nord bénéficient toute l’année d’une lumière égale et du rayonnement solaire diffus. Par contre, ce sont celles où les gains solaires sont les plus appréciés.

… à l’Est et à l’Ouest

Les pièces orientées à l’Est profitent du soleil le matin ce qui, en hiver, permet d’apporter des gains solaires bénéfiques au chauffage en matinée, dans le secteur « hébergement ».

Une orientation Ouest aura tendance à induire davantage des surchauffes. En effet, les vitrages tournés vers l’Ouest apportent des gains solaires l’après-midi, au moment où le bâtiment est depuis longtemps en régime.

Dans les 2 cas, le rayonnement solaire est difficile à maîtriser car les rayons sont bas sur l’horizon entraînant des risques d’éblouissement élevés.

Si on veut un contrôle variant en fonction des conditions climatiques, il faut idéalement :

À défaut, un vitrage relativement réfléchissant sera nécessaire, d’autant plus réfléchissant que le pourcentage de surface vitrée est élevé.

Mais, un vitrage trop réfléchissant va augmenter les consommations en hiver, surtout si les gains internes sont faibles… De plus, il ne parviendra jamais à empêcher entièrement l’éblouissement.

 … au Sud

Une orientation sud entraîne un éclairement important. Mais, les pièces orientées au sud bénéficient d’une lumière plus facile à contrôler. En effet, en hiver, le soleil bas pénètre profondément dans le bâtiment, tandis qu’en été, la hauteur solaire est plus élevée, de sorte qu’une protection extérieure (tel un auvent fixe.). simple permet de diminuer efficacement les gains solaires en été et empêche le rayonnement direct dans les yeux de l’utilisateur.
En été, les apports solaires sur une surface verticale sont également nettement inférieurs au Sud qu’à l’Est ou à l’Ouest car ils sont diminués par un facteur égal au cosinus de l’angle d’incidence.

L’implantation : présence de masque solaire

Illustration de l'implantation : présence de masque solaire.

Les choix dépendront de la présence d’un masque solaire éventuellement créé par les bâtiments voisins ou des végétations.

Puisque ceux-ci assurent une protection contre l’ensoleillement direct, ainsi on choisira des vitrages possédant un FS et FL élevé, de façon à obtenir un maximum de gains lumineux et énergétiques de types indirects.

Les gains internes

Dans un bâtiment tertiaire conforme à la réglementation thermique en matière d’isolation et disposant d’apports internes normaux pour des bureaux (> 25 W/m²), il n’y a pas intérêt à capter l’énergie solaire pour diminuer les besoins de chauffage.
Cela signifie que, entre deux vitrages, on aura tendance à choisir celui avec le facteur solaire le plus bas.

Plus les gains internes seront élevés, plus on cherchera à limiter les apports externes pour éviter les surchauffes : par un vitrage performant ou par une protection solaire adéquate.

La climatisation éventuelle des locaux

La motivation peut différer si le local est équipé d’un système de refroidissement ou non.

Lorsqu’un local tertiaire n’est pas équipé de système de refroidissement ou de ventilation nocturne, et est soumis à une forte exposition solaire, la limitation du risque de surchauffe entraînera un choix de vitrage avec contrôle solaire efficace : choix d’un vitrage à faible FS, ou protection solaire interne ou externe. Cette nécessité sera d’autant plus importante que l’inertie du bâtiment est faible. Le critère qui consiste à ne pas dépasser un apport (interne + externe) de 50 à 60 W/m² au sol est parfois utilisé.

Par contre, lorsqu’un local est équipé d’un système de refroidissement mécanique, le risque de surchauffe n’existe plus. Le choix d’un faible facteur solaire est motivé par la limitation de la consommation de la climatisation. Or, si le bâtiment est équipé d’une gestion de l’éclairage artificiel en fonction de la lumière naturelle (dimming), le gain sur l’éclairage artificiel est double (gain sur la consommation des lampes et sur la consommation de la machine frigorifique qui ne doit plus évacuer la chaleur correspondante). Dès lors, on aura tendance, dans des limites raisonnables, à privilégier un vitrage favorisant l’apport de lumière et de ce fait … plus perméable à la chaleur. Le vitrage qui présente un FS de 40 % et un TL de 70%, est un excellent point de départ. C’est par simulation informatique que l’on peut alors optimiser le pourcentage de vitrage en façade.

Le pourcentage de surface vitrée dans le local

Le critère thermique impose une limitation des surfaces vitrées dans les façades d’un bâtiment tertiaire, quelle que soit leur orientation.

Le pourcentage de vitrage à choisir est essentiellement fonction des besoins d’éclairage naturel et de convivialité recherchée dans le bâtiment. C’est donc dès la conception du bâtiment qu’on traitera les fenêtres comme capteur de lumière et de chaleur en tenant compte de l’orientation, de l’occupation et des besoins lumineux et énergétiques propres au local

Une réglementation thermique française, prescrivait une règle concernant la valeur minimale de facteur solaire à atteindre en fonction du pourcentage de surface vitrée :

Le pourcentage de surface vitrée x le facteur solaire de la baie (vitrage + ombrage) < 0,35 (*)

(*) valeur d’application dans le Nord de la France.

Il s’agit de la performance minimale à atteindre pour respecter la Réglementation. Bien sûr, un facteur solaire inférieur est préférable.

Concrètement, cela signifie que :

  • Pour un local dont le vitrage va du sol au plafond (pourcentage de vitrage en façade est de 100 %), un facteur solaire minimal de 35 % est exigé.
    Si aucune protection solaire de type stores, mobiles ou fixes n’est prévue, ceci correspond au minimum aux performances atteintes par un vitrage contre le rayonnement infrarouge absorbant (E) de basse émissivité (6/12argon/6) dont le facteur solaire vaut 36 %.
  • Pour un local dont le pourcentage de vitrage en façade est de 50 %, un facteur solaire minimal de 70 % est exigé.
    Si aucune protection solaire n’est prévue, ceci correspond au minimum à la performance atteinte par un vitrage dont le facteur solaire vaut 70 %.
    Il est à remarquer que ces conditions sont presque atteintes par un vitrage double ordinaire dont le facteur solaire est de 75 %.

La taille du local et la photométrie des parois

Il est évident qu’en cas de locaux profonds ou aux parois sombres, on donnera la priorité à un vitrage assurant une transmission lumineuse importante. Il en va de la qualité architecturale du projet.

Plus d’infos ?

Concevoir

Pour plus d’infos concernant le choix de la fenêtre comme capteur d’énergie, cliquez ici !

