Choisir l’emplacement des émetteurs de refroidissement

Le confort lié à la distribution de l’air et de la chaleur

L’emplacement de l’unité intérieure conditionne fortement le confort des occupants. La difficulté est renforcée par le fait que le confort doit être assuré autant en mode « chauffage » qu’en mode « refroidissement ». Les mouvements de l’air dans les locaux sont conditionnés par la disposition des bouches de soufflage et de reprise par rapport à l’emplacement des occupants. Notons que certaines cassettes plafonnières régulent automatiquement la direction du flux suivant le mode fonctionnement chaud ou froid.

Le dimensionnement doit alors faire apparaître que la zone d’occupation du local n’est pas perturbée par le jet d’air.

La zone d’occupation du local est limitée dans les recommandations EUROVENT.

En pratique, la vitesse résiduelle du jet d’air dans la zone d’occupation devrait se situer entre 0,15 et 0,2 m/s. Si elle atteint 0,25 m/s, il y aura inconfort des occupants.

Disposition en allège

Si l’emplacement est en allège, la stratification de la température de l’air est limitée et le rayonnement froid du vitrage en hiver est diminué.

climatiser_local_35.gif (6397 octets)

Cette disposition impose qu’en mode « refroidissement », personne ne se trouve à proximité immédiate de la bouche de soufflage.

On rencontre deux cas de figure : soit l’échangeur est placé « complet » avec son habillage, soit il est « nu » et intégré dans un caisson en allège. La première solution apporte beaucoup de garanties de qualité, car le fabricant a testé son matériel et peut en garantir les performances. Mais l’architecte préfère de loin la deuxième formule, pour l’esthétique globale du local et pour la possibilité de dissimuler câbles et tuyauteries dans l’allège ! Les problèmes qui se posent alors sont liés à l’interface entre l’échangeur et la grille du caisson : des remous modifient les jets d’air et créent un inconfort acoustique. Il est donc important soit de remonter l’échangeur pour qu’il affleure la grille, soit de prévoir un manchon de raccord entre ventilo et grille.

De même, on évitera les tablettes, rideaux, … qui peuvent entraver une diffusion correcte de l’air.

Exemple de ventilo-convecteur en allège.

Disposition en faux plafond

Paradoxalement, c’est lorsque soufflage et reprise sont proches l’un de l’autre que le brassage de l’air du local est le meilleur. Mais cette distribution horizontale de l’air peut poser beaucoup de difficultés, surtout si l’on souhaite faire varier le débit d’air. Le choix de la grille sera déterminant. On adopte généralement des grilles linéaires ou des grilles à rouleaux dont on recherche l‘effet Coanda le long du plafond. Mais à faible vitesse, la veine d’air risque de se décoller du plafond et de faire retomber un air trop froid sur les occupants.

En faux plafond, il est sans doute préférable d’imposer une vitesse constante (en l’imposant à la régulation centrale). Ce qui n’est acoustiquement et énergétiquement pas optimal. Permettre à l’occupant de modifier la vitesse de distribution de l’air sous-entend de reporter la commande sur une paroi du local, ce qui est coûteux à l’investissement.

Certains appareils modifient le jet en fonction de la température de l’air soufflé.
À noter enfin que lorsque l’échangeur est placé en faux plafond, on aura tendance a insérer l’apport d’air neuf dans le plénum constitué par ce faux plafond. L’échangeur aspire un mélange d’air du local et d’air neuf. Or, l’air neuf devant être pulsé en permanence, il faudra toujours maintenir une vitesse minimale à l’échangeur.

Disposition en faux plafond avec gainages de distribution

C’est un appareil dont le raccordement est prévu via des gaines de distribution vers différentes grilles de pulsion. Cela améliore le confort (meilleure diffusion de l’air, diminution du bruit, …).

Mais les pertes de charge sont plus élevées et la consommation électrique du ventilateur augmente, tout particulièrement si les gaines de distribution d’air sont longues et terminées par des bouches linéaires.

Disposition au plafond, en apparent ou en imposte

Ce n’est pas idéal au niveau confort thermique. En mode « froid » et à basse vitesse, le jet risque de tomber et de provoquer une sensation d’inconfort désagréable. Ce risque est renforcé si la température de la boucle d’eau glacée est choisie très basse lors du dimensionnement (régime 7° – 12°C, par exemple, plutôt que 12° – 17°C). On peut diminuer cet effet, lors du dimensionnement de l’équipement, en calculant le ventilo sur base de la vitesse moyenne et en recherchant à valoriser à ce moment l‘effet Coanda.

Disposition en faux plancher

La distribution et l’émission peut également être disposée dans le faux plancher.

Disposition dans un local technique indépendant

Pour l’organisation de la maintenance, il peut être plus aisé de disposer toutes les unités terminales dans un local technique, et de les relier chacune à son local par une gaine spécifique.

On parle alors de Module de traitement d’air, qui peut être vu comme un ventilo-convecteur délocalisé.

Coupe à l’intérieur du module de traitement d’air.

En aval, ils sont alimentés en air neuf prétraité, en eau glacée et éventuellement en eau chaude.

En amont, ces caissons sont prolongés par des gaines pour alimenter les diffuseurs d’air dans les locaux (ces diffuseurs assurent aussi bien la pulsion que la reprise).

Le principe de fonctionnement est donc fort proche de celui des ventilo-convecteurs. Mais en plus, il apporte une flexibilité totale s’adaptant très bien aux bâtiments modulaires dont on voudrait pouvoir modifier les cloisons ultérieurement.

Le coût d’installation fort élevé entraîne le besoin d’une évaluation de la rentabilité de ce système sur le long terme.

Un module de traitement d’air traite un local.

Vue du local technique où sont rassemblés les MTA d’un étage, par exemple.


L’évacuation des condensats

La température d’évaporation (en mode froid) d’un système DRV ou d’un climatiseur est inférieure à la température de rosée de l’eau contenue dans l’air, il y a alors condensation sur les ailettes. Des condensats apparaissent également sur les échangeurs à eau glacée des ventilo-convecteurs ou poutres froides.

Ces condensats doivent être évacués. En fonction de l’emplacement de l’appareil, ceci pourra s’effectuer par écoulement naturel ou au moyen d’une pompe de relevage. Celle-ci, si elles ne sont pas intégrées dans la cassette peuvent engendrer du bruit. Dans la mesure du possible, il faut essayer de ne pas sacrifier le confort pour faciliter l’évacuation.

A priori, l’évacuation pour un appareil en plafond dispose de plus de pentes qu’en allège, mais la présence de poutres perpendiculaires au chemin probable d’évacuation peut rendre les choses plus difficiles…

Exemple du DRV : Les condensats sont extraits de l’air ambiant lors du fonctionnement de l’échangeur en mode « froid ». Ainsi, lorsque l’appareil détecte une humidité trop importante dans le local, il descend la température du fluide frigorigène sous le point de rosée de l’ambiance. La distance entre ailettes étant de 2 mm, le bypass factor est très faible. L’air du local condense et ressort à 95… 98 % d’humidité relative.

D’après un constructeur :

  • la consommation de l’appareil est de 85 % en chaleur sensible en mode refroidissement (et donc 15 % pour la déshumidification),
  • elle descend à 50 % en chaleur sensible lors d’un fonctionnement en mode déshumidification.

La technique de la température variable fait qu’il est possible de faire varier la proportion entre chaleur sensible et latente dans le traitement de l’air en mode froid.


La facilité de maintenance

Il ne faut pas non plus oublier que le ventilo doit s’intégrer dans l’esthétique générale du local et que sa facilité d’accès déterminera en partie son coût d’entretien et le coût du service après-vente.

Il est certain que les appareils en allège sont de ce point de vue nettement préférable à ceux en faux plafond.

On sera attentif à ce que les appareils en faux plafond disposent d’une ouverture prévue par le dessous (point surtout critique pour les appareils gainables). Certains appareils sont pourvus de filtres autonettoyants facilitant ainsi l’entretien.

Synthèse

Avantages

Configurations

 Inconvénients

  • distribution optimale de l’air,
  • bruit réduit,
  • faux plafond mis à profit,
  • multiplicité des combinaisons.

  • risque de court-circuit de l’air pulsé et repris,
  • difficulté de respecter le confort à vitesse réduite.

  • distribution optimale de l’air,
  • bruit réduit,
  • faux plafond mis à profit.

  • difficulté d’évacuation des condensats (nécessité d’une pente),
  • difficulté de respecter le confort à vitesse réduite.

  • fonctionnement correct en chauffage et refroidissement.

  • risque de court-circuit si vitesse de soufflage trop faible,
  • encombrement au sol,
  • difficulté d’évacuation des condensats (nécessité d’une pente).

  • fonctionnement correct en chauffage et refroidissement.

  • risque de court-circuit si vitesse de soufflage trop faible
  • esthétique
  • difficulté d’évacuation des condensats (nécessité d’une pente).

Pour en savoir plus :

Techniques

Le ventilo-convecteur

Techniques 

L’éjecto-convecteur

Techniques 

La poutre froide

Techniques 

Le climatiseur de local

Techniques 

Le système DRV

Choisir un système de ventilation intensive (free cooling)

Choisir un système de ventilation intensive (free cooling)

Ventilation intensive mécanique ou naturelle ?

On peut envisager un système de ventilation intensive entièrement mécanique. La consommation électrique des ventilateurs risque cependant de compenser l’économie réaliser sur la machine frigorifique. Sans parler de l’encombrement des conduites. Ce type de système est équivalent à une climatisation « tout air » de type VAV qui valoriserait au maximum l’air extérieur non traité.

Concevoir

Pour plus d’infos techniques sur la conception des systèmes VAV

Selon les situations, les ventilations mécaniques et naturelles présentent chacune des avantages et/ou des inconvénients :

Coût d’investissement

Le free cooling, de jour comme de nuit, nécessite des débits de ventilation relativement importants. L’ installation de ventilation doit donc être dimensionnée pour gérer ces débits (conduits, ventilateurs, bouches, ….).

Si le bâtiment est déjà équipé d’un système de climatisation tout air ou si les débits de ventilation hygiénique sont importants (du fait de l’occupation, dans des salles de conférence, des auditoires, par exemple), un réseau mécanique ne représente peut-être pas un surcoût.

Par contre, lorsque la ventilation hygiénique est limitée, la possibilité d’organiser un free cooling mécanique entraîne un surdimensionnement, donc un surcoût important de l’installation.

Dans le cas d’une ventilation naturelle, si la réalisation d’un réseau de ventilation mécanique important est évitée, l’investissement pour organiser une ventilation naturelle n’est néanmoins pas nul. Des éléments particuliers doivent être prévus pour amener l’air dans le bâtiment sans risque d’effraction (grilles, fenêtres automatisées,…), éventuellement pour lui permettre de circuler (grilles de transfert, portes coupe-feu,…) et pour l’extraire (grilles d’extraction, cheminées,…).

Coût de fonctionnement

En ventilation naturelle, le transport de l’air s’effectue naturellement grâce aux différences de pression et/ou de température de l’air autour du bâtiment. Dans les systèmes de ventilation par effet de cheminée, un ventilateur d’extraction est parfois installé pour pourvoir au transport de l’air dans de mauvaises conditions climatiques. Pratiquement, ces ventilateurs sont peu ou pas utilisés.

En ventilation mécanique, le fonctionnement des ventilateurs pour le transport de l’air nécessite une énergie électrique non négligeable.

Par exemple, une étude réalisée sur un bâtiment du Sud de la France montre que la consommation des ventilateurs actionnés la nuit était similaire à la consommation des groupes frigorifiques en relance au matin en absence de free cooling (ceux-ci bénéficiant de l’efficacité frigorifique qui produit 2 à 3 kWh de froid pour 1 kWh au compresseur…).

Confort

En free cooling diurne naturel, l’amenée d’air frais directement dans les locaux peut se révéler inconfortable. Des solutions peuvent néanmoins être trouvées pour éviter cet inconfort, comme le montrent les trois exemples suivants réalisés dans des bâtiments anglais.

Exemples.

Dans le centre administratif de l’entreprise Powergen, l’air, en hiver, est introduit par les fenêtres hautes, et guidé, grâce à la forme particulière du plafond vers le centre du bâtiment. Le mélange de l’air frais extérieur avec l’air ambiant se fait donc sans inconfort.

Photo centre administratif de l'entreprise Powergen.

Dans le bâtiment environnemental du BRE, l’air de ventilation des bureaux paysagers parcourt des conduits intégrés dans le plafond, à température ambiante, avant de pénétrer le local au niveau du plafond. Il est donc légèrement réchauffé.

Powergen, schéma explicatif.

Powergen, schéma explicatif.

Enfin, dans le Queen’s building de l’Université De Monfort, l’air extérieur est introduit dans les auditoires au travers d’un absorbant acoustique et d’une batterie de préchauffe.

À cela s’ajoute le risque de sous-refroidissement du local et donc d’inconfort le matin, à l’arrivée des occupants, si les amenées d’air ne sont pas automatisées et refermées au cours de la nuit, quand le bâtiment est suffisamment refroidi.

En ventilation mécanique, lorsque l’on souhaite bénéficier de la fraîcheur de l’air extérieur, mais que celui-ci est trop froid pour être pulsé tel quel, il serait paradoxal de recourir à une batterie de chauffe. Une récupération de chaleur sur l’air extrait est alors tout indiquée. Éventuellement, un recyclage partiel de l’air extrait peut être envisagé.


Un ventilateur en renfort du tirage naturel : vers des systèmes hybrides ?

Pour renforcer le tirage lorsqu’il est trop faible ou pour limiter l’encombrement des cheminées de tirage naturel, il est possible d’organiser une pulsion forcée d’air frais extérieur : un extracteur est placé sur le sommet de la cheminée. Ici également, la température intérieure va fluctuer entre 21 et 25°C durant la journée, puisque le bâtiment stocke son froid la nuit et se réchauffe le jour. Mais au moins une garantie est donnée sur la réelle circulation de l’air.

Schéma de fonctionnement de la ventilation hybride dans les classes (École Tanga).


Disposer d’une masse thermique accessible

Le but de la ventilation nocturne est de refroidir la masse thermique du bâtiment durant la nuit et de diminuer ainsi les surchauffes en journée.

Ce sont les matériaux lourds de construction (béton, carrelage, …) qui constituent la principale masse thermique d’un bâtiment. En journée, ceux-ci absorbent les apports instantanés de chaleur (ensoleillement, …). Cette chaleur est restituée ensuite avec un décalage temporel, ce qui atténue fortement les hausses de température diurne dans le bâtiment. On parle d’inertie thermique du bâtiment. Prenons l’exemple d’une voiture. Celle-ci n’a aucune masse thermique. Dès que le soleil luit, la température intérieure monte très vite. À l’inverse, dès que le soleil disparaît, la température intérieure chute.

Évolution dans le temps de l’apport de chaleur dû à l’ensoleillement dans un local
avec ou sans inertie thermique : comparaison entre la chaleur instantanée transmise au travers du vitrage et la chaleur restituée au local.

Le but de la ventilation nocturne est de décharger au maximum, durant la nuit, la chaleur accumulée dans les matériaux du bâtiment et de permettre une forte absorption de chaleur durant la journée.
Pour que ce phénomène d’accumulation / restitution de chaleur soit possible, il faut :

  • D’une part, favoriser l’utilisation de matériaux de construction lourds pour assurer l’accumulation.
  • D’autre part, garantir le contact entre ceux-ci et l’air frais de ventilation pour évacuer la chaleur accumulée.

À défaut de quoi, on ne refroidirait que l’air ambiant du bâtiment, qui se réchaufferait au premier rayon de soleil (comme cela se passe dans une voiture …). Concrètement :

  • Au niveau du sol, le carrelage est préférable à la moquette, au plancher ou au faux plancher qui isolent par rapport à la masse du sol. …). Le passage des réseaux hydrauliques, électriques,informatiques… s’en trouve contrarié.
  • Au niveau des murs, des murs intérieurs en maçonnerie lourde absorbent nettement plus de chaleur que les cloisons légères. Mais des cloisons lourdes peuvent aller à l’encontre de la flexibilité souhaitée par un promoteur immobilier par exemple.
  • Au niveau des plafonds, l’emploi de faux plafonds est déconseillé.

La surface d’absorption manquante au plafond peut être fournie par les portes absorbantes acoustiques des armoires.

Exemple.

Les bureaux du bâtiment environnemental du BRE, par exemple, ne présentent pas de faux plafonds. La surface du plafond a même été augmentée artificiellement en lui donnant une forme sinusoïdale. L’énergie thermique stockée par le plafond est ainsi augmentée.

Phot des plafonds du bâtiment environnemental du BRE.

Cependant, les faux plafonds offrent d’importants avantages (coût par rapport à la finition d’un plafond « lourd », intégration des installations techniques, …) et permettent notamment d’améliorer l’acoustique des locaux. Un compromis peut être trouvé entre la fonctionnalité du faux plafond et la perte de masse thermique qu’il engendre. Il s’agit de plafonds semi-fermés comportant des ouvertures qui assurent un contact entre l’air intérieur et la structure du bâtiment.

Faux plafonds semi-ouverts permettant la circulation de l’air de ventilation.

Dans le centre administratif de l’entreprise Powergen en Angleterre, une autre solution a été utilisée pour assurer le confort acoustique : les « ailes » des éléments techniques suspendus (regroupant luminaires, détecteurs incendies, etc.) sont des absorbants acoustiques. La forme elliptique des creux du plafond focalise les ondes sonores vers ces absorbants.

Théories

Pour plus d’informations sur l’évolution thermique d’un local type sans inertie, cliquez ici !


Gérer la fluctuation inévitable de la température intérieure

Choisir un rafraichissement par ventilation intensive sans appoint d’une machine frigorifique implique inévitablement des fluctuations de température dans le bâtiment.

En été, le bâtiment est un réservoir « tampon », qui est « vidé de sa chaleur » la nuit jusqu’à atteindre 21°C, et dont la température augmente progressivement en journée jusqu’à 25°C. S’il fait plus de 25°C à l’extérieur, l’occupant doit vivre dans son local sans ouvrir la fenêtre, et se baser sur le « capital froid » emmagasiné durant la nuit.

En outre, il ne faut pas sous-refroidir le bâtiment, pour ne pas créer d’inconfort lors de l’arrivée des occupants, le matin. Une régulation automatique du free cooling s’impose si les utilisateurs ne peuvent assurer la gestion manuelle.