Concevoir 

Pour plus d’infos concernant le choix de la fenêtre comme capteur de lumière, cliquez ici !

Le niveau et le type de bruit dont on doit s’isoler

Le choix du vitrage devra s’effectuer en fonction du niveau sonore maximal intérieur acceptable selon l’occupation du local (en terme de confort acoustique), du type et du niveau de bruit extérieur dont on doit s’isoler.

La capacité d’un vitrage à empêcher la transmission des sons aériens provenant de l’extérieur est évaluée par son indice d’affaiblissement acoustique pondéré appelé Rw (dB)

Quel facteur d’affaiblissement acoustique choisir ?

Le type et le niveau de bruit sont fonction de l’environnement dans lequel se trouve implanté le bâtiment.

Selon le contexte urbanistique, on peut évaluer le niveau de l’ambiance sonore théoriquement rencontré.

Généralement ce sont les sites urbains et industriels qui posent le plus de problèmes pour le facteur acoustique.

Théories

Pour avoir une évaluation du niveau de l’ambiance sonore en fonction du contexte environnemental, cliquez ici !

Ensuite, suivant le type d’activité intérieure, on définit le niveau de bruit admissible afin de préserver le confort acoustique.

Théories 

Pour connaître niveau de l’ambiance sonore admissible en fonction de l’activité intérieure, cliquez ici !

Lorsque l’on dispose de ces deux valeurs, en effectuant leur différence, on détermine le taux d’affaiblissement acoustique Rw que devra fournir le vitrage contre les bruits courants.

Quel type de source de bruit : basse ou haute fréquence ?

Pour choisir un vitrage ayant des performances adaptées à la situation, il faut connaître le type de source dont on désire s’isoler. C’est-à-dire si la source est de type basse ou haute fréquence. En effet, un vitrage pour un même niveau sonore, offre des performances acoustiques différentes selon la fréquence.

C’est pourquoi il est caractérisé par son indice d’affaiblissement Rw et ses deux indices de correction (C;Ctr), précisants ses performances vis-à-vis des basses et des hautes fréquences qui peuvent s’avérer fort variables.

Le tableau suivant donne des exemples de choix d’adaptation de l’indice d’affaiblissement Rw, pour déterminer l’indicateur à valeur unique à utiliser en fonction de l’origine du bruit.

Source de bruit

Type « trafic rapide »
Rw + C
Type « trafic lent »
Rw + Ctr
Jeux d’enfants.

XXX

Activités domestiques (conversations, musique, radio, télévision). XXX
Musique de discothèque. XXX
Trafic routier rapide (>80 km/h). XXX
Trafic routier lent (p.ex. :trafic urbain). XXX
Trafic ferroviaire de vitesse moyenne à rapide. XXX
Trafic ferroviaire lent.
Trafic aérien (avion à réaction) de courte distance. XXX
Trafic aérien (avion à réaction) de longue distance. XXX
Avions à hélices. XXX
Entreprises produisant un bruit de moyennes ou hautes fréquences. XXX
Entreprises produisant un bruit de moyennes ou basses fréquences. XXX

Tableau permettant le choix du type de bruit représenté par l’indicateur à valeur unique Rw + C ou Rw + Ctr selon la norme EN ISO 717-1).

Ainsi, si on est en présence de trafic lent, par exemple, on sait que le critère de choix du vitrage portera sur la valeur de son Rw + Ctr. Celui-ci devra atteindre la valeur d’isolation acoustique définie en fonction du niveau de bruit extérieur et du confort acoustique intérieur à atteindre.

Quel type de vitrage choisir ?

L’isolation acoustique que procure un double vitrage est relativement mauvaise. Ainsi, les doubles vitrages clairs ou à basse émissivité sans amélioration acoustique sont à déconseiller en site urbain bruyant.

Les vitrages réfléchissants et absorbants classiques permettent une faible réflexion du son mais cela reste souvent insuffisant.
Les vitrages isolants et absorbants avec de l’argon peuvent s’avérer assez efficaces en cas de trafic à moyenne densité. Ils sont à proscrire en site urbain, car si la présence du gaz permet d’améliorer les performances dans les hautes fréquences (bruits de trafic rapide), les performances s’avèrent moins bonnes, même défavorables, dans les basses fréquences (bruit de trafic urbain).

Pour pallier à ces limites, on utilise les doubles vitrages dissymétriques ou si nécessaire, les doubles vitrages avec verres feuilletés acoustiques.

Afin d’obtenir leurs valeurs exactes d’affaiblissement acoustique, cliquez ici !

Conclusion

Le choix du vitrage dépend du type et du niveau de bruit dont il faut se protéger, et du confort acoustique exigé. Chacune des options adoptées permet d’améliorer les performances acoustiques des vitrages dans les différentes fréquences. Cela permet de se protéger efficacement contre les bruits de toutes sortes que peut provoquer l’environnement du bâtiment.

Ces dispositions sont bien sûr additionnables à des dispositions lumineuses ou énergétiques. En effet un film basse émissivité ou réfléchissant peut être ajouté. Il est nécessaire, en effet, de ne pas privilégier un facteur au détriment d’un autre.

Cliquez ici pour accéder à une grille récapitulative des propriétés des vitrages.

> Attention, en matière d’isolation acoustique, la performance globale est déterminée par le maillon le plus faible ! L’inétanchéité à l’air peut détruire un projet…
La règle de base est donc avant tout d’assurer une résistance maximale au passage de l’air au niveau de l’enveloppe globale (c.-à-d. raccord chassis-vitrage, ouvrant-dormant et chassis-mur, … ) et d’assurer des raccords souples entre les éléments de façon à absorber au maximum les vibrations.


Sécurité

Le choix d’un vitrage de sécurité dépend du type de risque encouru. Et celui-ci dépend à son tour du niveau où on se trouve dans le bâtiment.

  • Au-rez-de chaussée, dans les bureaux et/ou les commerces, les risques seront :
    • risque de bris par tout type de projectiles,
    • risque de destruction par balle,
    • risque de blessure en cas de chute contre la glace,
    • risque d’effraction, que le verre devra retarder au maximum.
  • Aux autres niveaux, dans les bureaux, les risques seront :
    • risque de blessure en cas de chute contre la glace,
    • risque de chute de personne au cas de vitrage descendant sous le niveau normal d’un garde-corps.

Quel type de vitrage choisir en fonction de la protection désirée ?

Contre l’effraction

Les vitrages feuilletés constituent un bonne protection car ils résistent aux coups et lorsqu’ils se fissurent ils restent entiers sans sortir du châssis. Leur résistance est fonction du nombre de films et de l’épaisseur des verres.
Le tableau suivant reprend la valeur indicative du nombre de films en PVB à utiliser en fonction du niveau de protection souhaité.

Type de protection

Degré de protection

Nombre de films de PVB
Protection contre le vandalisme. Protection contre le vandalisme non organisé. 3
Retardateur d’effraction. Protection contre l’effraction organisée. 4
Protection de haut niveau. 6
Très haut niveau de protection contre toutes formes d’agressions à arme blanche. Compositions multifeuilletées

Bien sûr, il faut que le degré de sécurité accordé aux vitrages soit compatible avec le degré de sécurité accordé aux châssis, aux systèmes de ventilation, aux raccords châssis-mur, …

Remarque : Les vitrages feuilletés à résine coulée ne se prêtent pas à la protection anti-effraction, mais ils peuvent être utilisés en toiture car, en cas de bris de vitre, l’adhérence verre-résine permet aux fragments du vitrage cassé de rester en place. Ils permettent de plus d’absorber les bruits dus aux impacts de pluie. Les vitrages en toiture devront offrir une résistance mécanique plus importante à cause du poids propre du vitrage et de la surcharge provoquée par la présence de neige éventuelle.

Contre les risques de blessure

On préconisera souvent un verre trempé car il se fragmente en petits morceaux non coupants. Par contre la vitre n’offre plus aucune protection contre les chutes une fois cassée …

Le verre trempé offre de plus, une très bonne résistance aux chocs thermiques : ils peuvent résister à un différentiel de température de 200°C. Mais il faut savoir que les verres trempés ne peuvent plus être coupés, sciés ou percés après l’opération de trempe.
Il faut proscrire le verre armé car sa fragmentation ne répond pas aux exigences en la matière.

Photo de vitrage brisé.

Contre les risques de chute

On utilisera exclusivement le verre feuilleté. En effet même si le verre se fissure, le film intercalaire maintient les morceaux en place évitant les blessures et la chute des occupants.

Si le verre doit résister aux chocs thermiques, il peut être trempé avant d’être feuilleté.

Contre la destruction par balle

Il s’agit d’un domaine très spécialisé. Il est, dès lors, recommandé de consulter un spécialiste.

Contre le feu

La résistance au feu concerne surtout les vitrages intérieurs qui servent à empêcher la propagation du feu.

Les verres feuilletés classiques n’offrent aucune résistance au feu. Par contre, le verre armé et le verre trempé permettent de retarder un peu la rupture et l’effondrement du verre.
Il existe des vitrages spéciaux résistants au feu. Il s’agit de verres feuilletés avec intercalaire intumescent ou avec gel aqueux.

Quelles sont les combinaisons possibles entre la sécurité et les autres performances ?

Les dispositions relatives à la sécurité sont bien sûr superposables à des dispositions lumineuses, acoustiques ou énergétiques. En effet, un film basse émissivité et/ou réfléchissant peut être ajouté au sein du double vitrage. Les verres absorbants peuvent être trempés. Il est nécessaire de ne pas privilégier un facteur au détriment d’un autre.

La présence de verre trempé ou feuilleté ne modifie pas la valeur du coefficient de transmission thermique U. Par contre, le procédé de trempe modifie quelque peu l’aspect superficiel et les propriétés de réflexion du vitrage. Le feuilletage du verre le rend plus bleuté, mais ne modifie pas ses propriétés énergétiques et lumineuses (un verre feuilleté offre un coefficient U pratiquement égal à un verre monolithique de la même épaisseur).

On remarque que les verres feuilletés de sécurité sont en général très efficaces contre le bruit. On peut estimer qu’un bon vitrage thermique feuilleté pourra assurer, à la fois, les fonctions acoustique, sécurité et thermique dans un site urbain très bruyant.


L’effet esthétique produit / ou recherché

Ce sont les vitrages à contrôle solaire qui offrent les aspects les plus variés. En effet, ces vitrages peuvent être clairs ou teintés (bronze, gris, argenté, vert, bleu…). Ils confèrent aux vitrages des propriétés de réflexion ou d’absorption lumineuses très diverses.

Les vitrages basse émissivité ont un reflet qui diffère un peu d’un double vitrage classique mais dans des proportions moindres. Les caractéristiques de sécurité par contre modifient peu l’aspect du vitrage. Les vitrages feuilletés peuvent avoir un reflet plus bleuté. Les vitrages trempés ou durcis peuvent contenir de légers dessins colorés dus à des phénomènes d’interférence appelés  »fleurs de trempe ». Ils proviennent du procédé de trempe qui modifie quelque peu l’aspect superficiel et les propriétés de réflexion du vitrage.

Quel effet esthétique recherché ?

Photo de bâtiment vitré.

Aujourd’hui le verre est fort utilisé en façade, même comme matériau d’allège. On crée ainsi une continuité et un lissage parfait de la façade.

Pour ces raisons, les vitrages réfléchissants ou absorbants sont fort utilisés. Ils assurent, en plus, une intimité totale intérieure et une protection contre le rayonnement solaire.

L’effet esthétique provoqué par des verres réfléchissants ou colorés sera parfois fortement influencés par l’environnement, l’état du ciel, l’orientation de la façade, la position de l’observateur, la présence de store, la couleur des menuiseries. Il est donc important de faire des études préalables, éventuellement même à l’aide de prototypes.

Précautions

Le vitrage réfléchissant, en plus de réfléchir le paysage, réfléchit le soleil. Cela peut créer des éblouissements indésirés pour les bâtiments voisins. De plus, il diminue définitivement les apports de lumière naturelle à l’intérieur du local quelle que soit son orientation.

Ces vitrages réfléchissent la lumière provenant du milieu le plus lumineux. Dès lors, le soir, c’est l’éclairage artificiel des locaux qui sera réfléchi vers l’intérieur, la vue vers l’extérieur ne sera alors plus possible.

Les vitrages absorbants et réfléchissants ont des couleurs très variables. Leur coloration a une répercussion directe conséquente sur la perception des couleurs.

L’uniformité

Si on souhaite une uniformité de la façade, il convient de placer côte à côte le même type de vitrage sans inverser les faces. Cela concerne tant la couleur et la réflexion que le pouvoir isolant et l’épaisseur. Des épaisseurs de vitrages différentes nécessitent souvent des cadres différents.


Le coût

Le choix adéquat d’un vitrage peut fort diminuer les consommations d’énergie. Il est nécessaire avant de rejeter un vitrage à cause de son prix, d’évaluer rapidement la rentabilité de ce vitrage par rapport au coût d’investissement.