Dans tous les cas, les fluctuations de température doivent rester dans les plages de confort tolérées par le maître d’ouvrage. Or, dans un bâtiment se basant sur un système de reoifridissement par ventilation, l’approche du confort n’est pas la même que dans un bâtiment climatisé. La norme NBN EN 15251 donne à ce titre des indications utiles.

Pour en savoir plus :

Théories

Le confort thermique.

Réglementations 

La norme NBN EN 15251.

Choisir un climatiseur individuel ou une armoire de climatisation

Choisir un climatiseur individuel ou une armoire de climatisation


Quand opter pour un climatiseur individuel ?

Un climatiseur paraît bien adapté lorsque l’on cherche un refroidissement localisé à peu de frais. Mais ce système présente d’importantes limites : il ne permet pas la maîtrise de l’humidité et risque de créer un inconfort lié au flux d’air froid.

Ce dernier point s’explique comme suit : en conditionnement d’air, on cherche à assurer un écart de soufflage limité (écart entre la température de l’air soufflé et la température du local). On peut aller jusqu’à 10 °C d’écart (soit une pulsion d’air à 14 °C si le local est à 24 °C) mais on utilise alors des bouches à haut taux d’induction pour être sûr que le mélange avec l’air ambiant soit maximal. Dans un climatiseur par contre, le fabricant cherche à fournir une puissance maximale dans un encombrement minimal. L’évaporateur est donc de petite surface, … et travaille à très basse température ! L’air du local est fortement refroidi à son contact. Une « coulée » d’air froid risque alors de gêner fortement les occupants…

Ceci dit, c’est une solution facile lorsque quelques locaux sont à traiter, particulièrement en rénovation. Et le confort limité peut être accepté si le climatiseur est utilisé sporadiquement pour vaincre des périodes de surchauffe.

Lorsque des puissances plus grandes sont nécessaires par exemple pour des locaux de serveurs, on s’orientera vers les armoires de climatisation.


Choix du type de climatiseur

En fonction de la puissance frigorifique

À partir de la puissance frigorifique requise, on réalisera une première sélection parmi la typologie des climatiseurs de locaux.

La puissance frigorifique nécessaire permet déjà d’écarter quelques équipements :

  • appareil mobile : maximum 2,5 kW,
  • appareil plafonnier : minimum 2,5 kW,
  • appareil en toiture + gaines (rooftop) : minimum 5 kW.

Lorsque la puissance des appareils présents sur le marché ne correspond pas à la puissance frigorifique calculée, il est toujours préférable de choisir un appareil ayant une puissance juste inférieure plutôt que celui qui a une puissance supérieure.

En effet, les conditions extrêmes de température extérieures n’apparaissent que durant quelques jours par an. On peut donc se permettre un très léger inconfort durant cette période. De plus, un appareil plus petit aura des durées de fonctionnements plus longs, et donc un meilleur rendement.

En fonction de la performance acoustique

Les climatiseurs monoblocs et les climatiseurs de « fenêtres » présentent souvent de mauvaises caractéristiques acoustiques puisque condenseur et compresseur sont directement en contact avec le local à climatiser.

Graphique performance acoustique

La performance acoustique va orienter le choix vers une configuration en split (le compresseur est à l’extérieur), puis vers un évaporateur en cassette (faux plafond), voire rechercher un placement de l’évaporateur dans un local annexe (couloir ?) afin de profiter en plus de l’absorption acoustique de la gaine.

À ce titre, on pourrait classer le choix en fonction de ses performances acoustiques de gauche à droite :

  Illustration plafonnier rapporté.  Illustration plafonnier intégré.  Illustration unité de plafond + gaine.

Mais ce critère sera affiné ci-dessous.

En fonction d’un éventuel découpage par zone

Il faut découper le local par zone, chaque zone étant desservie par une bouche de soufflage :

Si la surface du local est importante :

Illustration sur principe de surface du local.

Un phénomène d’irrigation incomplète des locaux apparaît lorsque la distance de pénétration du jet (mentionnée par le fournisseur) est inférieure à la dimension de la pièce (dans la direction de soufflage). Il se forme alors un mouvement d’air en sens contraire (boucle secondaire) dans le fond du local, zone mal rafraîchie.

Dans ce cas un découpage du local en plusieurs zones s’impose.

Exemple : découpage d’un local rectangulaire suivant les zones d’influence des diffuseurs plafonniers circulaires.

Si un obstacle se trouve au plafond

Lorsque l’air est soufflé à proximité d’une surface (ex : soufflage horizontal à proximité du plafond), il se produit un effet d’adhérence du jet à la paroi : c’est l’effet « COANDA » (augmentation de 30% de la portée).

Illustration sur effet "COANDA

L’effet Coanda est très utile quand on pulse de l’air froid, car il facilite la bonne pénétration du jet dans le local.

La présence d’un obstacle perpendiculaire au jet d’air (poutre, luminaire) peut faire dévier prématurément le jet vers la zone occupée et engendrer un courant d’air désagréable.

Illustration sur effet "COANDA

En conséquence :

  • il faut souffler soit à partir de l’obstacle, soit parallèlement à celui-ci et diviser le local en zones correspondantes,
  • l’éclairage au plafond doit être soit encastré, soit suspendu avec une longueur de suspension de 0,3 m minimum,
  • on tiendra compte de la présence éventuelle de colonnes qui ne pourront se situer dans la trajectoire du jet.

Si le local présente une forme de L

La distance de pénétration ne peut dépasser 4 fois la hauteur de la pièce. Dès lors, pour les locaux forts en longueur (et a fortiori pour les locaux en L), on prévoira une position centrale ou un dédoublement des bouches.

Si l’apport de chaleur est très localisé

Si la source de chaleur est concentrée (équipement, vitrage, …) dans une partie du local, il est judicieux de traiter spécifiquement cette zone.

Par exemple si la production des calories est éloignée de la façade (local profond), le souci d’économie d’investissement qui conduirait au choix d’un système « window unit » entraînerait un inconfort dans la zone à refroidir.

S’il y a présence de zones fumeurs et non-fumeurs

La zone à destination des fumeurs doit être traitée si possible indépendamment de la zone non-fumeurs, notamment en prévoyant l’extraction dans l’espace fumeurs.

En fonction de la centralisation ou non du traitement

Les zones étant définies, il est nécessaire de fixer le mode de traitement de l’air.

Un traitement centralisé et une distribution de l’air par gainage sont envisagés :

  • si les besoins des locaux ou des zones sont similaires, car l’air est distribué à même température dans les différentes pièces,
  • si les locaux ou les zones ont des charges thermiques trop faibles par rapport aux puissances des appareils sur le marché,
  • si le passage des gaines est possible (présence de faux plafond, de local annexe),
  • si les locaux de travail exigent des critères acoustiques sévères.

Dans ces différents cas, un seul appareil de traitement alimentera plusieurs zones via un réseau de gaines de distribution. Cette centralisation entraînera souvent le placement de l’appareil hors des locaux de travail et la possibilité d’une absorption acoustique par le gainage.

Climatiseur avec gaines.

Un traitement décentralisé est envisagé :

  • si les locaux ont des besoins différents (orientation des fenêtres, par exemple),
  • si les parois extérieures sont perçables de manière à faire traverser les liaisons électriques et frigorifiques, ainsi que la tuyauterie d’évacuation des condensats.

Illustration sur traitement décentralisé

On choisit dans ce cas, un traitement local par local au moyen d’appareils indépendants.

Photo sur traitement décentralisé

Un condenseur commun et plusieurs unités intérieures = multi-split.

Cette configuration n’exclut pas l’utilisation d’un système multi split.

Il est alors possible de diminuer la puissance à installer si on peut prendre en considération la non-simultanéité des besoins.


Choix d’ une armoire de climatisation

illustration sur armoire de climatisation

Tout comme les climatiseurs, les armoires de climatisation présentent, par rapport aux systèmes sur boucle d’eau ou d’air, l’avantage d’une très grande flexibilité d’implantation et de gestion. En termes de puissance frigorifique, on peut dépasser parfois la centaine de kW ce qui les différencie des climatiseurs de local. En termes de débit d’air, on atteint alors les 20 000 m³/h. Un des défauts majeurs est le bruit généré par cet équipement, à proximité des occupants…

Les armoires de climatisation se trouvent dans le traitement des salles informatiques, surtout lorsqu’elles constituent la seule demande du bâtiment. Lorsque le bâtiment comporte plusieurs armoires de ce type, il devient intéressant de les raccorder sur une boucle d’eau glacée, équipée d’un système centralisé d’évacuation de la chaleur. La même armoire peut climatiser plusieurs locaux (avec distribution de l’air traité par conduit) mais ces locaux doivent avoir des besoins semblables.

Techniques

Pour connaître plus en détail les caractéristiques technologiques et le fonctionnement des armoire de climatisation, cliquez ici !

Découvrez ces exemples concrets de système de climatisation : le Centre Hospitalier du Bois de l’Abbaye de Seraing et la climatisation et l’hôpital des Fagnes de Chimay.

Choisir un système convectif sur boucle d’eau froide : ventilo-convecteurs ou poutres froides

ventilo-convecteurs ou poutres froidesventilo-convecteurs ou poutres froides


Domaine d’application

Les émetteurs convectifs sur boucle d’eau sont parmi les systèmes de refroidissement les plus fréquemment rencontrés. On rencontre aujourd’hui particulièrement 2 technologies : les ventilo-conveteurs et les poutres froides.

On rencontre le ventilo-convecteur comme émetteur :

  • Dans les installations de climatisation devant assurer à la fois des besoins de chaleur en hiver et des besoins de refroidissement en été; ainsi, on les rencontre classiquement en allège de fenêtre des locaux, pour casser le froid du vitrage en hiver et compenser les apports solaires importants en été dans les bureaux, les commerces, les restaurants, les salles informatiques, les chambres d’hôtel,…
  • Dans les installations de chauffage pour lesquelles on souhaite une relance très rapide; une salle des fêtes, une salle de conférence, … dont le chauffage est intermittent, seront utilement équipés de ventilo-convecteurs.
  • Dans les installations de chauffage irriguées par de l’eau à basse température; les circuits raccordés à une source géothermale, à une pompe à chaleur, à un capteur d’énergie solaire,… sont valorisés par les ventilo-convecteurs qui augmentent la puissance de l’échange.

On rencontre plus particulièrement le ventilo-convecteur « 4 tubes » dans les bâtiments dont les besoins simultanés sont différents d’un local à l’autre : une cafeteria, un local informatique, des bureaux, des salles d’archives,… et le tout sur une même façade !

Le ventilo « 2 tubes – 2 fils » est une solution qui peut à la limite convenir lorsque le bâtiment est neuf et particulièrement bien isolé. Les apports internes (éclairage, bureautique, personnel,…) sont tels que le chauffage ne doit être enclenché qu’en période de gel, par exemple. Mais il sera utile de demander au bureau d’études une évaluation précise des coûts d’exploitation prévus pour le bâtiment…

C’est souvent la solution choisie par les promoteurs : le prix de revient du bâtiment est moindre. Quant à l’exploitation, ce n’est plus leur affaire … !

La possibilité de faire du chaud et du froid avec le même appareil, son prix de revient très raisonnable suite aux faibles surfaces des échangeurs, la facilité de la régulation local par local, l’efficacité du transport thermique par eau, … fait du ventilo-convecteur un best-seller de nos bâtiments climatisés !

Les poutres froides sont, en quelque sorte, des convecteurs de chauffage qui ont été placés au plafond pour faire du froid !

Photo poutres froides.  Photo poutres froides.

Il s’agit de tuyauteries parcourues par de l’eau glacée, serties d’ailettes pour favoriser l’échange convectif. Elles sont placées au plafond ou intégrées dans le faux plafond.

On distingue les poutres « actives » ou « dynamiques » (effet d’induction créé par l’air neuf) des poutres « passives » (convection naturelle uniquement) . Cet échangeur travaille sous un faible écart de température, suite à la condition de non-condensation. Sa puissance frigorifique varie selon la largeur de la poutre, la présence d’induction, l’écart de température,…

Ce produit étant à la mode, la Belgique voit son parc de poutres froides s’agrandir d’année en année, principalement dans les bureaux. Cette technique s’adapte à la construction nouvelle, mais aussi en rénovation grâce au fait de ne pas devoir percer des parois pour le passage de gainages d’air volumineux.

Les éjecto-convecteurs, sorte d’intermédiaire entre les deux précédents, est une technique des années 70 qui n’est plus guère rencontrée aujourd’hui.

Techniques

Pour connaître en détail les caractéristiques technologiques et le fonctionnement des ventilo-convecteurs, cliquez ici !

Techniques

Pour connaître en détail les caractéristiques technologiques et le fonctionnement des éjecto-convecteurs, cliquez ici !

 Techniques

Pour connaître en détail les caractéristiques technologiques et le fonctionnement des poutres-froides, cliquez ici !

Avantages des émetteurs convectifs sur boucle d’eau

Ventilo-convecteurs et poutres froides partagent certains avantages, mais se distinguent pas d’autres.

Dans les deux cas, on bénéficie de :

  • La séparation entre la fonction ventilation des locaux (air neuf hygiénique) et l’apport thermique (apport de froid) est un gage de bonne régulation.
  • La possibilité de faire du chaud et du froid avec le même appareil, et avec une puissance relativement élevée.
  • Le système ne demande que le percement de trous pour le passage de tuyauteries d’eau. En rénovation de bâtiments, on évite ainsi l’encombrement des gainages à air de grandes dimensions… De plus, il est possible de récupérer l’ancienne installation de chauffage.
  • Une efficacité du transport thermique par eau :. Le transport du froid vers les locaux par de l’eau glacée (pompe) est environ dix fois moins énergétique que le transport par de l’air froid (ventilateur).
  • Une facilité de régulation, local par local, et donc un bon confort pour les utilisateurs : une régulation souple puisque réalisée tant via le débit d’eau que le débit d’air. un arrêt possible de l’équipement, localement, un mode de régulation très accessible par les utilisateurs, une liaison possible des différents appareils par bus de communication, ce qui permet une régulation globale de qualité par GTC.
  • Ces systèmes ne font intervenir qu’un seul corps de métier. Le plafond froid combine lui deux compétences : la pose de faux plafonds et la pose de tuyauteries. L’ensemble est plus complexe à gérer, d’autant que l’oeil est très sensible à la planéité des plafonds.

Le ventilo-convecteur a en outre comme avantage :

  • Un prix de revient raisonnable, surtout pour le système 2 tubes-2 fils, suite aux faibles surfaces des échangeurs à débit d’air forcé, et au faible coût de pose, (à noter que le prix de l’appareil dépend peu de la taille de l’échangeur et qu’il est donc possible de le surdimensionner au départ pour tenir compte d’un éventuel accroissement des charges futures).
  • Une facilité de placement : placement aisé en allège lorsque les hauteurs sous plafond ne permettent pas l’intégration d’un faux plafond, la possibilité de placer le ventilo en hauteur et de libérer la place au sol.
  • Une intégration possible d’une prise d’air neuf à l’arrière de l’équipement.
  • Une fiabilité de l’appareil (qui constitue un grand classique de la climatisation) et donc une longue durée de vie; ce n’est pas la Rolls de la clim, … mais une bonne Peugeot, quoi !
  • Dans le cas des systèmes 4 tubes :
    • La souplesse d’utilisation est totale puisque chaque ventilo est autonome : un local peut être refroidi lorsque son voisin est chauffé…
    • La possibilité de récupérer la chaleur extraite dans un local pour la fournir au local en demande.
    • Plus de circuits de zones, de vannes de commutation, … la régulation est plus simple et le service de maintenance ne s’en plaindra pas !

Par contre, la poutre froide a l’avantage de :

  • Le bruit est limité, pour autant que l’air neuf ne soit pas pulsé à trop haute vitesse (attention aux systèmes actifs).
  • La préparation d’eau glacée à une température de 15°C environ permet la sélection d’une machine frigorifique avec un excellent coefficient d’efficacité frigorifique (ou « COP frigorifique »). Cette propriété n’est tout à fait effective que si une machine frigorifique est spécifiquement prévue pour l’alimentation en eau froide des plafonds. Elle est en partie perdue si la même machine frigorifique est utilisée pour préparer l’air neuf déshumidifié …
  • Cette température élevée permet d’imaginer, durant une bonne partie de l’année, un refroidissement direct de l’eau glacée dans un aéro-refroidisseur ou dans une tour de refroidissement en toiture, en by-passant ainsi la machine frigorifique. Cette technique est généralement appelée « free-chilling ». La consommation liée au froid se résume à l’alimentation des pompes de circulation ! La présence d’une source d’eau froide naturelle peut également être mise à profit (rivière, lac, …).
  • L’encombrement au sol est nul !

Désavantages des émetteurs convectifs sur boucle d’eau

En termes d’inconvénients, dans les deux cas :

  • L’hygrométrie n’est pas contrôlée dans les locaux, ce qui peut poser problème d’un air trop sec en hiver.
  • La difficulté d’assurer un confort thermique correct est réelle, notamment sans courants d’air dans la zone de travail,… Une poutre statique génère une « coulée » d’air froid très désagréable sur les personnes situées sous les poutres. Elle ne peut a priori se placer que dans les locaux de grande hauteur. Par contre, la poutre dynamique semble plus confortable, car elle induit un mélange avec l’air ambiant plus élevé et donc une température de l’air plus homogène. Cependant, à l’intersection entre les flux d’air créés par deux poutres voisines parallèles, les deux flux d’air risquent de tomber sur la tête d’un utilisateur ! Le ventilo-convecteur quant à lui peut générer des courants d’air froids.
  • Curieusement, la facilité de fabrication et de pose peut devenir un inconvénient, surtout en marché public où le prix constitue le critère de sélection : la qualité des équipements fournis et la qualité de l’installation sont très variables !

 Le ventilo-convecteur a en outre comme désavantage de :

  • Lorsqu’un appareil de mauvaise qualité est installé (sous-dimensionnement des échangeurs, vitesse élevée du ventilateur, …), le bruit sera l’élément le plus négatif de cet équipement. Le niveau sonore peut être compris entre 35 et 65 dB, selon la qualité constructive, la vitesse du ventilateur et l’âge de l’équipement.
  • Le ventilo dont une prise d’air est réalisée en façade est une solution peu adaptée aux critères de confort actuel ! Ses performances thermique et acoustique sont faibles. Sans oublier le risque de gel…
  • Dans le cas des systèmes 2 tubes : Les besoins doivent être similaires dans les différents locaux d’une même zone; autrement dit, le nombre de zones doit être suffisamment élevé, si on ne souhaite pas de conflits en mi-saison pour le passage du chaud au froid !
  • Dans le cas des systèmes 4 tubes :
    • Le coût d’installation est plus élevé puisque les ventilos contiennent deux échangeurs, les circuits sont dédoublés, de même que le nombre de vannes, de circulateurs,…
    • L’encombrement est également plus important (ventilos plus volumineux et gaines techniques plus larges).
    • Durant toute une partie de l’année, il faut maintenir en fonctionnement les deux réseaux; les pertes énergétiques de ces réseaux ne sont pas négligeables…
  • Dans le cas des systèmes 2 tubes – 2 fils : Le coût d’exploitation est certainement le point noir de ce système…

La poutre froide a, elle, comme désavantages :

  • Le coût d’installation est élevé, du moins en rapport à la puissance frigorique fournie.
  • La puissance frigorifique reste limitée par rapport aux systèmes traditionnels. Ou du moins, placer des poutres dans les plafonds risque de générer des problèmes d’inconfort si bien que la densité maximale admissible reste faible.
  • Dans le cas des poutres dynamiques, il est courant de pulser un débit d’air supérieur à celui strictement nécessaire pour assurer l’air neuf hygiénique dans les locaux. Autrement dit, pour assurer la puissance de refroidissement demandée par le local, l’air primaire pulsé passe bien souvent de 1 renouvellement horaire à deux renouvellements. Le débit d’air total brassé est alors de l’ordre de 5 (3 renouvellements d’air secondaire sont induits). Or c’est de l’air neuf qui est ainsi doublé, ce qui va générer une consommation supplémentaire très élevée durant la vie du bâtiment.
  • La poutre dynamique est très semblable à l‘éjecto-convecteur dans son mode de fonctionnement. On peut donc lui faire les mêmes nombreux reproches. Il est d’ailleurs très curieux que l’éjecto-convecteur, écarté du marché, car ne convenant plus aux besoins de souplesse des locaux, revienne aujourd’hui, sous une forme plus complexe encore en matière de maintenance : dans le plafond ! Le prix d’investissement justifie-t-il de refaire les mêmes erreurs ?
  • L’encrassement des poutres demande un entretien régulier, pas toujours aisé lorsqu’on ne souhaite pas interrompre l’activité des personnes.


Choix du régime d’eau

Dans le cas des poutres froides, le circuit est alimenté au régime aller-retour de 15°C – 17°C (on parle d’eau froide), pour limiter les risques de condensation dans l’émetteur. Dans le cas des ventilo-convecteurs par contre, le régime peut être plus bas (6°C-12°C – on parle d’eau glacée).

Choisir une température d’eau glacée la plus haute possible

Plus la température de l’eau glacée est basse, plus l’inconfort des occupants augmente (température d’air très basse). De plus, la consommation des ventilos-convecteurs augmente :
Car la chaleur latente de l’air captée augmente.
En effet, si la température de la boucle d’eau glacée est inférieure à la température de rosée de l’ambiance et l’humidité de l’air se condenseront inutilement.

Il est donc utile de dimensionner les ventilos sur base d’un régime de température élevé. Par exemple : départ 12°C – retour 16°C, départ 12°C – retour 18°C, …

Dimensionner les installations avec un régime 6°C – 12°C va permettre de sélectionner des échangeurs plus petits (delta T° plus élevé par rapport à l’ambiance), donc moins chers à l’investissement, mais nettement plus coûteux à l’usage.

En fait, lorsque le bureau d’études dimensionne au régime 6°C – 12°C, il voit dans le catalogue du fabricant la part de chaleur latente captée par rapport au sensible.

Exemple : la sélection d’un ventilo-convecteur.

Le catalogue d’un fabricant prévoit :

Régime 6/12°C, ambiance à 27°C et 46 % HR :

Puissance frigorifique totale : 3,40 kW
Puissance frigorifique sensible : 2,35 kW

On constate que 1,05 kW est consacré à la déshumidification de l’air ambiant, soit 31% de la puissance totale. À ce moment, la consommation de l’appareil est majorée de 31 % !

Voyons pour le régime 12/18 (pour le même appareil) :

Régime 12/18°C, ambiance à 27°C et 46 % HR :

Puissance frigorifique totale : 1,58 kW
Puissance frigorifique sensible : 1,58 kW

La déshumidification n’a plus lieu. Mais l’échangeur ne produit plus que 1,58 kW utile… Il faudra augmenter la surface d’échange de 49 % pour atteindre les 2,35 kW du régime 6/12.

On rétorquera que la déshumidification est parfois nécessaire en plein été. Effectivement, mais c’est le rôle du groupe de préparation d’air hygiénique de déshumidifier l’air, avec un contrôle basé sur la sonde de reprise d’air. Le ventilo agit lui sans aucun contrôle. On le voit bien puisque le catalogue part d’une humidité ambiante de 46 %, qui n’est pas à déshumidifier. Le ventilo le fera quand même !

De plus, suite à la condensation sur les ailettes, les poussières adhèrent aux parois et l’échangeur s’encrasse plus rapidement.

> Car le rendement (ou COP) de l’installation frigorifique diminue.

Au régime 7°C – 12°C, la température moyenne de l’évaporateur est plus basse qu’au régime 12° – 17°C. Le compresseur a plus de mal à travailler et le COP de l’installation en est légèrement dégradé. En moyenne, on considère que le COP diminue de 3 % par degré d’abaissement de la température d’évaporation.

Si la machine frigorifique alimente à la fois le réseau d’eau glacée et la batterie froide du caisson de traitement d’air (par exemple, au régime 7°C – 12°C), l’impact est plus faible mais l’intérêt de travailler à haut régime de température reste et l’on essayera d’organiser la mise en série hydraulique des batteries.

> Car il est alors possible de récupérer la chaleur captée par l’eau glacée pour préchauffer l’air neuf hygiénique.

Évaluer

Chiffrer l’investissement et le coût d’exploitation pour le régime à haute température.

Problème des locaux à forte chaleur sensible dégagée

Dans les locaux informatiques, par exemple, on n’arrive pas toujours à travailler avec des ventilos alimentés à haute température (12°C – 17°C). La puissance frigorifique délivrée n’est pas toujours suffisante.

Dans ce cas, il est plus intéressant de créer un réseau spécifique pour l’eau du local informatique. On peut y travailler à température plus basse puisque l’air ne contient pas d’humidité (donc pas de consommation par le latent).

De plus, un tel réseau indépendant est souvent adéquat parce que le travail y est réalisé 24h/24 et alimenté sur secours, ce qui implique une gestion autonome.

Généralement, les besoins d’apport d’air neuf sont faibles, la ventilation se fait par transfert d’air venant des couloirs et extraction dans le local.

Possibilité de free-chilling

Les ventilos-convecteurs alimentés par de l’eau froide à « haute température » (régime 12°C – 17°C) pourront valoriser tout particulièrement la technique de free-chilling qui consiste à by-passer le groupe frigorifique et à refroidir directement l’eau de 17 à 12°C par l’air extérieur.

Concevoir

Pour en savoir plus sur la mise en place d’un free-chilling, cliquez ici !

Puisque cette possibilité existe dès que la température extérieure est inférieure à 10°C, cette technique sera particulièrement intéressante si des besoins de refroidissement des locaux existent en période d’hiver.

C’est l’analyse des besoins du bâtiment en fonction de la température extérieure qui devra le dire.


Combinaison avec la ventilation hygiénique

Trois combinaisons entre les émetteurs convectifs et le réseau de ventilation sont possibles :

Contrôle de température et ventilation totalement séparés

Illustration sur le contrôle de température et ventilation totalement séparés

Dans ce cas, air neuf et contrôle de la température sont complètement séparés. L’air est amené par un réseau de ventilation mécanique optimisant les récupérations d’énergie sur l’air extrait et la valorisation du free cooling.

Éventuellement, l’air neuf est traité en centrale pour fournir un apport de chaleur ou de froid « de base » dans les locaux. L’unité terminale sert alors de correction locale. Attention ! Dans ce type de configuration, il existe un risque de destruction d’énergie entre le traitement centralisé et l’unité terminale.

On rencontre cette configuration dans le cas des poutres froides statiques et de la plupart des installations de ventilo-convecteurs.

L’émetteur combiné à la gaine de pulsion d’air

C’est la configuration typique des poutres froides dynamiques, qui utilisent la pulsion d’air hygiénique pour générer un effet d’induction sur l’échangeur de chaleur.

De même, lorsque le ventilo est placé en faux plafond, on a souvent tendance à insérer l’apport d’air neuf dans le plénum constitué par ce faux plafond. Le ventilo aspire un mélange d’air du local et d’air neuf.

Illustration sur l’émetteur combiné à la gaine de pulsion d'air

Un tel système demande la présence d’un organe autorégulant à l’entrée de chaque ventilo pour ne pas perturber le débit lorsque des ventilos voisins se mettent à l’arrêt.

On peut également se demander ce que devient l’apport d’air neuf dans le local lorsqu’il n’y a pas de demande de chaud ou de froid, c’est-à-dire lorsque le ventilateur du ventilo est mis à l’arrêt. En effet, le ventilateur principal n’a, en principe, pas été dimensionné pour vaincre la résistance des batteries du ventilo.

Pour garantir un apport d’air neuf permanent, le ventilateur du ventilo doit fonctionner en permanence, avec une puissance d’environ 60 W.

Une telle configuration sous-entend un préchauffage central minimum de l’air en hiver, puisqu’il est impensable, notamment pour des raisons de condensation, de faire circuler de l’air à – 10°C au travers du bâtiment.

Dans le cas d’un ventilo-convecteur placé en allège, la tuyauterie d’air neuf peut être intégrée dans le faux plafond du local inférieur, ce qui diminue le coût d’investissement.

On retrouve une telle intégration dans les MTA, Modules de Traitement d’Air.

Le ventilo-convecteur équipé d’une prise d’air neuf directe à l’arrière de l’équipement

C’est au départ une solution peu onéreuse car elle ne demande aucun réseau d’air pour la pulsion. En fait, on est face à une ventilation mécanique dont seule l’extraction est gainée.

Ce système n’entraîne aucun conflit entre apport thermique par le ventilo et apport thermique par l’air neuf (pas de destruction d’énergie), mais il interdit aussi toute gestion URE de la ventilation : récupération de chaleur sur l’air extrait et recyclage sont pratiquement impossible.

illustration sur le ventilo-convecteur équipé d'une prise d'air neuf

Quelques difficultés spécifiques à ce système :

  • Il demande une protection vis-à-vis du risque de gel,
  • Il réalise un pont thermique et acoustique avec l’extérieur,
  • Le débit d’air neuf sera mal contrôlé et fonction notamment de la pression du vent sur la façade, ce qui réduit son utilisation aux bâtiments peu élevés,
  • La filtration de l’air neuf est très grossière et insuffisante dans les milieux urbains pollués (filtre gravimétrique),
  • Si l’on veut respecter les critères de confort en plein hiver, elle impose d’intégrer une humidification de l’air dans l’appareil, ce qui est possible mais coûteux (systèmes ultrasoniques) et implique un réseau d’eau dans les locaux, et donc peut être, à terme, des problèmes d’hygiène.


Choix de la performance énergétique des échangeurs

A puissance thermique égale, en vue d’abaisser les coûts et de remporter le marché, le fabricant proposera un matériel plus compact. La qualité de la batterie en souffrira : ailettes plus fines, entraxes des ailettes diminuées, …

Plusieurs conséquences en résultent :

  • La perte de charge (et donc la consommation permanente du ventilateur) est augmentée.
  • Le by-pass factor est diminué, c’est-à-dire que beaucoup d’air rentrera en contact direct avec les ailettes, ce qui renforcera la condensation de l’humidité contenue dans l’air. Là encore, la consommation du ventilo sera inutilement augmentée.
  • Si la condensation augmente, les poussières adhèrent aux parois et l’échangeur s’encrasse plus rapidement.
  • Enfin, les fines ailettes seront très sensibles aux chocs et la pose et la maintenance en seront moins aisées.

Si la surface de l’échange est diminuée, le fabricant cherchera à augmenter la vitesse de passage de l’air et donc, dans le cas du ventilo-convecteur la consommation du ventilateur.

Un critère de performance peut donc être de comparer la puissance électrique du ventilo-convecteur à la puissance frigorifique sensible annoncée par le fabricant. Ce rapport doit être le plus faible possible. Pour que cette comparaison soit fiable, il faut cependant que les données constructeurs aient été mesurées suivant les mêmes conditions de fonctionnement. Ce sera le cas, si les appareils comparés sont certifiés « Eurovent ».

Il nous semble également qu’en exigeant une haute performance acoustique, l’on puisse obtenir un maximum de garantie d’une qualité globale du ventilo.

Remarque : si le projet est très important (1 000 ventilos, par exemple), il est alors utile de vérifier les performances annoncées par le constructeur auprès du laboratoire de Thermodynamique de l’ULg, par exemple.


Choix en fonction des critères d’exploitation

Il est utile de penser dès le départ :

  • À l’accessibilité des différents organes pour la maintenance (accès aux filtres, accès aux organes de réglage, facilité de démontage des panneaux d’allège, facilité de nettoyage des batteries et des bacs de condensats,…).
  • Au souhait de pouvoir intervenir hors de la présence des occupants (p.ex., localisation en couloir).
  • Pour les ventilo-convecteurs :
    • Aux qualités des parties mobiles : suspension du moteur, résistance à l’échauffement, …
    • A la tenue aux vibrations : usure du supportage, tenue des raccordements hydrauliques, étanchéité des flexibles, …
    • A la résistance des ailettes (déformations, chocs, …).

Choix de la régulation des productions de chaleur et de froid

Deux situations vont se présenter : si le bâtiment est homogène dans ses besoins, un seul réseau d’eau sera prévu et on choisira de l’alimenter en eau chaude en hiver et en eau glacée en été. C’est évidemment une solution très bon marché, mais c’est également la moins souple. Par exemple, la façade Sud est alimentée de la même manière que la façade Nord…

Si on souhaite alimenter différemment chacune des façades, ou même alimenter séparément la salle de réunion, on peut décomposer le bâtiment en différentes zones, et faire fonctionner simultanément le réseau d’eau chaude et le réseau d’eau glacée. Chaque zone utilisera le réseau qui lui convient en fonction des besoins du local.

C’est donc le bureau d’études qui va définir en accord avec l’architecte du degré de souplesse désiré pour les utilisateurs. Le coût de l’installation est directement lié à cette souplesse de fonctionnement.

Une alternative est de passer à une solution 4 tubes.

A signaler les critères énergétiques de qualité

  • l’adaptation possible dans certains cas de la température de départ de la boucle d’eau glacée,
  • la régulation de la température de départ de la boucle d’eau chaude,
  • un basculement froid/chaud (« change over ») avec un battement suffisamment large pour éviter un phénomène de pompage eau chaude/eau glacée et des pertes d’énergie par mélange eau chaude – eau froide…

Il est également possible d’installer une machine frigorifique réversible : lors du changement été/hiver, le sens de circulation du fluide frigorigène s’inverse, et une pompe à chaleur air-eau est créée. Un appoint de chaleur sera nécessaire pour vaincre la pointe hivernale. La rentabilité d’une telle opération doit être étudiée. L’investissement est limité puisque c’est la même machine frigorifique qui devient pompe à chaleur. Toute la difficulté réside dans l’estimation de la performance saisonnière de la PAC et si cette valeur permet de compenser le coût plus important de l’énergie électrique. Si une source froide est possible (lac, rivière, forage, …), cette opération est fort intéressante.

La régulation optimale de la boucle d’eau glacée

La production d’eau glacée est réalisée par la machine frigorifique. On prévoit généralement une distribution à un régime constant du type aller 6° – retour 11°, mais il y a là un potentiel d’énergie à récupérer : dans certains cas l’on peut faire varier ce régime de température et travailler à température plus élevée. La consommation du compresseur en sera diminuée d’autant !

Améliorer

Pour en savoir plus sur l’amélioration de la machine frigorifique, cliquez ici !

À cet équipement frigorifique peut être adjoint un bac à glace, permettant de stocker du froid la nuit au moment où l’électricité est moins chère, pour l’utiliser le jour par la fonte de la glace (ce n’est pas une économie d’énergie mais plutôt une économie financière résultant de la gestion de la pointe quart-horaire).

Améliorer

Pour en savoir plus sura mise en place d’un stockage d’énergie frigorifique, cliquez ici !

La régulation optimale de la boucle d’eau chaude

La production de chaleur se fait, par exemple, par la chaudière du bâtiment. La température de l’eau chaude distribuée est alors modulée en fonction de la température extérieure, via la courbe de chauffe du régulateur.

Lorsque l’occupation du bâtiment permet d’imaginer que des besoins de chaleur et de froid pourront coexister, la production de chaleur peut alors être assurée par une machine frigorifique dont on récupère la chaleur au condenseur.  A ce moment, la chaleur captée dans les locaux à refoidir est récupérée dans les locaux à réchauffer ! L’installation est alors particulièrement économe puisque seule la consommation des compresseurs est à fournir. Une chaudière d’appoint reste nécessaire pour vaincre la pointe hivernale. C’est une possibilité à étudier lorsque les bâtiments sont constitués de larges plateaux : on peut penser qu’il faudra refroidir le cœur pour chauffer les bureaux périphériques.

Choisir un système à Débit de Réfrigérant Variable

Choisir un système à Débit de Réfrigérant Variable

Unités extérieures d’un système à débit de réfrigérant variable.

Pour connaître les caractéristiques technologiques et le fonctionnement d’un système DRV, cliquez ici.


Quand opter pour un système à débit réfrigérant variable ?

Si le bâtiment demande une grande souplesse dans la gestion des besoins de  chaleur et de froid (basculements rapides entre des besoins de chaud et de froid d’un local particulier ou à des besoins simultanés de chaud et de froid dans des locaux proches), un système à Débit de Réfrigérant Variable offre la souplesse nécessaire pour y répondre.