Les facteurs intervenants dans le prix d’un vitrage sont :

  • Sa qualité : plus il est performant plus, il est cher.
  • Ses dimensions : plus il est grand ou épais, plus il est cher.
  • La quantité commandée : plus on en commande, moins il est cher.

Pour se faire une idée, voici une estimation de prix de vitrage au m², fourniture et mise en œuvre compris.
On consultera les fabricants pour avoir des informations plus précises.

Type de verre ou vitrage

Composition en mm Estimation en €/m²
Vitre simple claire neutre 6 mm 45 50
Vitre simple claire neutre 12 mm 110 130
Vitre simple claire réfléchissante 6 mm 95 105
Verre armé* 6 mm 35 37
Verre feuilleté* 44.2 60 85
Vitrage Rf (résistant au feu)* 1/2 heure 310 400
Vitrage Rf (résistant au feu)* 1 heure 570 620
Double vitrage ordinaire (U=2.9 W/m²K) 4-12-4 mm 48 50
Double vitrage ordinaire (U=2.9 W/m²K) 6-12-6 mm 52 57
Double vitrage isolant
à basse émissivité
6-12-6 mm 65 75
Double vitrage réfléchissant clair 6-12-6 mm 145 150
Double vitrage acoustique 8-12-4 mm (38 dB) 115 120
Double vitrage acoustique 10-20-4 mm (41 dB) 125 130
Vitrage chromogène 11 mm 2 480 2 975
Triple vitrage 28 mm 80 85

(*) S’ils sont montés en double vitrage, au prix des vitrages de sécurité, il sera nécessaire d’ajouter celui d’un vitrage simple supplémentaire.

Choisir le châssis

Paramètres du bâtiment influençant le choix des châssis

Tâchons de mettre en évidences les principaux critères de choix des châssis à partir des sollicitations auxquelles ils seront soumis.

Ces sollicitations sont fonctions de plusieurs paramètres du bâtiment dont les principaux sont les suivants :

Son implantation

  • On veillera à prendre des précautions acoustiques suffisantes et adéquates (différentes selon que l’on se trouve en milieu rural ou urbain)

Son orientation

  • En Belgique, les pluies les plus intenses se manifestent généralement par un vent de sud-ouest. Une bonne étanchéité à l’eau et à l’air y est indispensable ainsi qu’une protection contre le ruissellement d’eau des châssis situés dans le plan de la façade.
  • En cas d’orientations ensoleillées, on évitera les châssis sensibles aux rayonnements. On préférera les teintes claires de châssis aux teintes foncées.
    Des éléments de protections solaires peuvent être prévus ( dépassants de toiture, balcons,…).

La hauteur du châssis par rapport au sol

Celle-ci aura une influence sur :

  • Les degrés d’exposition aux vents et aux pluies, et donc au soin à apporter à l’étanchéité à l’eau et à l’air du châssis.
  • Le niveau de sécurité à prévoir. En effet des précautions sont à prendre pour des châssis situés aux rez-de-chaussée ou pour les châssis facilement accessibles. (escaliers de secours extérieurs…)
  • L’accessibilité des châssis pour l’entretien des châssis et des vitrages.

La présence d’éléments de protection

Tels un dépassement de toiture, un balcon, …, permettent d’atténuer les sollicitations du vent, de l’eau et du soleil. Cela permet plus de liberté dans le choix du type de châssis.

La présence de châssis en toiture

Dans une toiture, les châssis sont sollicités principalement par l’action combinée de la neige, du vent, de l’eau et de leur poids propre. Une attention particulière sera portée à la double barriére d’étanchéité, et à la résistance mécanique du châssis.

De plus, on veillera à garantir l’accessibilité du châssis pour l’entretien par un type d’ouvrant adéquat. Cela n’étant pas toujours réalisable facilement, on préférera des châssis nécessitant peu d’entretien.


Les caractéristiques thermiques désirées

Pour le choix des châssis, il faudra être attentif à 2 caractéristiques thermiques des châssis

Le niveau d’isolation thermique

Les paramètres intervenants dans le degré d’isolation thermique des châssis sont :

Le coefficient de transmission thermique du matériau constituant le châssis

Un châssis est caractérisé thermiquement par son coefficient de transmission thermique Uf. Plus le coefficient transmission thermique est bas, plus le châssis est isolant.

La réglementation thermique impose des valeurs de coefficients de transmission thermique maximaux.

On peut cependant recommander d’aller plus loin comme le font certains labels volontaires.

Si le caractère isolant du châssis (considéré seul) a son importance dans le cadre de l’utilisation rationnelle de l’énergie, généralement la surface du châssis est réduite par rapport à la surface du vitrage. Aussi, l’influence de la valeur du Uf sur la valeur U de l’ensemble de la fenêtre est également réduite. Le châssis intervient donc peu dans l’isolation globale d’un immeuble, sauf si celui-ci comporte beaucoup de fenêtres.

Évaluer

 

Pour évaluer le coefficient de transmission thermique d’une fenêtre en fonction du coefficient de transmission thermique des châssis et des vitrages, cliquez ici  !

En comparant les différents matériaux possible pour les châssis et les valeurs de transmission thermique associées, On constate que :

  • Le bois a une valeur d’isolation supérieure à celle de l’aluminium et du PVC. De plus, il a l’avantage d’être un produit naturel biodégradable, stable thermiquement, recyclable et isolant.
    Mais ses caractéristiques naturelles entraînent un risque d’imperfections (veine, trou d’insectes) et un besoin d’entretiens fréquents.
  • Les châssis en PVC atteignent des valeurs très basses, et attrayantes… si l’aspect de ce matériau est apprécié. De plus, le PVC est très sensible aux fluctuations thermiques à cause son coefficient de dilatation élevé. Certaines précautions sont donc à prendre lors du choix de ce matériau.
  • Les châssis en métal présentent une faible valeur isolante mais leur performance thermique dépendra largement de la taille de la fenêtre et du détail du profilé. Actuellement, on ne conçoit plus d’utiliser un châssis en métal sans coupure thermique. Certains châssis pourvus d’un agrément thermique donnent des valeurs inférieures (et donc meilleures) à celles reprises dans les normes.
  • Les châssis composites font de plus en plus leur apparition sur le marché. Composé de plusieurs matériaux différents, ils permettent de combinés les avantages propres à chacun (meilleure isolation thermique intérieure, capot en aluminium pour l’estétisme extérieur, finition intérieure en bois,…).