En particulier, le DRV est pertinent :

Lorsque le bâtiment est bien isolé et peu inerte

Ce type de climatisation (chauffage et refroidissement) est très souple dans son fonctionnement. Il semble dès lors bien adapté pour des bâtiments neufs très bien isolés et dont le souhait de modularité a rendu les parois très légères (cloisons intérieures démontables).

En effet, la faible inertie des parois rend ces bâtiments très sensibles aux variations de charges : occupants d’une salle de réunion, rayons de soleil, équipements bureautiques, … Dans ce type de bâtiment, une relance de chauffage est parfois nécessaire au matin, alors que dès midi le refroidissement du bâtiment devra être organisé.

Or ce type d’installation de climatisation peut y répondre avec beaucoup de souplesse.

Une installation de ventilo-convecteurs à 4 tubes permet également une telle souplesse de réponse, mais en amont du ventilo, il faudra prévoir un réseau d’eau glacée et sa machine frigorifique, ainsi qu’un réseau d’eau chaude et sa chaudière. Le danger du 4 tubes est le risque de fonctionnement simultané du chaud et froid qui engendrerait une destruction d’énergie.

Voici l’extrait d’une régulation sur un local de bureau (reconstitution à partir de l’historique enregistré sur le système de régulation d’un système DRV).

Graphique extrait d'une régulation sur un local de bureau.

Lorsque l’on prévoit des demandes de chaud et de froid simultanées

La variante dite « à récupération d’énergie » est particulièrement intéressante si l’on prévoit des apports internes élevés durant l’hiver : salle informatique, locaux intérieurs, … La chaleur extraite pourra être restituée vers les locaux demandeurs en façade. Elle peut être intéressante également en mi-saison (façades d’orientation différentes).

Il faut avoir conscience que cette situation est plus rare qu’on pourrait le penser (essentiellement en mi-saison). Dans l’étude d’un bureau-type de 3 000 m², l’analyse des besoins par simulation a fait apparaître que le potentiel de récupération de chaleur sur la demande de froid avoisine les 20 % de la demande de froid annuelle. C’est un potentiel théorique. Nous ne connaissons pas actuellement le pourcentage réel d’exploitation de ce potentiel par le système. Par contre d’autres applications s’y prêtent très bien :

  • la récupération de chaleur depuis un local informatique ou d’un process industriel,
  • la production d’eau chaude sanitaire par récupération de chaleur des locaux en été,
  • l’alimentation en chaud ou en froid d’une batterie terminale d’un groupe de ventilation

Mais ce potentiel augmenterait fortement si, au lieu de prendre une structure classique rectangulaire (bureaux en façade et couloir central), une structure carrée avait été décidée, ou si des étages enterrés en sous-sol étaient programmés.

Une analyse des besoins thermiques est très utile pour aider à la décision.

Lorsque l’on prévoit de fréquentes modifications de l’organisation interne des locaux

La possibilité de passer instantanément du mode refroidissement au mode chauffage donne au système la même souplesse que celle d’une installation de ventilo-convecteurs 4 tubes.

Plan modification agencement interne des locaux.

Lorsque la rénovation du bâtiment ne permet pas de dégager des espaces techniques importants

Ce système peut s’adapter facilement en rénovation puisque aucun local technique n’est requis (pose en toiture) et que les tuyauteries ont un faible encombrement.

Si le placement d’un faux plafond n’est pas possible, un système en allège ou en plafonnier apparent sera prévu.

De plus, le fractionnement de la puissance totale de l’unité extérieure en multiples modules permet un montage plus aisé, chaque module pouvant être monté par ascenseur, par exemple.

On sera attentif au bruit de l’unité extérieure pour le voisinage, mais le fonctionnement à vitesse variable permet de limiter celui-ci à des valeurs acceptables.

Lorsque l’on a affaire à des bâtiments où l’occupation des locaux n’est pas constante (chambre d’hôtels par exemple).


Les limites des systèmes DRV

On sera attentif aux aspects suivants qui peuvent écarter ce choix :

Le prix semble être encore élevé, surtout en regard à la puissance frigorifique fournie

Comme pour tout produit nouveau sur le marché, le prix d’investissement est proportionnellement élevé. Surtout pour la solution énergétiquement la plus performante, l’installation 3 tubes. Mais il faut envisager le coût global sur 20 ans, exploitation comprise. Nous manquons de chiffres pour faire apparaître la performance à l’exploitation de ce système qui paraît importante. Mais notons que le prix d’un système DRV doit être mis en parallèle au prix d’une technologie 4 tubes (groupe de froid et chaudière). À ce moment-là, on se rend compte de cout est comparable, voir inférieur.

Le travail de conception et de dimensionnement est réduit puisque le constructeur propose son installation « clé sur porte ». Sachant qu’il est limité en puissance frigorifique et calorifique, il aura tendance à dimensionner son équipement en ne surévaluant pas les besoins, ce qui est un gage d’efficacité énergétique à l’exploitation.

Remarque
L’avenir de la tarification électrique devrait être plutôt favorable à ce système. En effet, les fournisseurs d’électricité vont favoriser les systèmes capables de délester au moment de la pointe, capables de réguler le diagramme de charge en pilotant les compresseurs à vitesse variable.

Les utilisateurs de ces systèmes pourraient alors bénéficier d’un tarif préférentiel diminuant le coût d’exploitation. Dans plusieurs pays, des primes à l’investissement sont octroyées, ce qui a permis une évolution plus rapide de ce type d’installation.

L’existence d’un réseau de fluide frigorigène dans l’ensemble du bâtiment

Placement des tuyauteries en faux plafond.

Les fabricants ont réduit la charge de fluide au maximum et les techniques d’aujourd’hui permettent a priori une installation « zéro fuite », mais un risque subsiste. Non pas pour les occupants (les fluides ne sont pas nocifs), mais vis-à-vis d’une réglementation future plus restrictive au niveau environnemental.

Il faut reconnaître qu’une fuite quelque part dans un faux plafond… n’est pas simple à détecter.

Actuellement, le Permis d’Environnement de l’IBGE n’interdit pas cette technique. Mais le Luxembourg qui a, un certain temps interdit cette technique, limite la puissance des installations à 50 kW.

La norme européenne EN 378 limite la concentration du R410A à  440 gr/m³. Elle considère que l’ensemble du gaz d’une installation peut s’échapper dans un local. Pour une quantité totale de réfrigérant de 30 kg contenue dans une installation, aucun local de moins de 68,2 m³ (+/- 27,3 m²) ne pourrait théoriquement donc être chauffé/refroidit par le système DRV sauf si la ventilation permet d’abaisser la concentration sous le seuil maximal en moins de 10 minutes.

Réglementations

Des contrôles d’étanchéités doivent être faits une ou plusieurs fois par an suivant la quantité de gaz de l’installation. Pour plus d’informations : cliquez ici.

Le chauffage en hiver par pompe à chaleur sur l’air extérieur

Il semble que les performances des pompes à chaleur soient en constante évolution (par la technique INVERTER de variation de vitesse du compresseur, par les techniques de dégivrage nettement améliorées, …), mais nous ne disposons pas de valeurs de  SPF hivernal, mesuré sur site réel, par un organisme indépendant. Quel est le COP global de la machine lorsque la température extérieure descend à – 5… – 10 °C ?

D’un point de vue énergétique :

En considérant facteur d’énergie primaire de 2,5 pour l’électricité et un rendement de chaudière de 95 % pcs. Il suffirait d’un SPF de 2,38 pour équilibrer le bilan énergétique, équipements auxiliaires (ventilateurs,…) compris.

D’un point de vue économique :

Avec un système DRV, le courant électrique utilisé est un courant de jour (environ 0,23 €/kWh, pointe comprise). Si le gaz se maintient autour des 0,09 €/kWh pcs. Avec un rendement d’une chaudière gaz condensation de 95 % pcs Il suffirait d’un COP moyen de  2,43 pour équilibrer le coût énergétique, équipements auxiliaires (ventilateurs,…) compris.

Ces valeurs de COP sont probables.

De plus, un fonctionnement au tarif avantageux de nuit est possible pour la relance du bâtiment du matin, ce qui fait l’essentiel des besoins de chauffage.
Les installations DRV sont rarement surdimensionnées, en premiers lieux à cause de la limite en puissance, mais également pour éviter faire tourner les compresseurs en régime trop faible ce qui détériore les rendements. Pour éviter des facteurs de relance trop élevés les constructeurs préconisent de maintenir la température de nuit jusqu’à 17 – 18 °C afin d’éviter des dégivrages trop fréquents en hiver. Or ce procédé augmente entre 17 et 38 % les consommations journalières en hiver.

Le refroidissement en été handicapé par le type de compresseur

Les constructeurs annoncent des EER entre 3,1 à 4,3. Ces valeurs restent dans la moyenne des machines à refroidissement/réchauffement par air, à près tout c’en est une. Malheureusement il n’existe pas de valeur d’efficacité saisonnière (ESEER), ni auprès de fabricants ni auprès d’organisme indépendant. Celle-ci aurait pu nous aider à se faire une idée réelle de l’efficacité.

Ce qui est sûre, c’est qu’énergétiquement parlant, si la récupération d’énergie (chaleur provenant d’un local informatique, transfert de chaleur entre locaux dont les besoins sont forts différents, process industriel nécessitant la production d’eau glacée,…) est impossible ou faible, il faudrait mieux vous tourner vers une autre technologie.

Conclusion

On ne peut aujourd’hui que tirer une conclusion provisoire, en disant que le système DRV présente des avantages indéniables, qu’il semble d’une bonne performance énergétique grâce à une électronique intelligente et qu’il s’adapte tout particulièrement aux petites et moyennes surfaces à traiter.


Choisir le type de système DRV

En dehors des spécificités technologiques des différentes marques, les choix principaux sont :

Le choix de l’existence d’une récupération entre locaux

L’installation peut être du type « froid seul » : c’est le choix qui sera fait lorsque l’installation vient en complément d’une installation de chauffage existante (rénovation d’un ancien bâtiment). A éviter sous peine de risque de destruction d’énergie.

L’installation peut être du type « froid seul » ou « chaud seul » : les unités intérieures produisent alors toutes en même temps, soit du froid, soit du chaud. Ce système demande que les besoins du bâtiment soient assez homogènes et qu’une plage neutre (plage où la température fluctue sans intervention) de 21 à 25 °C par exemple, soit acceptée par chacun. Ce ne sera donc pas un système adéquat pour un immeuble comportant des zones intérieures (à refroidir toute l’année) ou des façades fortement vitrées, orientées Est-Ouest. Sauf si la zone intérieure du bâtiment est importante, au point qu’un circuit indépendant (avec sa propre unité extérieure) se justifie rien que pour cette zone centrale.

L’installation peut travailler en mode « froid » et en mode « chaud », simultanément : les unités intérieures peuvent assurer du chauffage dans certains locaux et du refroidissement dans d’autres. Le confort est donc nettement amélioré puisque l’on peut répondre à des besoins différents dans chaque local.
De plus, ce système permet la récupération d’énergie dans la mesure où il est capable de transférer la chaleur puisée dans les locaux à refroidir vers les locaux à réchauffer. C’est l’existence d’un réseau de fluide frigorigène, la performance des nouveaux compresseurs à vitesse variable et une électronique sophistiquée qui permet cet avantage appréciable. C’est le système à choisir lorsque l’analyse des besoins prévoit des superpositions importantes de demandes de chaleur et de froid simultanées.

Mais un supplément de prix de l’ordre de 30 à 50 % sera demandé par rapport au mode « froid ou chaud ».

 Études de cas

Les bureaux de Franki Geotechnics.


Les paramètres de prédimensionnement

Pour réaliser un appel d’offres permettant de comparer les solutions entre elles, certains éléments doivent être précisés dans le dossier.

Un découpage des zones lié au choix du système 2 tubes ou 3 tubes

En 2 tubes :

Si les locaux sont répartis sur des façades différentes, où si certaines pièces ont des besoins forts différents des autres, il est à première vue adéquat de diviser le bâtiment en plusieurs zones, une pour chaque façade par exemple. On peut dire que 2 installations de climatisation sont alors installées dans le bâtiment, puisque les 2 unités travailleront en parallèle.

Illustration division du bâtiment en plusieurs zones.

En 3 tubes :

Pour optimiser la récupération de chaleur, il faut privilégier une seule installation pour l’ensemble du bâtiment. Si cela n’est pas possible, à cause de la limite de puissance par exemple, il peut être utile de découper le bâtiment horizontalement. Si on intègre dans la même zone des locaux de façades différentes, un transfert d’énergie peut avoir lieu à l’intérieur du bâtiment, en mi-saison.

Il est donc indispensable d’évaluer si des demandes de chaud sont prévues simultanément à des demandes de froid. Tout particulièrement, si un local informatique est présent, il est opportun de l’intégrer dans une zone où les autres locaux sont majoritairement en demande de chauffage.

Illustration division du bâtiment en plusieurs zones.

Une évaluation réaliste des besoins de refroidissement

Un dimensionnement très soigné doit avoir lieu. En effet, ce type d’installation travaille avec un mauvais rendement à bas régime.

Le compresseur tourne à vitesse variable en fonction de la demande. Mais une limite inférieure de 20 Hz ne peut pas être franchie. À ce moment, le compresseur développe 17 % de sa puissance nominale. Pour toute puissance inférieure, il risque d’adopter un régime de fonctionnement entrainant la destruction d’énergie. Le rendement en sera fortement dégradé.

Il faut donc éviter que l’installation soit sur-dimensionnée, c’est-à-dire, dimensionnée pour répondre à des conditions de canicule ou de froid extrême, avec des coefficients de sécurité supplémentaires, … entraînant de facto un fonctionnement fréquent à bas régime.

Plus positivement, on adoptera un facteur de foisonnement réaliste sur l’utilisation simultanée des équipements.

En quelque sorte, l’installation  n’a pas la possibilité de profiter de l’inertie d’un ballon tampon…

Une analyse de la technologie la plus adéquate

Sans entrer dans trop de détails techniques, les systèmes mis sur le marché varient d’un fabricant à l’autre. Tout particulièrement, le réseau de distribution des fluides qui est plus en « râteau » chez l’un et en « botte » chez l’autre. Certains systèmes seront plus vite limités en longueur de tuyauteries après le boîtier de répartition.

Ces nuances peuvent générer des coûts très différents lors de la mise en œuvre (nombre de boîtiers de distribution, facilité de passage de tubes au niveau des poutres, …).

Il sera donc utile de préciser la disposition des locaux, leur usage, … et l’accès prévu pour les techniques (gaines techniques, trémies, réservation dans les poutres…). Si un seul réseau peut être prévu en faux plafond pour alimenter des cassettes en dessous et des unités intérieures en allège pour l’étage du dessus, le coût d’installation peut être réduit.

À la limite, surtout en 2 tubes, il faudra écarter l’un ou l’autre local de l’ensemble parce qu’il a un comportement trop différent du restant des locaux à traiter.

Comparer ce qui est comparable

Comparer deux systèmes de climatisation n’est pas toujours aisé. Un système DRV chauffe et refroidit, il est installé avec sa propre régulation, il ne demande ni chaufferie ni cheminée…

Exemples :

  • Un local de réunion peut être traité spécifiquement avec un système d’apport d’air neuf autonome (fonctionnement en free cooling).
  • La partie self 24h/24 d’une agence bancaire sera traitée distinctement des bureaux.

Qu’en est-il de la garantie ? Certains constructeurs proposent 5 ans de garantie omnium sur l’ensemble de la solution.

L’installateur est-il agréé par le constructeur ?

La location d’une grue pour poser les équipements frigorifiques en toiture est-elle présente dans l’offre ?

Dans l’appel d’offres, il faudra en tenir compte pour pouvoir ensuite comparer plus facilement des solutions différentes.


Check-list qualité

Voici quelques critères de qualité à vérifier au niveau du cahier des charges :

  • L’étanchéité du réseau est déterminante et l’objectif « zéro fuite » doit être poursuivi. Les soudures seront réalisées sous atmosphère d’azote (permet d’éviter la formation de calamine) lors du brasage  Lors de la réception, l’installation sera testée sous minimum 30 bars d’azote durant 48 heures minimum, afin de détecter les fuites possibles du réseau.
  • Le cuivre doit être de qualité, de type frigorifique.
  • Une distribution d’air et de chaleur de qualité dans les locaux suppose un nombre suffisant de bouches ou de cassettes. Or l’installateur voudra réduire son prix en limitant le nombre de points de distribution dans les locaux. Pour que le client ne se retrouve pas avec une seule cassette très puissante au centre de son bureau paysager, le cahier des charges devra préciser le niveau de qualité à atteindre en matière de vitesse résiduelle d’air à la limite de la zone d’occupation, ou directement en matière de nombre d’appareils à prévoir.
    En termes de prix,  placer une cassette de 5 kW à la place d’une de 2 kW dans un bureau paysager entraine un supplément de  quelques centaines d’euros. Ajouter une cassette supplémentaire dans un local génère un coût de  plusieurs milliers d’euros… environ. Mettons-nous à la place de celui qui veut obtenir le marché…!
    Il ne faut ni air stagnant dans un coin du local, ni turbulence à la jonction de 2 flux d’air venant d’appareils différents. Pour s’assurer du bon brassage de l’air, on demandera un spectre de distribution de l’air garanti.
    La distribution prévue permet-elle une modification ultérieure éventuelle des cloisons ? (flexibilité).
  • Il faut vérifier la solution proposée pour que de l’air froid ne soit pas pulsé sur les occupants lors de la période de dégivrage de la pompe à chaleur. Tout particulièrement lorsqu’une arrivée d’air neuf est intégrée à l’entrée des unités intérieures…
  • C’est souvent l’intersaison qui pose problème… Lorsqu’une solution « froid ou chaud » est prévue, le « change over » (passage d’un mode à l’autre) devra être organisé. Si le bâtiment est assez inerte et homogène, un passage « été – hiver » manuel suffira. Dans le cas contraire, il est possible qu’il faille majoritairement chauffer au matin et refroidir l’après-midi. Et un change over automatique, décidé par le système en fonction de la demande majoritaire, est utile. Tous les systèmes ne le proposent pas. À noter que certains systèmes en mode « froid ou chaud » peuvent travailler alternativement en froid et puis en chaud, afin de satisfaire une fois l’un, une fois l’autre !
  • Les cassettes à intégrer dans le faux plafond sont-elles équipées d’origine de pompes pour remonter les condensats (les pompes ajoutées par après sont souvent beaucoup plus bruyantes) ?
  • Une possibilité de variante URE est-elle intégrée au cahier des charges ?
  • Le fluide frigorigène prévoit-il les exigences réglementaires futures ?
  • En cas d’appareil en allège, un manchon de raccord entre l’unité intérieure et la grille de l’habillage est-il prévu (pour éviter le court-circuitage partiel de l’air pulsé) ?