Le type d’ouvrant

Le châssis fixe est évidemment optimal thermiquement parlant car il permet une réduction maximale des fuites et des courants d’air. Cependant pour des raisons de ventilation, de confort et d’entretien, un châssis ouvrant est souvent nécessaire.

D’un point de vue thermique, la présence d’un ouvrant modifiera :

  • La valeur du Uw car selon le type d’ouvrant les proportions de vitrage et de châssis varient. En pratique le calcul du Uw est basé sur une moyenne acceptable.
  • L‘étanchéité à l’air, influençant directement les performances thermiques de l’enveloppe du bâtiment.

De plus, il est évident que le choix d’un châssis très isolant dont le raccord à la maçonnerie n’est pas étanche à l’air ou muni d’une grille de ventilation défectueuse, n’a pas de sens au niveau énergétique.
Dès lors, on veillera :

  • Dès la conception du châssis, à définir le type de grille de ventilation et sa position au sein du châssis. On veillera à choisir un dispositif compatible avec le niveau d’isolation thermique, acoustique du reste de la fenêtre.
  • A soigner le raccord du châssis à la maçonnerie, de façon à assurer une continuité du degré d’isolation au sein de la façade.

La stabilité thermique des châssis

Certains matériaux tels le PVC et l’aluminium, ont un coefficient de dilatation élevé, entraînant une plus grande sensibilité aux fluctuations de température. Dès lors, des désordres importants et non prévus lors de la conception des châssis, peuvent apparaître dans les châssis de grandes dimensions.

Pour avoir une idée…. un profilé en PVC de 3 m de longueur soumis à un écart de température de 50° subit une déformation potentielle comprise entre 9 et 13,5 mm.

En cas d’orientations ensoleillées, on préférera donc le bois ou le polyuréthane moins sensible aux fluctuations de température.

En cas d’utilisation de châssis en PVC, il faut savoir que,

  • Dès la conception de la fenêtre et de son installation, il faudra prévoir un jeu périphérique suffisant et utiliser des joints d’étanchéité et des fixations adéquates.
  • Des renforcements en acier galvanisé sont conseillés (… ce qui va malheureusement accroître la conductivité thermique de globale de cette menuiserie).
  • Les couleurs de ce type de châssis sont restreintes aux tons pâles, les couleurs foncées trop exposées se déformeraient excessivement.

Les châssis en polyuréthane sont très stables thermiquement mais des contraintes internes importantes nécessitent cependant un soin tout particulier à la réalisation des angles.

Idéalement, pour tous les matériaux utilisés pour la réalisation des châssis, des éléments de protections solaires sont conseillés (dépassants de toiture, balcons,…) car aucun d’eux n’est parfaitement stable face aux fluctuations de température.


L’étanchéité à l’eau et à l’air recommandée

Concernant les châssis, les STS définissent des niveaux de performance d’étanchéité à l’eau (PE2, PE3, PE4, PEE ) et à l’air ( PA2, PA2B, PA3 ) recommandés en fonction de la hauteur du châssis par rapport au sol.

Voici un tableau (selon les STS 52) reprenant les valeurs de perméabilité à l’air et d’étanchéité à l’eau recommandées, en fonction de la hauteur du châssis par rapport au sol :

Hauteur par rapport au sol Perméabilité à l’air Étanchéité à l’eau
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PA2B (1) (3)

PA2B (3)

PA3

PA3

PA3

PE2 (2)

PE3

PE3

PE4

PEE

(1) Si il n’y a pas d’exigence particulière du point de vue thermique et/ou acoustique, on se contentera d’un niveau PA2.

(2) Si le bâtiment a une exposition sévère (digue de mer), on prendra un châssis de résistance PE3, et on le signalera dans le cahier spécial des charges.

(3) Si on est en présence de locaux avec air conditionné, un niveau PA3 s’avérera nécessaire.

Selon les STS 52 [5] le cahier spécial des charges peut, pour des raisons d’uniformisation ou d’aspect, prescrire le même niveau de performance pour tous les châssis du bâtiment en se basant sur les éléments de construction les plus exposés.


L’effet esthétique recherché

Les châssis des fenêtres contribuent très fortement à l’expression architecturale des façades. Ils se différencient au niveau :

De l’aspect et des couleurs

Le châssis en bois

L’aspect est naturel et chaleureux. De nombreuses variétés de bois peuvent être utilisées offrant une gamme de couleurs très variées.

Techniques

Pour connaître les couleurs des différents types de bois, cliquez-ici !

Le bois requiert cependant beaucoup d’entretien et les produits de préservation sont parfois appliqués au détriment de l’aspect physique. (Vernis, enduits peuvent modifier les couleurs et l’aspect du bois..).

Le bois offre comme avantage incontestable que les éléments de menuiserie sont faciles à réparer et les rayures peuvent être enlevées par simple ponçage.

Le châssis en PVC

C’est le matériau le plus économique … mais l’aspect artificiel et synthétique est inévitable malgré des modèles possibles en « imitation texture ou teinte bois ».

De nombreux tons sont disponibles mais la gamme est restreinte aux tons pâles en raison de la grande sensibilité du PVC aux fluctuations de température.

Un inconvénient esthétique réside aussi dans le risque de jaunissement de certains châssis au soleil.

De plus, la couleur peut difficilement être modifiée ou retouchée en cas de rayure. En effet, le fait de peindre ces châssis peut modifier leur absorption d’énergie sous le soleil et augmenter les risques de déformation du châssis.

Le châssis en aluminium

L’ aspect peut être soit métallique soit laqué. Il existe une grande diversité de couleurs possibles par laquage. Le matériau est moins sujet aux rayures, qui sont par contre difficiles à enlever.

Le châssis en polyuréthane

Le polyuréthane est très sensible aux rayonnements UV. Il faut le protéger avec une peinture performante qui lui donne un aspect laqué.

Le châssis en acier

Les possibilités de laquage offrent un grand choix de couleurs.

Le châssis composites

Ceux-ci permettent le cumul des avantages de plusieurs matériaux associés (pouvoir isolant, esthétisme des finitions,…).

Formes et dimensions possibles

Le bois et le polyuréthane permettent les formes les plus variées contrairement au PVC et à l’aluminium qui se prêtent moins facilement aux formes courbes et particulières.

Le matériau utilisé pour le châssis détermine également son encombrement. Les profilés en PVC sont plus larges que les profilés en bois, métalliques ou PUR ce qui « alourdi » l’élancement du châssis et influence le rendement lumineux, surtout des petits châssis.

Les châssis en aluminium peuvent présenter un profil fin et plat, des arêtes vives et permettent de réaliser des constructions élevées de par leur grande solidité. Ce type de châssis est souvent associé aux constructions modernes…

Contrainte d’encombrement liée au type d’ouvrant

La largeur des montants du châssis varie d’un type d’ouvrant à l’autre.

Le châssis fixe sera sans conteste le plus mince mais il empêche le plaisir du contact direct avec l’air extérieur…

L’encombrement vers l’intérieur est le plus grand pour les ouvrants à la française et les oscillo-battants.

Par souci d’uniformisation, on peut imposer la largeur maximale à l’ensemble des profilés de châssis de la façade.


Les facilités d’entretien

En fonction du type de matériau

Le bois présente le plus d’inconvénients à ce sujet. En effet, il doit subir un traitement de conservation comprenant une protection et une finition.
Malgré ce traitement, le bois sera toujours sensible aux effets de l’humidité entraînant des risques de pourrissement et de travail excessif du bois. Les menuiseries en bois devront donc, de plus, être entretenues régulièrement par des lasures ou des peintures.

Techniques 

Pour en savoir plus sur les traitements et entretiens des menuiseries en bois, cliquez-ici !

Les autres matériaux ( aluminium, acier, PVC, polyuréthane) nécessitent comme entretien un simple nettoyage au moins annuel. À défaut, la saleté peut s’incruster au point d’empêcher toute rénovation d’aspect.

Le polyuréthane présente comme avantage d’être antistatique et donc de ne pas attirer la poussière.

En fonction du type d’ouvrant

Pour l’entretien, il faut assurer l’accessibilité aux châssis par l’intérieur et par l’extérieur.

Dans le cas d’un châssis fixe, un accès externe doit être possible si le châssis si ne se situe pas au rez-de-chaussée (coursives de services, possibilité de fixer un chariot de nettoyage,…)

En fonction du type d’ouvrant certains châssis sont plus faciles à entretenir que d’autres :

Pivot à axe vertical Pivot à axe horizontal Coulissante
à la française à l’anglaise pivotant simple pivotant à axe horizontal à visière oscillo-battant basculante coulissante guillotine
bon difficile bon

car s’ouvre à 180°

bon

car s’ouvre à 180°

difficile bon bon

si s’ouvre à 180°

difficile difficile

Evaluant les facilités d’entretien selon le type d’ouvrant.

De plus, lorsqu’on dispose d’un châssis ouvrant, il faudra précéder régulièrement au réglage des quincailleries pour assurer une compression suffisante du préformé d’étanchéité.


Le degré de sécurité souhaité

Lors du choix des châssis, on accroît la protection anti-effraction en prévoyant des types d’ouvrants adaptés aux sollicitations, sachant que :

  • Les châssis fixes sont évidemment les plus sûrs en matière d’effraction. Ils ne nécessitent aucune mesure particulière.
  • Les châssis ouvrants offrent des résistances à l’effraction différentes selon le type d’ouvrant.
Pivot à axe vertical Pivot à axe horizontal Coulissante
à la française à l’anglaise pivotant simple pivotant à axe horizontal à visière oscillo-battant basculante coulissante guillotine
bonne mauvaise mauvaise mauvaise mauvaise bonne bonne bonne mauvaise
  • Des profilés de résistance et de rigidité adaptées aux sollicitations, les châssis en acier et aluminium offrent une excellente résistance à l’effraction de par leur solidité.
  • Une fixation au gros œuvre et des parcloses adaptées.
  • Une quincaillerie ralentissant l’effraction. Selon le type de châssis, les dispositifs anti-effraction peuvent être plus ou moins conséquents (poignée verrouillable, protection anti-forage, verrou..). Ce qui a une influence non négligeable sur le prix du châssis.

Remarque : si une grille de ventilation doit être intégrée au châssis, on veillera à ce que son dispositif de sécurité soit d’un degré équivalent au degré de sécurité recherché pour le châssis.


Résistance mécanique et longévité en cas d’usage intensif

Les châssis ne constituent pas un élément porteur de la façade, mais doivent cependant offrir une résistance mécanique suffisante vis-à-vis des contraintes extérieures, telles les pressions causées par le vent, et des déformations des profilés sous leur poids propre.

La résistance mécanique vis-à-vis des contraintes extérieures

Les valeurs de références

Les châssis de tous types sont capables de reprendre des contraintes importantes à condition d’être étudiés pour cela.

Les STS définissent des niveaux de résistance mécanique à atteindre par les châssis en fonction de la hauteur du châssis par rapport au sol.

Ces niveaux doivent être établis au cours de tests réglementés de résistance, réalisés sur un échantillonnage des châssis commandés. S’il s’agit de châssis standards agréés, ces niveaux de performance sont indiqués dans les agréments techniques.

On s’assurera de choisir un châssis atteignant la performance demandée.

Hauteur par rapport au sol Résistance mécanique
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PV1 (1)

PV1B

PV2

PV2

PV3

(1) si le bâtiment a une exposition sévère (digue de mer), on prendra un châssis de résistance PV2, et on le signalera dans le cahier spécial des charges.

Résistances mécaniques propres au matériau

Les châssis en aluminium et en acier sont les plus solides, ce qui limite les risques d’apparition de flèche. Ils permettent dès lors de réaliser les profilés les plus élancés. Les châssis en acier offrent aussi une très bonne résistance au feu.
Cependant, ils sont également les plus lourds et sont donc déconseillés en toiture inclinée où le poids propre du châssis est à prendre en compte.

La résistance mécanique du PVC est située entre celle du bois et celle de l’aluminium. Cependant, lorsque les châssis de ce type de châssis sont amenés à fermer de grandes baies, il convient de les rigidifier. Les châssis en PVC de certaines marques peuvent être renforcés par des profils métalliques. D’autres prévoient des renforcements uniquement pour certaines pièces en fonction des sollicitations auxquelles elles sont soumises. La raideur du PVC utilisé (de type A ou B) a une influence sur la nécessité de prévoir des renforcements

L’agrément technique

L’avantage indéniable qu’ont les matériaux synthétiques et métalliques (alu, acier, PVC, polyuréthane) sur le bois est d’être produits en usine, le client peut ainsi obtenir certaines garanties de fabrication établies par un agrément technique, tel l’agrément UBATC, accompagnant le produit. Celui-ci certifiera la qualité des matériaux utilisés et les performances techniques propres au profilé du châssis.
A notre connaissance, dans le cas de châssis en bois, les menuisiers ne disposent pas d’un agrément technique. Le bois fourni peut différer du bois commandé tant il existe d’espèces de bois. De plus, aucune garantie n’existe quant à la qualité du traitement qu’aura subi le bois en atelier. Le choix d’un menuisier compétent et fiable est donc primordial.