La hauteur de l’unité intérieure ne correspond pas toujours à la hauteur prévue pour l’habillage.

Choisir un système de refroidissement tout air

Choisir un système de refroidissement tout air


Quand opter pour un système tout air ?

Bien que l’air ne soit pas le mode de transfert de chaleur le plus efficace (faible capacité calorifique, faible efficacité des ventilateurs), il peut s’avérer intéressant de choisir un refroidissement par air lorsque les débits thermiques nécessaires sont proches de ceux requis pour la ventilation hygiénique. Cela peut notamment être le cas dans des salles de réunion, grands bureaux paysagers, salle d’opération ou de spectacle par exemple. Ou encore, lorsque les besoins de refroidissement du bâtiment sont faibles et bien maitrisés (par des superficies vitrées réduites, des protections solaires extérieures,…). On fait alors l’économie d’un réseau d’eau chaude et/ou glacée et des émetteurs locaux.

Choix de la configuration du réseau

Deux situations sont possibles :

  • soit les besoins des locaux sont relativement constants dans le temps, auquel cas un système à débit d’air constant sera retenu ;
  • soit ces besoins sont variables et le choix d’un système VAV sera fait.

Différents systèmes à débit d’air constant sont envisageables :

Lorsque les locaux présentent des occupations et des charges thermiques variables, il reste à affiner le choix parmi les différentes technologies de VAV : découpage du bâtiment en zones homogènes, modulation du débit par local ou groupe de locaux, choix du niveau de pression.

Schéma VAV : découpage du bâtiment en zones homogènes.

Choix du débit d’air constant « monogaine » ou « double-gaines » (dual duct)

Si une seule zone est à traiter, ce choix ne se pose pas : la régulation du caisson de traitement d’air permettra de s’adapter aux variations de la demande. C’est ce que l’on fera pour une salle de conférences, pour une salle d’opération dans un hôpital, pour un grand hall, …

Par contre, si plusieurs zones sont à traiter, le système doit pouvoir s’adapter à des besoins différents : locaux situés sur des façades différentes, salles de réunion différemment utilisées,…

Comment, à partir d’un même caisson de traitement d’air, produire des températures différentes ? C’est là que le choix existe entre 2 systèmes :

Soit un système mono-gaine, multi-zones

Schéma système mono-gaine, multi-zones.

Mais ce système risque fort d’être destructeur d’énergie (préparation d’air chaud, refroidi par la suite…). Aussi, il ne peut être imaginé en pratique que sur base d’une centrale préparant de l’air frais (16°, par exemple) et les unités terminales apportent le complément uniquement via une batterie de chauffe terminale.

Mais comment gérer les besoins variables en été ? Le local exposé au soleil souhaitera un air plus froid que celui qui est au Nord. On risque donc de refroidir l’air en centrale et de le réchauffer à l’entrée des locaux au Nord…

On constate ici que la centralisation du traitement génère un manque de souplesse total. On préférera se diriger soit vers une installation « tout air » à débit d’air variable, soit vers une solution « air-eau ».

Soit un système double gaines, dit « dual duct »

Deux réseaux parallèles : un réseau d’air chaud et un réseau d’air froid. Une sonde de température ambiante commande le réglage d’une boîte de mélange. Ce système est contraignant à plusieurs niveaux : financièrement (investissement), énergétiquement (risque de « détruire » de l’énergie à l’exploitation) et spatialement (encombrement dans les faux plafonds).

Schéma système double gaines, dit "dual duct".

On ne l’installe plus aujourd’hui car il est très énergivore (on détruit de l’énergie pour obtenir la température souhaitée). On tente plutôt de le démanteler dans les anciens bâtiments où il est installé.

Conclusions

Il nous semble que le système « tout air – à débit constant » ne peut raisonnablement s’appliquer aujourd’hui que pour le traitement d’une seule zone, c’est-à-dire un ou plusieurs locaux homogènes, commandés par une seule sonde d’ambiance commune. C’est là une limitation très importante, qui explique le succès des systèmes à volume d’air variable, beaucoup plus souples que ceux à débit constant.

 Schéma systèmes à volume d’air variable.

Cas particulier pour les locaux occupés de façon sporadique

En présence de locaux à chauffage très intermittent (comme des salles de réunion, de spectacles,…), une variante avec système de chauffage complémentaire par radiateurs permet d’assurer un chauffage de base entre 12 et 15°C en période de non-occupation, et une mise en confort très rapide dès l’arrivée des personnes (ou par horloge).

Ce système est économique et supprime la surchauffe des locaux en période de forte occupation grâce aux possibilités de ventilation et de rafraîchissement, et à la faible charge des parois.

Systèmes VAV : Un découpage du bâtiment en zones homogènes

Puisque la température de pulsion de l’air au départ d’un groupe de préparation sera uniforme pour l’ensemble de la zone traitée, le bâtiment sera découpé en zones homogènes pour lesquelles on souhaite avoir une modulation du débit distincte. Par exemple, la façade Nord, la façade Sud et l’ensemble des locaux intérieurs peuvent constituer 3 zones avec un groupe distinct et une température de départ distincte (une zone intérieure demande toujours du refroidissement alors que la zone Nord demande majoritairement du chauffage).

La taille de l’installation impose parfois le découpage également : les débits d’air sont couramment de 6 (jusqu’à 10) renouvellements du volume des locaux par heure ! L’encombrement impose parfois un découpage en zones distinctes.

Mais le dimensionnement de la centrale profite lui au contraire de l’effet de foisonnement entre locaux dont les besoins sont différents : si façade Est et façade Ouest sont sur une même centrale, il ne faudra jamais cumuler les 2 puissances puisque le soleil ne peut être des 2 côtés simultanément.

Exemple.

Un regroupement des salles de réunion sur un même groupe de préparation permet de valoriser les avantages du VAV. Chaque salle se greffera sur le réseau via une bouche de pulsion commandée par détecteur de présence. Le ventilateur du groupe travaillera à vitesse variable pour maintenir une pression constante dans le réseau. Le groupe de préparation sera dimensionné avec un facteur de simultanéité (défini de commun accord avec le Maître d’Ouvrage) pour tenir compte du fait que toutes les salles ne seront pas occupées en même temps.

La régulation du débit peut être on/off en fonction qu’il y ait présence ou non, ou modulée en fonction du contrôle de la température du local, ce qui est énergétiquement préférable. Une sonde CO2 sur la reprise permettra d’adapter la quantité d’air neuf aux besoins.

À l’intérieur d’une zone, chaque local peut avoir sa bouche modulante et donc un débit modulé en fonction des besoins. La régulation est alors très souple,… mais l’installation est chère !

À noter l’inconvénient de ce type d’installation à air (par rapport au système air-eau) : le manque de souplesse dans la modification future du réseau (démontage des faux plafonds). On a dès lors intérêt à prévoir de nombreuses bouches, afin d’anticiper un découpage différent des locaux dans le futur (ajout d’une cloison).

Pour mémoire : le choix du nombre de conduits

Il est théoriquement possible de prévoir un système VAV à deux conduits : une centrale prépare simultanément de l’air froid et de l’air chaud, les deux fluides étant distribués en parallèle et mélangés dans une boîte de détente à l’entrée de chaque zone.

Il s’agit ici d’un système hyper flexible, pouvant répondre avec souplesse à des besoins variables et opposés.

  • Dans la version « usine », un premier clapet motorisé fait passer soit l’air chaud, soit l’air froid. Un second module ensuite le débit.
  • Dans la « full options », la boîte de réglage est équipée de deux volets de réglage progressif. Une zone neutre sépare les plages d’ouverture des conduits d’air chaud et d’air froid.

En principe, il n’existe aucun mélange possible entre chaud et froid au niveau du diffuseur, même si les deux conduits cohabitent toute l’année dans les gaines techniques…

Le coût d’investissement est vraiment très important. On cite parfois comme application les grands navires de plaisance : pour le confort des passagers, on souhaite leur fournir une souplesse totale de régulation, même lorsque le bateau vire de bord et que la face ensoleillée change ainsi brutalement… !

Aujourd’hui, pour atteindre un tel objectif de confort, on choisira plutôt une installation de ventilos-convecteurs à 4 tubes ou une installation à fluide réfrigérant variable, très souples également lorsque les besoins fluctuent fortement.

Seule application éventuelle : la réhabilitation d’un système classique à deux conduits à débit constant en système à débit variable.

Améliorer

Pour en savoir plus sur l’amélioration d’une climatisation « tout air » à débit constant existante, cliquez ici !

Choix du système de chauffage associé

Les systèmes mono gaine sans réchauffage terminal

On ne pulse que de l’air froid en été (entre 12 et 18°C) et de l’air chaud en hiver (entre 25 et 40°C). L’air est préparé en centrale et, dans le cas d’une installation VAV, chaque local régule le débit d’air juste nécessaire en fonction de la température souhaitée, avec un débit minimum ajusté :

  • soit au débit d’air hygiénique,
  • soit à un débit plus élevé parce qu’une bonne distribution de l’air dans le local l’oblige,
  • soit à un débit plus élevé parce que les besoins de chauffage apporté par l’air l’obligent (si régulation à une sortie).

Le plus simple est d’avoir une consigne fixe pour chaque saison et le passage d’une consigne à l’autre est réalisé par un thermostat extérieur : il y a basculement pour une température extérieure de + 15°C, par exemple. Mais cette régulation peut être affinée.

Le système est très économique (surtout à l’exploitation), notamment parce qu’on ne fait jamais du chaud et du froid simultanément. Mais il ne convient que pour les locaux dont les charges thermiques sont homogènes. Il sera par exemple impossible de refroidir un local intérieur et de réchauffer simultanément un local périphérique traité par le même groupe …

Les systèmes monogaine avec réchauffage terminal

Cette variante s’applique aux bâtiments qui comportent des zones dont les besoins sont différents. On pense tout particulièrement aux grands immeubles de bureaux dont les zones centrales ont en permanence des besoins d’évacuation de la chaleur (charge stable) et dont les zones périphériques (locaux en façades) ont des besoins de chauffage en hiver, par grands froids (charge variable).

L’idée est alors de prévoir un circuit d’air froid pour tous les locaux, à débit variable, complété par des batteries de chauffe pour les locaux périphériques

En fait, il s’agit d’un « vrai » VAV pour la zone interne (alimentée en froid toute l’année), et d’un VAV complété d’une variation de température pour les locaux périphériques. On comprend qu’une telle installation soit très souple à l’usage !
Trois principes sont possibles :

1. Soit l’apport de chaleur est réalisé par des corps de chauffe traditionnels (radiateurs, convecteurs)

Généralement, ces corps de chauffe sont placés en périphérie du bâtiment, le long des façades, pour vaincre les déperditions par les parois. Le système VAV refroidit le cœur du bâtiment en hiver, refroidit tout le bâtiment en été et assure la ventilation hygiénique toute l’année. On sera attentif à ne pas « casser de l’énergie » par un fonctionnement simultané du froid et du chaud dans les mêmes locaux. Ainsi, une plage neutre doit être réservée entre chauffage et refroidissement (par exemple, les vannes thermostatiques de radiateurs sont réglées sur 21°C et l’ouverture du débit d’air froid ne commence qu’à 23°C). en-dessous de 23°C, la boîte VAV fonctionne sur son débit minimum préréglé.

C’est la solution sans doute la plus économique à l’investissement et à l’exploitation. Problème : bloquer les vannes thermostatiques sur 21°C n’est pas toujours bien accepté par l’occupant…

À défaut d’un recyclage de l’air (pour des raisons hygiéniques ou parce que les conduits ne sont pas situés l’un près de l’autre, un récupérateur de chaleur peut être prévu entre conduits d’extraction et de pulsion.

2. Soit les batteries de chauffe sont placées en série sur la boîte VAV

Une régulation spécifique est nécessaire :

Par exemple, si la sonde d’ambiance détecte une température inférieure à 21°C, la vanne de chaud est ouverte à 100 % et le débit d’air est réduit au seuil minimal préréglé. Lorsque la température intérieure approche de 23°, la vanne chaud se ferme progressivement. Lorsque la température dépasse 23°, la vanne chaud est fermée et le débit d’air frais augmente progressivement jusqu’à atteindre le débit maximal pour la charge maximale et maintenir 24°C dans l’ambiance. Ici encore, l’insertion d’une zone neutre entre chaud et froid sera énergétiquement obligatoire.

On perçoit le défaut de ce système : le chauffage est assuré sous un débit d’air minimal… La puissance de chauffe ne pourra être très élevée ! et l’on risque d’augmenter en permanence le débit d’air minimum préréglé uniquement pour des besoins de chauffage.

Cela montre la limite du VAV lorsque l’on veut aussi traiter des locaux ayant des besoins de chauffage.

En pratique, la batterie de chauffe est souvent intégrée dans la boîte de détente. Elle est alimentée en eau chaude, ou remplacée par une résistance électrique (dont la consommation doit être soigneusement étudiée vu le coût du kWh électrique).

Photo batterie de chauffe.

Une gestion de ces résistances électriques est utile :

  • démarrage en Heures Creuses (fin de nuit) lors de la relance,
  • délestage possible de certaines résistances lors de la pointe de puissance quart-horaire.

Pour un bon fonctionnement de la boîte VAV, une gestion de la pression du réseau en amont est nécessaire.

À noter que la présence de batteries de chauffe va augmenter les pertes de charge à vaincre par le ventilateur, hiver (admettons…) comme été (là, c’est plus dommage puisque cette batterie est à l’arrêt !). Mais on parle ici d’une perte de charge de 40 Pa au débit max, soit 10 Pa au débit moitié, ce qui reste faible à comparer au 1 500 PA de l’ensemble du réseau.

A nouveau, à défaut d’un recyclage de l’air, un récupérateur de chaleur peut être prévu entre conduits d’extraction et de pulsion.

3. Soit les batteries sont placées en parallèle par rapport au local

Le schéma suivant est théoriquement possible :

Schéma batteries sont placées en parallèle par rapport au local.

La régulation est complétée par l’enclenchement du ventilateur d’air recyclé lorsque le chauffage est enclenché :

Chaque batterie chaude voit son débit modulé en fonction du thermostat d’ambiance de la zone qu’elle alimente.
Il s’agit d’une solution qui présente plusieurs avantages par rapport à la solution « série »

  • Le débit de pulsion d’air chaud est tout à fait indépendant de l’installation. Par rapport à la solution précédente, un tel fonctionnement en « circuit fermé » permet d’augmenter la puissance de chauffe puisque le débit d’air est plus élevé.
  • En période de relance (avant l’arrivée des occupants), le chauffage peut fonctionner en circuit fermé, sans apport d’air frais extérieur.
  • En été, il n’y a pas de perte de charges supplémentaires générées par le passage de l’air dans la batterie de chauffe.

Mais cette solution est très chère et sophistiquée. On peut penser alors à une solution plus simple :

  • pulsion d’un débit d’air hygiénique constant,
  • complété par des unités terminales à recyclage, équipées de batteries de chaud et de froid dans les zones périphériques et d’une batterie de froid dans la zone centrale.

Mais c’est alors une installation « air-eau » avec ventilo-convecteurs ou MTA (Module de Traitement d’Air) !


Dispositifs d’économie d’énergie

Choix du régime de pression

L’air peut être distribué à des vitesses variant de 5 à 15 m/s.
À débit égal, doubler la vitesse de l’air dans les gaines permet de diminuer par deux la section nécessaire. Le bureau d’études cherchera donc parfois à augmenter la vitesse pour réduire l’encombrement des conduits.  Mais un air pulsé à haute vitesse circule à haute pression. Il doit dès lors être « détendu » à l’entrée du local. C’est le rôle de la boîte de détente.

Un autre inconvénient des hautes vitesses est que les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, variant de 500 à 1 500 Pa.

De plus, à ces hautes pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Aussi, pour différentes raisons, on a tout intérêt à limiter les vitesses et donc en tout cas à ne pas dépasser une perte de charge de 1 000 Pa pour le dimensionnement du réseau.

À noter que si autrefois les bouches à débit variable exigeaient une pression minimale élevée pour un bon fonctionnement, ce critère n’est pratiquement plus d’application aujourd’hui.

>  pour un réseau à basse vitesse (à basse pression) :

  • la vitesse de déplacement de l’air varie entre 2 m/s (au droit des bouches) et 7 m/s (au départ de la conduite principale).
  • le groupe de reprise d’air (= GE = Groupe d’Extraction) est dimensionné entre 150 et 300 Pa, ce qui entraîne une puissance de 250 à 500 W au moteur, pour 1 m³/s.
  • le groupe de pulsion d’air (= GP = Groupe de Pulsion) est dimensionné entre 450 et 600 Pa, ce qui entraîne une puissance de 750 à 1 000 W au moteur, pour 1 m³/s.

  >  pour un réseau à haute vitesse (à haute pression) :

  • le groupe de pulsion d’air (= GP = Groupe de Pulsion) est dimensionné entre 1 200 et 2 400 Pa, ce qui entraîne une puissance de 1 600 à 3 000 W au moteur, pour 1 m³/s.

Il est généralement utile d’équiper les ventilateurs d’un moteur à deux vitesses afin de réduire la puissance motrice en situation d’occupation réduite.

Exemple.

Chiffrons la différence de consommation entre les réseaux Basse et Haute pression. En moyenne, le réseau Haute pression sera dimensionné sur une perte de charge globale supérieure de 1 000 Pa par rapport au réseau Basse pression (pulsion + extraction). Le supplément de puissance du ventilateur est alors de :

Puissance = Débit x Hauteur manométrique / Rendement

Soit un supplément minimum de 1 300 Watts pour un débit de 1 m³/s transporté, où 0,36 W par m³/h transporté.

Imaginons un groupe de 10 000 m³/h. La consommation supplémentaire annuelle (sur base de 0,1 €/kWh, pointe comprise) sera de :

Suppl. consommation = (10 000 x 0,36 x 24 x 365 / 1 000 [Wh/kWh]) x 0,1 [€/kWh] = 3154 €/an !