Concevoir sans agrément technique

Si le maître d’ouvrage souhaite faire poser des châssis ne disposant pas d’un agrément technique, il a intérêt à confier leur fabrication à une firme connue possédant de bonnes références. Il faut en effet savoir que tant les bois que les matériaux synthétiques peuvent être de qualité très différentes.
Le cahier spécial des charges devra être clair quant aux qualités des matériaux et des performances exigées.

Pour le contrôle des performances, il est prudent de prescrire la réalisation d’un essai de laboratoire agréé (coût 5 000 à 7 000 €), surtout si la menuiserie présente un caractère inhabituel (système d’ouverture spécial, grandes dimensions).

Longévité des châssis

La durée de vie des châssis en bois dépend fortement du soin porté à son entretien. Les produits de traitement du bois sont de plus en plus performants, ce qui en assure la longévité.

L’aluminium ne s’altère pas de façon significative, il ne sera pas sujet à la corrosion ni à des dégradations chimiques.

Les châssis en matière synthétique tels le PVC ou le polyuréthane, semblent bien résister avec le temps mais ne sont utilisés que depuis 35 ans, on ignore encore comment ils vieillissent.
Les châssis en PVC, surtout ceux de couleur foncée, sont sensibles aux ultraviolets. Des déformations du châssis dû au phénomène de dilatation thermique peuvent être la cause de fatigue et de fissuration au sein du châssis. Les châssis en PVC ne se corrodent pas.


Le coût

Pour avoir une rapide idée, voici une fourchette de prix en fonction des matériaux choisis par m² de baie.

Il est évident que d’autres facteurs interviennent dans le prix d’un châssis : sa forme, le type d’ouvrant et de quincaillerie, la pose d’un éventuel dispositif de sécurité, l’accessibilité du chantier, …

Châssis en bois – type de bois

Dark Red Meranti 150 190 €/m² de baie
Merbau 170 230 €/m² de baie
Afzélia 200 300 €/m² de baie
Il faut y rajouter les traitements du bois :
Couche d’imprégnation + 2 couches 12 14 €/m² de baie
Couche supplémentaire 4 5 €/m² de baie

Châssis en PVC

PVC 170 220 €/m² de baie
PVC renforcé 185 240 €/m² de baie

Châssis en polyuréthane (PUR laqué)

250 320 €/m² de baie

Châssis en aluminium laqué avec coupure thermique

245 315 €/m² de baie

Pour tous les types de châssis, on ajoutera :

Le coût des joints périphériques entre le châssis et les parois 3.5 5 €/m² de baie

Les fourchettes de prix mentionnées sont données à titre indicatif. Les prix prévoient la fourniture et la mise en œuvre hors TVA. Ils concernent les ouvrages courants.

Découvrez ces exemples de rénovation de châssis : l’Institut Saint-Joseph à Templeuve et le Passage 45 à Charleroi.

Dimensionner une protection solaire fixe

Dimensionner une protection solaire fixe


    


L’indicateur d’occultation

La figure ci-dessous représente l’indicateur d’occultation d’une fenêtre rectangulaire. Les courbes en arche (appelées lignes d’ombres) prenant appui aux deux extrémités de la base de l’indicateur servent à étudier les avancées au-dessus d’une fenêtre et les lignes verticales portées sur l’indicateur de 15° en 15° servent à étudier les avancées verticales. L’indicateur d’occultation est valable quelles que soient les dimensions et l’orientation de la fenêtre.

Graphe indicateur d'occultation.


Profil d’ombre d’un écran horizontal

Pour dessiner le profil d’ombre d’une fenêtre équipée d’un écran horizontal, il faut commencer par déterminer les angles a, b et c. L’angle « a » représente un ombrage de la fenêtre de 100 %, l’angle « b » un ombrage de 50 % et l’angle « c » un ombrage nul. Ensuite, il convient de repérer les trois lignes d’ombre relatives aux angles « a « , « b  » et « c » sur l’indicateur d’occultation.

Schéma profil d'ombre d'un écran horizontal. Graphe profil d'ombre d'un écran horizontal - 01.

Profil d’ombre d’un écran vertical

Il existe deux types fondamentaux de pare-soleil vertical : les avancées perpendiculaires à la façade et celles qui lui sont obliques. Premièrement, on détermine les angles « a » et « b ». Ceux-ci correspondent à l’occultation complète de la baie. Ensuite, il faut déterminer les angles « c » et « d » qui représentent une occultation à 50 % et enfin les angles « e » et « f » pour une occultation nulle. On trace alors les lignes verticales relatives aux angles « a », « b « , « c », « d », « e », « f » à partir de la base de l’indicateur d’ombre.

  

Graphe profil d'ombre d'un écran vertical.

  

Graphe profil d'ombre d'un écran vertical.


Combinaison d’avancées horizontales et verticales

Pour déterminer le profil d’ombre d’un ensemble pare-soleil comportant des parties horizontales et verticales, il suffit de fusionner les profits des deux types d’avancées.

Illustration combinaison d'avancées horizontales et verticales

Graphe combinaison d'avancées horizontales et verticales - 01. + Graphe combinaison d'avancées horizontales et verticales - 02. =

Graphe combinaison d'avancées horizontales et verticales - 03.


Le diagramme solaire

Pour une latitude donnée, le diagramme solaire représente la position du soleil en fonction de l’heure universelle (heure officielle = heure universelle + 1 h, en hiver et = heure universelle + 2 h, en été) et en fonction du mois (le 15 ème jour du mois).

schéma principe diagramme solaire.

Graphe principe diagramme solaire.


lmpact de la protection

Pour connaître les périodes durant lesquelles la protection sera efficace, le profil d’ombre de celle-ci est comparé au diagramme solaire. Il s’agit de superposer les deux diagrammes qui doivent évidemment être à la même échelle.

L’index du profil d’ombre doit être positionné sur la valeur de l’azimut correspondant à l’orientation de la fenêtre.

Pour les écrans horizontaux, la fenêtre est entièrement à l’ombre aux heures où le soleil est au-dessus de la ligne « a »; elle est à demi-ombragée pour les points se situant sur la ligne « b » et non protégée lorsque le soleil est sous la ligne « c ». De même, pour les écrans verticaux, la fenêtre sera protégée pour les positions du soleil se trouvant au-delà des lignes « a » et « b » et aura une protection partielle respectivement entre les lignes « c » et « e », et « d » et « f ».