Soit près de 100 000 € pour deux ventilateurs en 30 ans de fonctionnement…

Si l’installation ne tourne qu’aux heures de bureau (50 h/semaine), le supplément est ramené à 98 €/an.

Pour l’utilisateur du bâtiment, il y a sûrement une manière plus efficace de dépenser cet argent…

Remarque : à titre d’information, les cliniques St Luc de Bruxelles traitent près de 300 000 m³/h… Le débit de 10 000 m³/h dont il est question ici représente donc l’équivalent du service des urgences…

Si le régime Haute Pression est malgré tout choisi, il est clair qu’il ne faudrait jamais dépasser les 15 m/s, pour limiter la consommation et aussi le bruit produit dans les boîtes de détente.

Récupération de chaleur

Lorsque l’on choisit une installation à débit d’air constant, le coût du traitement d’air d’une installation « tout air neuf » est hors de prix.

La récupération de chaleur sur l’air extrait

Une quantité importante d’énergie peut être récupérée en plaçant un récupérateur de chaleur sur l’air extrait. Le rendement des échangeurs de chaleur à plaque atteint aujourd’hui facilement 80 à 90%.

Différentes technologies de récupération de chaleur sont envisageables : le croisement des flux d’air neuf et extraits dans un échangeur à plaque ou à roue, ou l’échange indirect par l’intermédiaire de batteries et d’une boucle d’eau.

Schéma récupération de chaleur sur l'air extrait.

Le recyclage de l’air extrait

Une autre possibilité de récupération d’énergie est le recyclage d’air extrait.

Schéma recyclage de l'air extrait.

Des registres motorisés modulent les débits d’air recyclé et d’air rejeté. Le débit d’air neuf ne peut cependant jamais descendre sous le débit minimal d’air neuf hygiénique en période d’occupation.

L’efficacité de ce système est dû à plusieurs faits :

  • Dans cette technique, il est possible de moduler le débit d’air neuf en fonction de la présence effective des occupants du ou des locaux. Par exemple, une sonde CO2 placée dans le conduit d’air extrait peut moduler l’ouverture du registre d’air neuf. D’où une fameuse économie !
  • Parmi les systèmes de récupération d’énergie, le recyclage partiel de l’air extrait permet de valoriser aussi bien l’énergie sensible que l’énergie latente (chaleur et humidité).
  • La technique permet de valoriser l’air frais extérieur durant une bonne partie de l’année : la demande de refroidissement des locaux ayant souvent lieu lorsque l’air extérieur est plus froid que l’ambiance, il sera possible d’en profiter par un débit d’air neuf plus élevé, voire apportant les 100 % du débit. Et si l’air neuf est trop froid, la température sera relevée par le mélange avec de l’air chaud extrait des locaux.

Recyclage et récupérateur de de chaleur ne sont bien entendu pas incompatibles. Dans un réseau dimensionnée largement au-delà des besoins d’air hygiénique, on combinera souvent les deux, pour pouvoir à la fois moduler la quantité d’air neuf et maximiser la récupération d’énergie. Pour maximiser le bénéfice énergétique, l’air neuf sera d’abord réchauffé par récupération de chaleur avant d’être mélangé à l’air recyclé.

Dans tous les cas, la modulation du recyclage et de la récupération de chaleur doit être réfléchie pour éviter les surchauffes en mi-saison.

Pour en savoir plus :

 Études de cas 

Recyclage ou tout air neuf pour une salle d’opération.

Calculs

Dans les outils de calcul – rubrique « Climatisation » – vous trouverez un outil permettant de calculer les caractéristiques d’un mélange d’air

Free cooling

Cette technique vise à valoriser l’air frais extérieur lorsque la demande de refroidissement a lieu alors que l’air extérieur est plus froid que l’ambiance. Dans ces conditions, il sera possible d’en profiter en engageant un débit d’air neuf plus élevé, voire apportant les 100 % du débit. Et si l’air neuf est trop froid, la température sera relevée par récupération de chaleur ou par recyclage de l’air chaud extrait des locaux.

Une installation VAV est particulièrement bien adaptée pour une utilisation optimale des énergies gratuites par free cooling. Cette pratique s’applique également dans le cas de systèmes à débit constant.

  • En hiver, de l’air frais extérieur peut alimenter les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée.

Mais il faut être attentif à plusieurs problèmes :

Ne pas casser du froid par du chaud !

Si la zone centrale demande du froid alors que la zone périphérique souhaite de la chaleur, on utilisera  de l’air extérieur « gratuit » en centrale, préparé pour les besoins de la zone intérieure (à 16°C par exemple), et cet air sera ensuite post chauffé dans les zones périphériques.

En aucun cas, il ne faudrait créer du froid par une machine frigorifique et simultanément alimenter les batteries de chauffe par le réseau de chauffage. C’est d’ailleurs une solution interdite par la réglementation thermique française. À la limite on pourrait imaginer de récupérer la chaleur du condenseur de la machine frigorifique. Mais un tel système serait inadapté ici.

Privilégier le recyclage partiel de l’air extrait des locaux

En hiver, on souhaite profiter de l’air extérieur pour alimenter le réseau d’air froid, mais 65 % du temps, l’air extérieur est inférieur à 14°C et doit donc être réchauffé avant d’être pulsé dans les locaux. Il serait dommage, alors que l’on veut économiser le groupe frigorifique, de tout reperdre en chauffage…

Un recyclage partiel de l’air extrait est ici tout indiqué. Ainsi, l’air extrait des locaux (à 24°) sera mélangé à l’air neuf extérieur pour obtenir la température juste souhaitée, sans surcoût énergétique. Par exemple :

50 % d’air extrait à 24°C + 50 % d’air neuf à 8°C = 100 % d’air à 16°C

Études de cas

Les bilans énergétiques d’une installation avec et sans recyclage ont été réalisés pour le cas de 4 locaux de consultation à l’hôpital de Chimay.

Schéma recyclage partiel de l'air extrait des locaux.

C’est une très bonne solution si les locaux requièrent par eux-mêmes un apport d’air élevé (local de réunion intérieur, salle de conférence). Cet air est alors utilisé simultanément pour rafraîchir.

Remarques.
Dans tous les cas, l’analyse système/zone est très importante pour adapter les groupes aux besoins de chaque zone. « Zoner les locaux », c’est ici la première démarche URE.

Si le recyclage n’est pas souhaité pour des raisons hygiéniques, il est possible de placer un récupérateur de chaleur sur l’air extrait qui transférera la chaleur sans autoriser de contact entre l’air vicié et l’air neuf.

Pour en savoir plus :

Concevoir

Valoriser la fraicheur de l’environnement.

Choix de la régulation

La régulation d’une installation « à volume d’air variable » se décompose en de multiples régulations imbriquées.

La régulation classique d’un espace refroidi par une installation « tout air » dissocie la régulation :

  • d’une part de la température en agissant sur les batteries froides et chaudes,
  • D’autre part, dans le cas du VAV, du débit d’air en agissant sur les clapets de réglage d’air neuf et d’air recyclé.

En conception énergétique, il est intéressant de mixer les deux pour pouvoir récupérer au maximum l’énergie contenue dans le recyclage.
Ainsi, pour un local refroidi par VAV :

La régulation de la température intérieure,
> requiert la régulation du débit d’air,
> qui requiert la régulation de la pression dans le conduit d’air pulsé,
> qui entraîne la régulation de la pression dans le conduit d’air repris,
> ceci sous-entendant la régulation du débit des ventilateurs.

La régulation de la température intérieure

Dans le cas d’une installation à débit constant, la sonde de température de l’ambiance envoie son signal au régulateur de température qui le compare à la valeur de consigne. Imaginons que ce soit l’été et qu’il fasse trop froid dans l’ambiance. Suite à l’écart détecté, la vanne de froid est fermée progressivement.

Si la température d’ambiance continue à baisser, et descend en dessous de la zone neutre, c’est la vanne de chaud qui est ouverte progressivement.

Si la zone contient plusieurs locaux, il arrive souvent que la sonde soit placée dans la reprise d’air afin de mesurer la valeur moyenne des locaux traités.

Ceci est le schéma classique avec une zone neutre dans laquelle les batteries froides et chaudes sont fermées. Dans certains locaux, tels que des salles d’opération,  il n’y aura pas de zone neutre !

Remarque : la vanne de froid peut donc s’ouvrir soit pour déshumidifier l’ambiance, soit pour la refroidir. Le régulateur d’humidité devra être informé de la demande du régulateur de température et il prendra la demande la plus exigeante pour agir sur la vanne.

Notons que les exigences de température de certains locaux tels que des zones à risque de contamination élevé sont importantes et ne laissent pas de place à une plage neutre de température dans laquelle les vannes des batteries froides et chaudes sont fermées : il y a donc destruction d’énergie ! Dans un système à recyclage, il existe un moyen de combattre la destruction d’énergie par un savant mixage des consommations des équipements de la centrale de climatisation et d’énergie de recyclage.

Dans le cas d’une installation VAV, le principe de base consiste à réguler la température intérieure en  moduler le débit d’air en fonction des besoins, et non la température de pulsion.

Si le chauffage est apporté par une batterie terminale, une régulation simple « à une sortie » consiste à moduler le débit en fonction d’une seule courbe de température :

  • en plein été, le débit est maximal,
  • en mi-saison, la température intérieure diminue et le débit d’air diminue également, jusqu’à atteindre le débit minimal (au moins le débit hygiénique),
  • en hiver, ce même débit minimum reste pulsé, mais c’est la température de l’air qui augmente pour couvrir les besoins de chauffage. On agit alors sur l’ouverture de la vanne de la batterie terminale.

Par contre, si le chauffage est apporté par l’air, on adopte une régulation « à deux sorties ». Elle est basée sur le raisonnement ci-dessous.

En hiver, une augmentation de la température dans le local va entraîner une diminution du débit d’air chaud pulsé. En été, au contraire, une augmentation de température intérieure va entraîner une augmentation du débit d’air froid pulsé.

Il est donc nécessaire d’inverser le sens d’action du régulateur en fonction de la saison. Ce changement peut être réalisé par un thermostat extérieur, par exemple réglé sur 15°C. De plus, une zone neutre sera ménagée par décalage des points de consigne hiver et été.

Cette commutation ne s’appliquera pas dans les locaux soumis uniquement à des apports de chaleur (zones centrales des immeubles climatisés).

Si les besoins des locaux sont liés aux conditions climatiques, la température de l’air pulsé peut aussi être adaptée en fonction de la température extérieure, via une loi de correspondance donnée (sorte de « courbe de chauffe », étendue en été).

Enfin, pour mieux tenir compte des besoins réels (présence des personnes, des équipements,…), la consigne peut également être compensée en fonction de l’évolution de la température intérieure. Lorsque l’écart entre la température effective mesurée dans le local et la consigne croît, la température de soufflage est augmentée en hiver et diminuée en été. La difficulté consiste à trouver le local « témoin »… Problème qui peut être résolu si une GTC est installée sur le bâtiment : dans ce cas, les informations de tous les régulateurs locaux sont envoyées par le bus de communication vers la centrale qui retient l’exigence la plus forte.

À noter que, pas plus que dans les autres systèmes de climatisation de bureaux, l’humidité des locaux ne peut être régulée local par local. Seul un réglage global de l’hygrométrie est possible dans le caisson de traitement central, sur base d’une mesure de l’humidité dans la gaine de reprise commune. Cette valeur moyenne est généralement suffisante vu la faible sensibilité du corps humain à l’humidité ambiante.

La limite basse de température de soufflage

Imaginons une salle de conférences de plusieurs centaines de personnes. La température extérieure est de 10°C. Vu les apports de chaleur importants donnés par les occupants, on aimerait pouvoir pulser un maximum de cet air extérieur frais « gratuit ».

Mais il faut que les bouches de soufflage soient prévues pour mélanger rapidement l’air frais avec l’air ambiant. On choisira des bouches à haute induction.

A défaut, les occupants risquent d’être incommodés par la coulée d’air froid. Il faudra alors préchauffer l’air entrant à une température minimale réglée par l’exploitant.

De là, une sonde de limite basse de température de soufflage, informant le régulateur de température, qui lui agit sur la vanne de la batterie de chaud ou de froid.

La régulation de l’humidité

Pour la plupart des installations, le contrôle précis de l’humidité ne se justifie pas : il suffit de s’assurer que l’humidité de l’ambiance est comprise entre 40 et 60 %, plage du « grand confort ». C’est le cas des salles de conférences, de cinéma, de gymnastique, dans les restaurants, les centres commerciaux, … Il n’y a que dans des cas particuliers comme les salles d’opération ou les laboratoires que le contrôle strict de l’humidité se justifie.

Autrement dit,

  • en dessous de 40 % d’humidité relative, la vanne de l’humidificateur s’ouvre progressivement,
  • au-dessus de 40 %, l’humidificateur est à l’arrêt,
  • au-dessus de 60 %, la déshumidification est enclenchée par l’ouverture progressive de la vanne de froid.

C’est le rôle du régulateur d’humidité.

Notons qu’il est cependant rare de devoir déshumidifier. Ce ne sera souvent que par temps orageux que l’humidité intérieure dépassera les limites acceptables. C’est pourquoi il n’est pas absolument obligatoire de commander la déshumidification au moyen d’une sonde d’humidité, surtout si l’installation est équipée d’une post-chauffe (cas des installations régulées par point de rosée) engendrant une destruction d’énergie (refroidissement et chauffage successif de l’air).

La régulation de la pression et du débit dans les systèmes VAV

La régulation locale du débit d’air pulsé

On peut adapter le débit par réglage d’un clapet : un servomoteur commande la position d’un clapet en fonction de la température dans le local. Ce clapet est généralement doté d’un système d’auto-réglage en fonction de la pression (afin de maintenir le débit souhaité malgré les variations de la pression du réseau). Il est inséré dans une boîte de détente tapissée d’absorbants acoustiques pour réduire le niveau de bruit. L’air est ensuite réparti vers le local via des diffuseurs.

Schéma sur régulation locale du débit d'air pulsé.

Il est également possible de faire varier le débit en agissant directement au niveau des diffuseurs. Le clapet est cette fois intégré dans le diffuseur. C’est la gaine de pulsion qui joue le rôle de plenum de distribution. Ici aussi, des absorbants acoustiques sont intégrés dans les parois.

Schéma sur régulation locale du débit d'air pulsé.

Les diffuseurs utilisés sont spécifiques aux installations à débit d’air variable. En effet, le confort doit être assuré quel que soit le débit pulsé. Curieusement, le risque d’inconfort apparaît lors des faibles débits : l’air à faible vitesse ne se mélange pas bien à l’air ambiant (faible induction) et « tombe » sur les occupants. Dans ce but, l’air est diffusé tangentiellement au plafond pour bénéficier d’un effet Coanda dans les deux directions.

Malheureusement, la pression n’est pas tout à fait stable dans le réseau, et à une position donnée du clapet ne correspond pas toujours une même valeur de la vitesse de l’air dans la bouche. Aussi, selon les fabricants, divers systèmes complémentaires sont utilisés pour s’assurer de l’adéquation du débit aux besoins.

Imaginons que le régulateur de température détecte une température ambiante supérieure à la consigne. Il envoie au régulateur de débit un signal qui devient sa consigne. Le débit est ajusté. Mais peu de temps après, les vannes des locaux voisins se ferment. La pression monte dans le circuit et le débit a tendance à augmenter. On pourrait attendre la réaction du local, via l’évolution de la température. Mais on préfère réaliser une mesure directe du débit et corriger la consigne du régulateur de débit. Certains constructeurs insèrent alors dans le conduit un capteur de pression dynamique. Puisque celle-ci est proportionnelle au carré de la vitesse, la vitesse réelle du fluide sera connue. Un actionneur pourra modifier la position du siège du clapet et la consigne de débit sera ajustée.

    

En résumé, la température influence la position d’ouverture du clapet. Et la mesure effective du débit déplace la courbe de réglage globalement.

La régulation globale de la pression dans le conduit d’air pulsé

Lorsque plusieurs clapets se ferment, la pression monte dans le réseau. Les clapets encore ouverts sont perturbés dans leur régulation et de plus, ont tendance à augmenter leur niveau de bruit lors du passage de l’air.

Une régulation de la pression du réseau sera organisée. Un capteur de pression sera placé dans la gaine (idéalement entre la moitié et les deux tiers du réseau) et une régulation du ventilateur sera organisée en vue de pulser le débit juste nécessaire et de maintenir une pression constante dans le réseau. Idéalement, via un variateur de vitesse sur le moteur du ventilateur.

Si une Gestion Technique Centralisée est prévue dans la bâtiment, ou simplement un système de centralisation des informations issues des boîtes de réglage, les possibilités actuelles de régulation permettent de se libérer de cette contrainte du maintien de la pression en un endroit donné de la gaine. En effet, on mesure à présent le débit réel pulsé au droit de chaque bouche, et cette information permet de commander le ventilateur de telle sorte que le débit de la bouche la plus défavorisée soit tout juste atteint.

La régulation locale du débit d’air repris

Si le débit d’air pulsé évolue, il faudrait que le débit d’air repris évolue conjointement. Idéalement, il faudrait agir localement sur le débit des bouches de reprise, puis globalement sur le débit du ventilateur de reprise.

Trois régulations sont possibles :

Schéma sur la régulation locale du débit d'air repris.

Soit le régulateur de température ambiante envoie le même signal au clapet de reprise qu’au clapet de pulsion,

Soit la sonde de débit d’air pulsé envoie son information vers le régulateur du clapet de reprise,

Soit enfin, on ajoute un capteur de pression dans le local pour réguler directement la surpression ou la dépression existante dans le local.

Cette dernière solution sera d’application lorsque l’on souhaitera maintenir volontairement la surpression ou la dépression d’un local (salle d’opération, salle blanche,…)

Mais un tel système est impayable ! Il n’est pas vraiment nécessaire d’identifier pulsion et extraction dans chaque local. On s’accorde généralement à dire qu’une gestion de l’air par zone ou par étage (au niveau de la trémie d’extraction) est suffisante pour éviter un transfert d’air parasite entre étages. On travaillera donc au niveau de la pression dans le conduit d’air repris.

La régulation globale de la pression dans le conduit d’air repris

Trois solutions sont possibles :

Soit les commandes des ventilateurs de pulsion et de reprise sont synchronisées (le variateur de vitesse agit sur les deux moteurs simultanément). Mais ce système impose que les ventilateurs aient des caractéristiques aérauliques semblables. Or, les deux réseaux sont différents. Des écarts de débit apparaissent et les locaux risquent de ne plus être maintenus en surpression…

Soit ce sont les pressions des deux réseaux qui sont comparées et le ventilateur de reprise est régulé de façon à maintenir en permanence une différence de pression donnée.

Soit enfin, ce sont les débits qui sont comparés entre pulsion et reprise et la régulation se fait en fonction d’un débit différentiel constant.

À noter que dans les installations qui sont supervisées par une régulation numérique, le bus de communication peut signaler la position ou le débit réel de chaque boîte de détente. Le régulateur central somme alors ces débits pour définir le débit total des groupes de pulsion et d’extraction.

Quelle régulation de vitesse des ventilateurs ?

Plusieurs modes de réglage permettent d’adapter le débit des ventilateurs (de pulsion et/ou d’extraction) en fonction de la grandeur de référence :

Tous ces modes de réglage n’entraînent pas la même économie électrique. Le by-pass (l’équivalent de la soupape différentielle utilisée en chauffage) peut même conduire à une augmentation de la consommation.

Il ressort de la comparaison des différents types de réglage que la solution énergétiquement la plus intéressante est la variation de la vitesse du ventilateur, soit par paliers grâce à des moteurs à plusieurs vitesses, soit de façon continue au moyen d’un convertisseur de fréquence.

Gamme de convertisseurs de fréquence.

Cependant, lorsque les plages de réglage souhaitées sont assez réduites, les solutions de l’étranglement (plage de réglage maximum de 100 à 85 %) ou des aubages de prérotation (réglage de 100 à 70 %, uniquement pour les ventilateurs centrifuges à aubes recourbées vers l’arrière et les ventilateurs hélicoïdes) sont des solutions satisfaisantes.

Cette dernière solution, de moins en moins utilisée, peut cependant devenir plus intéressante que la variation de vitesse du ventilateur, pour les ventilateurs de très grosse puissance (40 .. 50 kW). En effet, un convertisseur de fréquence devant gérer une telle puissance est très coûteux.

Pour les ventilateurs hélicoïdes, la modification automatique de l’angle de calage des aubes conduit à une diminution de la consommation électrique presque équivalente à la variation de vitesse.

La gestion de l’apport d’air neuf

Il importe d’adapter à tout moment le débit d’air neuf adéquat. On peut parler d’une véritable gestion de l’air neuf, puisque :

  • Lorsqu’il fait très chaud dehors (T° > 25°C), l’air neuf doit être réduit au minimum hygiénique pour limiter les coûts de refroidissement.
  • Lorsqu’il fait froid dehors(T° < 16°C) et que le système de chauffage est enclenché, l’air neuf doit également être réduit au minimum hygiénique.
  • Le débit sera maximal lorsqu’il est préférable d’utiliser de l’air extérieur « gratuit » que de traiter l’air intérieur.
  • Le débit sera nul en période de relance du bâtiment (pas d’occupants).
  • Le débit sera maximal si l’on souhaite refroidir le bâtiment durant la nuit par de l’air frais extérieur (free cooling).

C’est donc le régulateur de température qui va organiser l’ouverture du registre d’air neuf, en comparant la température de l’air repris et de l’air neuf. On réalise parfois la comparaison des enthalpies (= des énergies), ce qui est plus précis puisque ce sont les niveaux d’énergie contenue dans l’air qui sont comparés : température + humidité de l’air.

Dans une installation VAV, quelles que soient les exigences thermiques, les besoins en air hygiénique doivent être rencontrés. Dans les installations avec « air recyclé », le registre d’air neuf devra en permanence être adapté : si le débit d’air à pulser dans les locaux est faible, la part de l’air neuf sera importante (jusqu’à 100 %). Au contraire, un grand débit pulsé entraîne une faible proportion d’air neuf.

Ce qui corse la régulation, c’est que les ventilateurs travaillent toujours dans des conditions différentes : ainsi, le débit de 100 % d’air neuf est souvent demandé lorsque les ventilateurs tournent à très basse vitesse…

La position des registres n’est pas significative du débit réel. Aussi, une sonde de vitesse d’air sera placée dans le conduit d’air neuf et agira sur les registres d’air neuf et de reprise pour maintenir le minimum hygiénique par mesure directe. De plus, si du free cooling est organisé pour refroidir les locaux, il sera prioritaire et l’apport d’air extérieur sera maximal.

Une régulation basée sur une sonde de présence, sonde CO2,sonde de qualité d’air, permet également de faciliter la gestion du débit d’air neuf.

Également, il est possible de stopper totalement l’arrivée d’air neuf en période de relance du bâtiment (avant l’arrivée des occupants). Cette technique permet de diminuer la puissance installée des chaudières.

Remarque : le registre d’air neuf peut donc s’ouvrir soit pour apporter l’air neuf minimal, soit pour refroidir l’ambiance. Le régulateur de qualité d’air devra être informé de la demande du régulateur de température et il prendra la demande la plus exigeante pour agir sur le servomoteur du registre d’air neuf.

On trouvera plus de détails dans la régulation du taux d’air neuf d’une installation tout air et la régulation du débit d’air variable dans un conduit.

Les sécurités de fonctionnement

Un thermostat antigel est placé en aval de la batterie de chauffe, mais le plus près possible de celle-ci pour être influencé par son rayonnement.

Ce thermostat antigel ouvre progressivement la vanne de chauffe si la température descend en dessous de la valeur de consigne antigel. Par exemple : si la consigne antigel est de 2°C, quand la température du thermostat descend en dessous de 8°C, la vanne s’ouvre progressivement. À 2°C, elle est totalement ouverte. Si la température continue à descendre, le registre d’air neuf est fermé (action par « tout ou rien ») et l’alarme est enclenchée. S’il n’y a pas de recyclage, les ventilateurs doivent être arrêtés également.

À l’arrêt de l’installation, la vanne de la batterie de chauffe et le registre d’air neuf doivent se fermer et les ventilateurs doivent s’arrêter.

Deux pressostats différentiels contrôlent le fonctionnement des ventilateurs. S’ils ne sont pas satisfaits, le registre d’air neuf est fermé et l’alarme est enclenchée.

Un pressostat différentiel contrôle l’encrassement du filtre sur l’air neuf et enclenche une alarme en cas d’encrassement.

Le schéma de régulation global

Si l’ensemble des contraintes sont résumées dans un seul schéma, on aura, pour un système à débit constant :

Mais cette présentation correspond à la logique analogique, où les différents régulateurs sont imbriqués. Si le même problème est vu par un régulateur numérique, il traitera toutes les données (= INPUT) dans un seul programme de traitement (comme un programme d’ordinateur) et il fournira en sortie toutes les commandes (= OUTPUT) pour les différents moteurs et vannes.

Mieux, un bus de communication va parcourir le bâtiment, collecter les INPUT et alimenter les OUTPUT :

À noter que tous les branchements ne sont pas représentés, notamment parce que les commandes de sécurité restent locales.


Paramètres de dimensionnement

Une diminution des dimensions de la centrale de traitement d’air par rapport au système à débit constant

Comparons les systèmes :

  • Avec un système à débit d’air constant, chaque local est dimensionné avec un débit d’air permettant de répondre à la charge frigorifique extrême; dans le caisson de traitement d’air central, on devra traiter (en permanence !) le total des débits maximaux de tous les locaux.
  • Par contre, avec le système VAV, on va tenir compte du fait que le soleil tourne autour du bâtiment et que la charge maximale de la façade Ouest survient lorsque la façade Est est à faible demande; la centrale de préparation sera dimensionnée sur base du cumul instantané possible entre tous les locaux,… ce qui est déjà nettement plus raisonnable ! De même, si ce sont des bureaux, des locaux de réunion, … dont on peut prévoir qu’ils ne seront pas tous occupés en permanence, on peut tabler sur un certain foisonnement de la puissance totale de l’installation.

Il en résulte une économie du coût d’investissement de la centrale, par rapport à un système à débit constant. Mais encore faut-il que la taille de la centrale ne soit pas trop importante (n’oublions pas que l’on travaille avec des débits horaires correspondants à 6…8 renouvellements horaires !), que la localisation de la centrale, que les distances par rapport aux trémies verticales, … permettent un tel regroupement. Peut-être devra-t-on répartir les locaux par zones et perdre l’intérêt du regroupement ? Peut-être est-ce la régulation qui va imposer le découpage par zones distinctes ?

On constate ici toute l’importance qu’il faut attacher à définir correctement avec le Maître d’Ouvrage la configuration des zones homogènes et le coefficient de simultanéité d’occupation des locaux de chaque zone.

Température de l’air

Une température de pulsion minimale de 14° est tout à fait possible, parfois même 12°C. Suite à un fort effet d’induction, cet air se mélange à l’air ambiant, si bien que l’on développe une veine d’air à 19°C.

Attention, ceci suppose une T° de sortie de batterie froide de 11 à 12°C, suite aux apports du ventilateur (2K) et des gaines dans le bâtiment (1K). Ce qui signifie que, lors du free cooling, pour pouvoir assurer son effet refroidissant à 14°C dans le local, l’air extérieur doit également être à 11° ou 12°C ! D’où une diminution de l’énergie frigorifique gratuite.

Dans le local, la T° prise pour l’ambiance est une valeur de 25°C. Le Delta T° de travail de l’air froid dans le local est donc de (25-14) = 11 K.

Débits

On rencontre un débit maximal de 15 à 46 m³/h par m² traité. Soit avec une hauteur sous plafond :

  • De 2,7 m : un taux de brassage de 5,5 à 17 ren/h
  • De 3 m : un taux de brassage de 5 à 15 ren/h

Soit une puissance frigorifique de 150 à 190 W/m² !

Le débit minimal (pour assurer un brassage d’air et un taux d’induction suffisant) est de l’ordre de 9 m³/h par m² traité. Soit avec une hauteur sous plafond :

  • De 2,7 m : un taux de brassage de 3,3 ren/h
  • De 3 m : un taux de brassage de 3 ren/h

Ce qui est donc bien un équivalent de 3 x le débit hygiénique… sauf dans les salles de réunions.

La sélection des équipements terminaux

Il importe de sélectionner le matériel de telle sorte que le registre ait une bonne autorité sur le débit d’air qu’il contrôle.

On sera attentif à la bonne distribution de l’air dans les locaux en fonction des différents régimes de débits d’air. Il est possible de demander au fabricant de la bouche prévue un profil de distribution d’air dans le local aux différentes vitesses.

Actuellement, la régulation par vitesse variable sur des moteurs asynchrones des ventilateurs ne pose plus de problème.

Il faut être attentif au débit de limite basse admissible par l’appareil. On sait que le débit minimum est ajusté :

  • soit au débit d’air hygiénique,
  • soit à un débit plus élevé, pour les besoins d’une bonne distribution de l’air dans le local,
  • soit à un débit plus élevé pour les besoins de chauffage du local (si régulation « à une sortie »).

C’est ce qui entraîne, par exemple, un débit minimum égal à 30 % du débit nominal dimensionné pour l’été. Or ce débit minimum doit être le plus faible possible pour limiter la consommation de l’installation. On veillera donc tout particulièrement à ne pas surdimensionner les besoins en chauffage des locaux. Idéalement, on intégrera, avec l’accord du Maître d’Ouvrage, l’idée que les apports internes vont participer au chauffage des locaux et que donc l’installation peut être diminuée d’autant. Lors de la relance du matin de l’installation, l’arrivée d’air neuf sera stoppée et le bâtiment montera en température par recyclage de l’air intérieur.

À noter que pour la climatisation des zones internes, on dimensionne le débit minimum pour éliminer de toute façon la charge d’éclairage, puisque l’on sait qu’elle sera toujours présente.

Enfin, on sera attentif au fait que ce n’est pas forcément le bilan d’été qui entraînera les puissances frigorifiques maximales. Le Sud pourrait être plus pénalisant à certains moments de la mi-saison.


Critères acoustiques

Le niveau sonore généralement souhaité dans les bureaux (NR 35 ou 40 dB(A) environ) suppose une étude acoustique sérieuse de l’installation, surtout si le régime Haute Pression est adopté.

Il faut savoir que le respect des critères acoustiques est traité (par le bureau d’études) après le dimensionnement des réseaux.

Attention dès lors à ne pas imposer un niveau acoustique trop faible dans les locaux (parfois non justifié, suite à l’existence de bruits provenant des autres équipements ou des occupants par exemple), car le concepteur va avoir pour réflexe d’augmenter l’importance du silencieux à la sortie du groupe de préparation. Or le silencieux crée des pertes de charges supplémentaires et la consommation du ventilateur en sera augmentée toute sa vie durant !

Par contre, c’est la boîte de détente (à l’entrée de laquelle est placée le clapet de réglage) qui doit être suffisamment grande, celle-ci jouant le rôle de plénum de détente acoustique.

Mise en œuvre du groupe de traitement d’air

La surface sur laquelle repose le groupe de traitement d’air doit être suffisamment rigide pour éviter la mise en vibration d’éléments de la structure du bâtiment.

Il est conseillé de placer le groupe de traitement d’air sur une dalle flottante placée sur des plots antivibratiles, surtout si le groupe est placé au-dessus de locaux sensibles que ce soit en toiture ou en local technique.

Afin d’éviter la transmission de vibrations à la structure du bâtiment, on raccorde les caissons du groupe et les gaines avec des manchettes souples.

Les parois sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.

On constate que la prise d’air peut être aussi bruyante que la pulsion. On placera dès lors un silencieux dans la gaine de prise d’air neuf et sur la gaine de pulsion d’air. De même, en toiture, il faut toujours éloigner les groupes de traitement d’air des grilles de rejet d’air vicié, car le bruit du groupe de traitement d’air pourrait se transmettre, vers les locaux occupés, via la gaine de rejet d’air.

Tout particulièrement, les boîtes de mélange des systèmes « dual duct » seront sources de bruit et demanderont un traitement spécifique.

Dans les réseaux à Haute Pression, les boîtes de détente seront insonorisées pour amortir le bruit.


Critères économiques

Les systèmes mono-gaines à débit constant ont un coût d’installation variant 125 et 190 €/m² (HTVA) pour une installation complète. Les coûts de maintenance varient, suivant le surface, entre 1,75 à 5 €/m² par an.

Avec un prix compris entre 137,5 et 212,5 €/m², l’installation VAV est plutôt plus chère qu’une installation par ventilos-convecteurs. Elle devrait être moins chère qu’une installation à débit constant suite à la taille plus réduite du caisson de préparation en centrale, mais le coût de la régulation en est nettement plus élevé.


Check-list du projet

Des questions à se poser :

Plus d’infos ?

Les systèmes à débit constant ne convient, en pratique, que pour traiter un seul local ou plusieurs locaux mais de températures homogènes. Est-ce votre cas ? détails

Le découpage par zones permet-il de réguler correctement les ambiances, tout en profitant d’un coefficient de foisonnement pour le dimensionnement des groupes de traitement d’air ? (exemple : regroupement des salles de réunion sur une même centrale)

détails

La vitesse de dimensionnement choisie est-elle nécessaire pour réduire l’encombrement ? Ne peut-on pas élargir les conduits pour diminuer les coûts d’exploitation et le bruit durant toute la vie de ce système ?

détails
Ne pourrait-on pas éviter le régime Haute Pression ? La vitesse de l’air dans les conduits est-elle nécessaire pour réduire l’encombrement ? Ne peut-on pas élargir les conduits pour diminuer les coûts d’exploitation et le bruit durant toute la vie de ce système ? Ne doit-on pas imaginer des ventilateurs à 2 vitesses ? détails

Le débit d’air neuf hygiénique est-il assuré quel que soit le débit pulsé ?

détails

Le système permet-il de valoriser l’air neuf extérieur « gratuit » si la température est adéquate (free cooling) ?

détails
Un récupérateur de chaleur est-il placé sur l’air extrait ? Un recyclage partiel de l’air extrait est-il prévu ? détails

Le choix du système de chauffage est-il le plus adéquat ? Si des résistances électriques sont prévues, une étude de consommation probable a-t-elle été faite ? Un délestage est-il prévu ? Un mode de fonctionnement en recyclage (pas d’apport d’air neuf) est-il prévu par la régulation lors de la relance du matin ?

détails

La régulation interdit-elle tout fonctionnement simultané du chauffage et du refroidissement ? (présence d’une « zone neutre »)

détails

La régulation du débit pulsé entraîne-t-elle véritablement une diminution de l’air traité et une diminution de la vitesse de rotation des ventilateurs (pas de by-pass de l’air non pulsé) ?

détails

Le débit minimum a-t-il été préréglé à la valeur vraiment minimale (la plus proche possible du débit hygiénique) ?

détails

La sélection des bouches permettra-t-elle une bonne distribution de l’air, même lors du débit minimum ?

détails

La qualité acoustique du projet est-elle suffisante ?

détails

Choisir un système rayonnant sur boucle d’eau froide : plafond froid, dalle active

Choisir un système rayonnant sur boucle d’eau froide : plafond froid, dalle active


Dalle active ou plafond froid ?

Inertie, puissance et free chilling

Il existe deux technologies d’émetteurs « froids » basés sur un échange par rayonnement : les  plafonds froids et les dalles actives.

Schéma plafonds froids et les dalles actives.

Clairement, la puissance émise par une dalle froide active est faible par rapport à celle d’un plafond froid traditionnel (de l’ordre de moitié). Elle présente un temps de réponse également très élevé et sera donc peu efficace pour gérer un afflux de soleil soudain. Il suffit de voir la température de surface inférieure de la paroi (22,5° pour 26° ambiant…) pour se rendre compte que la réponse va manquer de pêche !

Par contre, la dalle froide se distingue du plafond rayonnant par une grande inertie thermique.

Avantages d’un émetteur inerte : il est possible de réaliser un stockage nocturne de frigories dans la dalle ! Cette technique présente dès lors les avantages du système de stockage frigorifique dans des bâches d’eau glacée (production de frigories au prix du kWh de nuit, diminution de la puissance frigorifique installée, …). Elle permet également de valoriser la fraîcheur nocturne par free chilling.

Inconvénients d’un émetteur inerte : l’inertie du système rend la régulation très difficile… Y aura-t-il du soleil demain ?  Faut-il enclencher le refroidissement cette nuit ? De plus, la décharge du froid est indépendante des besoins réels. La température ambiante du local varie dans la journée en fonction des charges du local… On imagine un tel système lorsque les besoins sont créés par une charge interne permanente, mais non par des apports solaires ou une occupation variable.