Pour une compréhension plus aisée, examinons les exemples suivants.

Exemples.

Une fenêtre orientée au sud-ouest est équipée d’une protection horizontale (a = 60°, b = 43°, c = 10°). Lorsqu’on superpose le diagramme solaire et le profil d’ombre (index sur sud-ouest), on peut constater pour le 15 août, par exemple : la fenêtre est complètement ombrée de 5h à 12h10 (heure universelle), vers 14h la fenêtre est à moitié ombrée, vers 18h30, la protection devient nulle.

Une fenêtre orientée au sud-ouest est protégée par un écran vertical. La superposition au diagramme solaire et du profil d’ombre montre par exemple pour le 15 août : une protection totale de 5h à 11h15, une protection de 50 % à 12h, une protection nulle dès 13h30.

  

Choisir entre les différents types de fenêtre : récapitulatif

A. Les châssis

Concevoir

Pour en savoir plus sur les critères de choix des châssis.

Techniques

Pour en savoir plus sur les différents types de châssis.

Le châssis en bois

Avantages

  • Thermiquement performant.
  • Traditionnel dans nos régions.
  • Produit naturel (si bien géré).
  • S’adapte facilement à des formes complexes.
  • Relativement stable au feu.
  • Relativement résistant à l’effraction.

Inconvénients

  • Nécessite un entretien périodique.

Le châssis en PVC

Avantages

  • Thermiquement performant.
  • Entretien très facile.

Inconvénients

  • Produit synthétique contenant du chlore.
  • Dilatation thermique importante.
  • Faible résistance au feu.
  • Faible résistance à l’effraction

 Le châssis en aluminium à coupure thermique

Avantages

  • Bonne résistance mécanique.
  • Bonne résistance à l’effraction.
  • Facile à entretenir.

Inconvénients

  • Thermiquement moins performant que le bois ou le PVC.
  • Faible résistance au feu.

Le châssis mixte et le châssis à haute performance thermique

Il existe une grande variété de châssis constitués de différents matériaux assemblés en vue de conférer à ceux-ci des caractéristiques spécifiques adaptées à leurs usages : Isolation renforcée, facilité d’entretien, résistance mécanique, …

Le choix de ceux-ci se fera en fonctions des niveaux de performances à atteindre par le bâtiment. Ils sont plus coûteux que des châssis classiques.

B. Le vitrage

Concevoir

Pour en savoir plus sur les critères de choix du vitrage.

Techniques

Pour en savoir plus sur les différents types de vitrage.

Le vitrage thermique

On n’envisagera plus actuellement de mettre en œuvre des vitrages autres que thermiquement performants.

Un double vitrage basse émissivité avec gaz dont le coefficient de transmission thermique Ug est compris entre 1.0 et 1.3 W/m²K, est un minimum à prévoir. De plus, le rapport qualité/prix de ce type de vitrage est intéressant.

Pour des ambitions plus hautes en matière de performance thermique, le triple vitrage s’impose. Il est normal que son prix soit plus élevé. Le châssis doit évidemment être adapté à l’épaisseur du vitrage et à son poids.

Le vitrage thermique solaire

Outre ses qualités thermiques, sa principale fonction est de diminuer les apports solaires pour réduire la surchauffe dans le bâtiment. Il est donc indiqué lorsque le bâtiment ne peut pas être équipé de protections solaires fixes ou mobiles efficaces et qu’il est sensible à la surchauffe à cause de sa faible inertie et/ou d’apports internes importants.

Les vitrages thermiques ont cependant certains inconvénients.

  • Ils peuvent, dans certaines conditions atmosphériques, assombrir l’intérieur au point de nécessiter l’usage de l’éclairage artificiel.
  • Ils peuvent diminuer les apports solaires gratuits en hivers.
  • Leur aspect extérieur n’est pas aussi neutre que celui d’un vitrage normal (couleur et réflexion).
  • Depuis l’intérieur du bâtiment, la perception de la lumière extérieure est modifiée (intensité et couleur).
  • La nuit, la visibilité vers l’extérieur est fortement réduite à cause de la réflexion de la lumière intérieure.

Le vitrage thermique acoustique

Le choix d’un vitrage thermique acoustique n’est justifié que par la localisation du bâtiment dans une zone bruyante. Il protège des bruits extérieurs sans avoir un impact significatif sur l’acoustique intérieure du bâtiment. Il n’est efficace que lorsque les fenêtres sont fermées et donc inutile dans un bâtiment dont les fenêtres doivent être ouvertes souvent.

Ce type de vitrage est plus lourd que le vitrage thermique normal (une des vitres est plus épaisse) et thermiquement légèrement moins performant (à épaisseur totale égale, l’espace entre les vitres est moins large – 12 mm au lieu de 15 ou 16 mm). Il est aussi plus cher.

Le vitrage thermique de sécurité

Comme le vitrage acoustique, le vitrage de sécurité n’est justifié qu’aux endroits où il y a risque de blessure ou de chute pour les personnes, ou d’effraction. Les règles de sécurité à respecter sont reprises dans la norme NBN S23-002 : 2007 et son addendum NBN S 23-002/A1 : 2010. Le principe de base de cette norme est qu’il faut examiner si un verre de sécurité est nécessaire du côté du vitrage thermique où se trouve une zone d’activité humaine.

Ainsi, dans le cas des vitrages thermiques de sécurité (double vitrage ou triple vitrage), le verre de sécurité doit être placé du côté où le choc risque de se produire, ou des deux côtés si le choc peut se produire des deux côtés. En toiture, le verre feuilleté doit se trouver en dessous de manière à éviter la chute de morceaux de vitre. Etc.

Comme le vitrage thermique acoustique, le vitrage thermique de sécurité est plus lourd que le vitrage thermique normal (une des vitres est plus épaisse) et thermiquement légèrement moins performant à épaisseur totale égale. Il est aussi plus cher.

C. L’intercalaire

Normal ou amélioré ?

Les écarteurs qui relient les vitres d’un vitrage double ou triple provoquent un pont thermique plus ou moins important qui augmente le coefficient thermique Uw de la fenêtre.

Certains intercalaires, dits améliorés, réduisent ce pont thermique. Le Uw peut ainsi être diminué de 0.12 W/m²K (voire plus si l’intercalaire est thermiquement très performant).

Il faut être très attentif au moment de la commande de spécifier si on souhaite qu’un intercalaire amélioré soit placé. Il coûte un plus cher qu’un intercalaire normal (supplément 10 à 15 % du prix total du vitrage).