C’est ainsi que la dalle active va pouvoir valoriser au mieux le froid créé durant la nuit : soit par passage dans un échangeur direct, soit par utilisation d’une machine frigorifique avec un très bon rendement.

Si l’eau provient d’une nappe phréatique ou d’une sonde géothermique, il ne semble pas fort intéressant de passer au système de refroidissement par dalle puisque la puissance frigorifique est à disposition également en journée.

On arrive donc à différents types de configuration, dont :

Un refroidissement de nuit sur l’air extérieur, assisté par une machine frigorifique en période de canicule.

Un refroidissement 24h/24 via des plafonds froids, dont le froid est capté sur des sondes enterrées.

Confort acoustique

Les nattes capillaires noyées dans le plafonnage et les dalles actives sont peu intéressantes au niveau acoustique : aucune absorption à attendre de leur part. Les plafonds froids suspendus par contre intègrent souvent des matelas absorbants.

En outre, les émetteurs noyés sont pénalisés lors de la pose d’ilots acoustiques suspendus. En effet ceux-ci viendraient bloquer l’échange par rayonnement entre les occupants et le plafond, ce qui limite l’échange thermique à la seule composante convective entre l’air et le plafond. D’autres surfaces d’absorption doivent être trouvées (panneaux mobiles, armoires avec panneaux intégrés, sous-faces des tables de travail, …).

Par exemple, les portes des armoires du bâtiment Worx à Kortrijk sont des panneaux acoustiques microperforés :

Une campagne d’essais a été menée à l’institut de recherche suédois pour mesurer l’influence de faux plafond discontinu, morcelé en ilots flottants de petite taille, sur les échanges thermiques entre le local et la dalle active.
La campagne consistait à comparer deux configurations, un faux plafond de 8.6 m² (6 éléments de 1,2 m x 1,2 m) représentant 45 % de la surface du local suspendu à deux hauteurs différentes (20 cm et 80 cm).
On constate une diminution de l’efficacité due à la présence des éléments acoustiques de 16 % lorsqu’ils sont suspendus à 20 cm et de 12 % à 80 cm. Il apparait logique que plus l’élément acoustique est suspendu bas, plus la convection de l’air autour du panneau est facilitée. De même l’efficacité acoustique est améliorée, car le son se répartit mieux autour du panneau, tout comme des panneaux trop proches l’un de l’autre se gênent le son ne distribuera pas correctement autour des panneaux.


Choix de la technologie de plafonds froid

Le terme plafond froid recouvre lui-même une large variété de dispositifs d’émission.  Pour faire le tri parmi ces technologies, on peut distinguer plusieurs critères de choix :

L’inertie du plafond

La plupart des plafonds froids sont peu inertes, puisque constitués de tuyauteries fixées sur un faux plafond peu épais. Seuls les systèmes constitués de nattes capillaires noyées dans un plafonnage présentent un plafond froid, dont l’inertie plus importante.

Le mode d’émission de froid entre la tuyauterie d’eau et le local

La plupart des systèmes utilisent la conduction de froid (en réalité, de la chaleur) vers les panneaux de plafonds. Pour augmenter la puissance, l’essentiel consiste à faire communiquer au mieux le froid entre le tube et l’entièreté du plafond, si possible métallique. Un système qui ne comporterait que quelques points de soudure de temps en temps, ne serait pas idéal à ce niveau…

Il existe des faux plafonds à ailettes clipsables, atteignant une puissance de 80 à 90 W/m² actif.

Illustration faux plafonds à ailettes clipsables.

Mais on améliore les choses par des tubes intégrés à un profilé aluminium. Ces systèmes, bien qu’un peu plus chers, permettent une excellente conduction du froid, si bien que la différence de température entre l’eau et la surface métallique est seulement de l’ordre de 1°C. Des puissances de 100 à 130 W/m² actif sont atteintes, pour un écart de 10° entre la température moyenne de l’eau (16°C) et la température de l’ambiance (26°C), c’est-à-dire, dans des conditions extrêmes.

Schéma tubes intégrés à un profilé aluminium.

Mais l’échange par rayonnement est rapidement limité. Aussi, afin de favoriser l’effet convectif, des ailettes seront serties sur les tuyauteries. L’idée consiste à créer un effet d’écoulement d’air, de « cheminée froide » le long de ces ailettes. Cette fois, deux tiers de la puissance sont communiqués par convection. La puissance frigorifique est maximale (130 W/m² et plus) pour autant que le faux plafond reste à claire-voie, ce qui n’est pas toujours accepté par l’architecte.

Schéma ailettes seront serties sur les tuyauteries.

De plus, la hauteur du faux plafond devient fort importante. On envisagera plutôt ce système dans un hall de grande hauteur.

La facilité du montage

Si certains systèmes sont assemblés sur place (serpentins clipsés, par exemple), d’autres sont montés en usine et arrivent par modules « tout faits ». On peut imaginer que cette deuxième solution est plus fiable.

La planéité d’ensemble est un élément très important, car notre oil est très sensible au moindre défaut, tout particulièrement dans les bureaux paysagers.

Le critère esthétique

Certains plafonds sont de type à lamelle, d’autres sont modulaires (généralement de largeur 600 mm.), ce qui modifie l’aspect architectural.. Les nattes noyées dans le plafonnage et les dalles actives sont par contre totalement invisibles.

La facilité de la maintenance

Chaque constructeur rivalise d’astuce pour pouvoir accéder le plus facilement possible à l’espace situé au-dessus du faux plafond (modification d’un câblage, …).

C’est en dé-clipsant les tuyauteries pour les uns, c’est en faisant pivoter une fixation par charnière pour les autres. La liaison entre le réseau d’eau froide et le module de faux plafond est réalisée par des flexibles.

Photo plafond froid.

Photo plafond froid.

Le montage des modules est facilité, mais le prix d’achat est augmenté.

Photo plafond froid.

La hauteur minimale nécessaire est fonction de l’ensemble des équipements à placer dans le faux plafond. Au cas où seule la fonction thermique est présente, la hauteur minimale requise est de 55 mm.

Remarques :

1. De nombreux fabricants proposent leurs produits sur le marché :

  • des fabricants de faux plafonds qui ont développé la fonction « thermique »,
  • des fabricants de matériel thermique qui ont développé la fonction « faux plafond » !

Il est indispensable que les deux fonctions soient totalement maîtrisées et proposées avec des matériaux de qualité.

2.  Un plafond froid ne s’achète pas sur « catalogue » et une installation ne peut se concevoir sans qu’un Ingénieur Conseil n’intègre tous les besoins et exigences du Maître de l’Ouvrage et de l’Architecte.

L’Entrepreneur réalisant un tel système doit en prendre la responsabilité globale tant au point de vue installation (faux plafond) que performance (confort).

3.  Pourrait-on avoir un « plancher froid » ? C’est une solution peu confortable (froid aux pieds, chaud à la tête !). Pour éviter cet inconfort, on limite de tels systèmes à une puissance de 30 W/m². Exemple d’application : un show-room de voitures. L’immense avantage est de pouvoir faire du chauffage par le sol en hiver !


Choix de l’apport d’air neuf

Les plafonds froids et dalles actives sont des systèmes agissant sur la température du local indépendamment de l’apport de l’air neuf de ventilation (imposé par la réglementation pour garantir une qualité de l’air suffisante).

Celui-ci ne pourra ici se faire qu’au moyen d’une ventilation double flux. En effet, l’air neuf doit être pré-refroidi en centrale, et ce pour deux raisons :

  1. La puissance frigorifique des plafonds froids est parfois insuffisante  pour reprendre toute la charge frigorifique du local. Un air prérefroidi peut alors lui venir en aide. Dans le cas d’une dalle active, une pulsion d’air traité en centrale peut compléter l’inertie du système rayonnant par une réactivité importante. Attention cependant à la destruction d’énergie entre la dalle refroidie et un air éventuellement préchauffé.
  2. Pour éviter toute condensation sur le plafond, l’humidité relative dans le local doit être maintenue par la batterie de prérefroidissemment à une valeur de 52 .. 57 % HR, en fonction de la température du plafond.

L’enjeu est de ne pas « casser l’énergie », en refroidissant l’air neuf pour le déshumidifier et en le réchauffant ensuite pour éviter les courants d’air (on considère souvent qu’une température de pulsion minimum de 16°C est nécessaire).

Photo bouches toriques.

Il est clair que de prévoir des par bouches toriques (à haute induction) est une garantie de pouvoir pulser l’air à très basse température sans créer de courants d’air, et donc de ne pas détruire de l’énergie.

Ce type de bouche est par ailleurs favorable à l’émission du plafond. Des essais réalisés au Laboratoire de Thermodynamique de l’ULg auraient montré qu’une augmentation de l’ordre de 30 % de la puissance frigorifique est réalisée avec ce type de bouches. Ce pourcentage atteint même les 50 % s’il s’agit d’un plafond chauffant.

Idéalement, il faudrait arriver à ne pas devoir postchauffer l’air neuf après déshumidification. Plus de détails techniques sont donnés dans la régulation de la déshumidification de l’air neuf avec plafonds froids.


Contrôle du risque de condensation

En  pratique, le risque de condensation est limité.

Le taux d’humidité d’un local dépend non seulement du taux d’humidité extérieur, mais également du dégagement d’eau dans le local. Prenons l’exemple d’un local type de bureau individuel (occupation : 70 g/h.personne à 26 °C , plantes, etc.). Si la ventilation apporte 25 m³/h d’air neuf, l’humidité absolue du local est en moyenne supérieure de 3 g/kg à l’humidité absolue de l’air extérieur.

Si la température de surface d’une dalle active est de 22 °C (température d’équilibre pour de l’eau entrant à 16 °C dans la dalle et une ambiance à 26 °C ), le risque de condensation apparaît si l’humidité ambiante dépasse 16,7 g/kg, soit si l’humidité extérieure dépasse (16,7 g/kg – 3 g/kg =) 13,7 g/kg. Ainsi, pour une année moyenne en Belgique, le point de condensation n’est dépassé que 12 heures sur 8 760 par an. Il n’a pas été dépassé pendant la période de canicule de juin 1976, similaire à celle que nous avons connue en 2003.

Si, en mi-saison ou en hiver, la température de surface de la dalle est de 20 °C (température d’équilibre pour de l’eau entrant à 18 °C dans la dalle et une ambiance à 22 °C ), le risque de condensation apparaît si l’humidité ambiante dépasse 14,7 g/kg, soit si l’humidité extérieure dépasse (14,7 g/kg – 3 g/kg =) 11,7 g/kg. Pour une année moyenne en Belgique, l’humidité extérieure ne dépasse jamais ce niveau entre début octobre et fin mai.

Le risque de condensation sur les parois est donc très faible dans les locaux tels que les bureaux, même si l’air neuf n’est pas déshumidifié. De plus, lors d’une augmentation d’humidité rapide dehors ou par des sources internes, l’humidité dans la pièce n’augmente que lentement à cause de la grande capacité d’absorption des plafonds, murs et mobiliers.

Par contre, dans des salles de réunion ou des cafétérias où le dégagement d’humidité est plus important, l’importance de la condensation en cas d’occupation exceptionnelle (ou de défaut de ventilation) sera plus grande et aura donc des conséquences plus sérieuses. Mais on peut imaginer que dans ces locaux un climatiseur d’appoint soit nécessaire et qu’il joue le rôle de déshumidificateur (T° d’évaporateur généralement très basse vu la détente directe et la compacité de l’échangeur).

Le risque de condensation est un peu plus important lorsque l’on choisit des plafonds froids, puisque le régime de température est moins élevé que dans la dalle active. Le risque de condensation reste néanmoins limité notamment suite à la déshumidification de l’air neuf en centrale. La formation d’une véritable goutte d’eau (capable de dégâts) semble difficile à créer lors des essais de laboratoire : un film humide peut se former sur le plafond (buée) sans pour autant que de gouttes ne chutent.

Restent des risques exceptionnels tels que la fête pour le départ de Louis à la pension, la cafetière qui bout en permanence, et quelques jours orageux par an, …

Aussi différentes dispositions sont possibles pour limiter le risque de condensation

  • Limitation de la température de départ de l’eau pour les réseaux intégrés dans la dalle de plafond (généralement 15°C).
  • Contrôle de l’humidité relative à proximité du plafond et coupure de la circulation d’eau, pour les réseaux en faux plafonds.
  • Prise en considération des conditions extérieures pour anticiper les fluctuations d’humidité à l’intérieur du local.

Dans un bâtiment avec fenêtres ouvrantes, l’alimentation du plafond en eau devrait pouvoir être interrompue par un contact de feuillure. À défaut, une information efficace des occupants et du personnel d’exploitation sera impérative.


Choix du système de chauffage associé

Plusieurs solutions sont possibles.

Soit le chauffage de l’air pulsé

Si l’on dispose déjà d’un réseau d’émetteurs pour le refroidissement et d’un réseau de ventilation hygiénique, on peut chercher à limiter l’investissement en évitant un troisième réseau, spécifiquement dédié au chauffage. Une piste est alors d’utiliser le réseau de ventilation.

On sait que le débit d’air pulsé est très faible (généralement entre 1 et 2 renouvellements horaire) puisqu’il correspond au débit d’air neuf hygiénique, parfois gonflé pour couvrir les besoins de déshumidification de l’air en été. Et la température de l’air ne peut dépasser 35 à 40°C.

Cet apport ne permet de couvrir que peu de déperditions. Cette solution n’est donc possible que si le bâtiment est fort isolé au départ et/ou que le client accepte de prendre en compte les apports internes comme source de chauffage. Expliquons-nous : si l’on respecte la norme du calcul des déperditions (NBN B62-003), on ne peut compter que sur le système de chauffage pour vaincre les déperditions dans le cas le plus critique. Or, en pratique, les occupants, la bureautique, l’éclairage, … apporteront de la chaleur de façon non négligeable et les installations seront souvent surdimensionnées. Si le Maître de l’Ouvrage l’accepte, il peut donc autoriser le bureau d’études à tenir compte d’apports internes minimaux et diminuer d’autant la puissance de son installation. Ceci est d’autant plus exact que l’on travaille dans un bâtiment à utilisation permanente.

Si des coupures prolongées sont possibles (WE, période entre Noël et Nouvel An), la puissance maximale doit tenir compte de la relance et un calcul plus fin doit avoir lieu. On peut alors imaginer que l’air neuf soit recyclé lors de la relance et que la puissance totale de l’installation soit consacrée à la remise en température du bâtiment. Mais cette solution n’autorise pas une extraction classique de l’air neuf par les sanitaires… puisque l’air assure la fonction de chauffage et doit être recyclé.

Soit le chauffage par le plafond ou par la dalle

Deuxième piste pour éviter un émetteur de chauffage spécifique : L’apport de chaleur par le réseau de tuyauterie du faux plafond ou de la dalle active. Cette solution est possible, mais présente un risque d’inconfort.

L’inconfort résulte de l’asymétrie du rayonnement en mode chauffage (= « impression désagréable d’avoir de la chaleur qui tombe sur la tête ») et ne permet pas d’alimenter le réseau à une température supérieure à 35 °C. Pour les dalles actives, le régime de température est encore plus bas : de l’ordre de 28 °C maximum. Mais dans les bâtiments récents, cette faible puissance de chauffe pourrait ne pas poser de problème vu les besoins limités. On peut imaginer également que la température serait seulement élevée en période de relance (lorsque les occupants sont absents, puis relayée par le réseau d’air en période d’occupation). Attention aux contraintes sur les tuyauteries… Nous n’avons pas d’expérience pratique à ce sujet.

On peut imaginer que la stratification des températures soit alors assez défavorable du point de vue rendement (couche d’air chaud coincée sous le plafond). Par contre, l’eau à très basse température permet de valoriser le très bon rendement d’une chaudière à condensation.

Le schéma ci-dessous montre l’installation 2 tubes réversibles (réseau chaud/froid, dans/sous le plafond) et propose de la coupler avec une ventilation/refroidissement par déplacement, technique complémentaire très efficace pour les occupants. Elle propose aussi la formule d’insertion des tubes dans la structure du bâtiment (augmentation de l’inertie).

Schéma installation 2 tubes réversibles.

Un compromis peut être en imaginant un chauffage par le plafond limité aux panneaux situés le long des façades.  En toute logique, on apporte ainsi une ceinture de chaleur au bâtiment là où les déperditions ont lieu. Les vitrages doivent être sélectionnés en très basse émissivité.

Soit un chauffage traditionnel par radiateur ou convecteur statique

Si le bâtiment est de construction plus traditionnelle, faiblement isolé, un réseau de radiateurs sera prévu en complément des plafonds froids. C’est une solution généralement appliquée en rénovation puisque l’on peut récupérer l’installation existante, quitte à renouveler les corps de chauffe.


Choix du réseau d’eau froide associé

On utilisera soit un réseau spécifique aux plafonds/dalles disposant d’un groupe frigorifique propre, soit le réseau global du bâtiment. Le premier cas présente l’avantage de pouvoir travailler à plus haute température au niveau de l’évaporateur et donc d’améliorer la performance du groupe frigorifique.

En été l’eau froide peut être produite  par différents moyens :

L’eau peut être refroidie par l’air extérieur, via un échangeur placé en toiture.

Pour profiter d’un air plus frais, il apparaît que le fonctionnement aura principalement lieu durant la nuit. D’où la nécessité de stocker le froid dans l’épaisseur de la dalle.

L’eau peut être refroidie par de l’eau pompée dans une nappe phréatique, via un échangeur à plaques eau/eau.

Le fonctionnement peut alors avoir lieu 24h/24.

L’eau peut être refroidie par circulation dans le sol sous le bâtiment, via un échangeur sol/eau. La présence d’une circulation d’eau d’une nappe phréatique éventuelle autour des conduits renforce le refroidissement. La puissance frigorifique varie entre 10 et 25 W/m courant.

Le fonctionnement peut alors avoir lieu 24h/24.

L’eau peut être refroidie par une machine frigorifique traditionnelle, venant en appoint d’une des sources ci-dessus, notamment pour vaincre les périodes de canicule.

Les plafonds froids et dalles actives, puisqu’elles travaillent à haute température, sont particulièrement indiqués pour valoriser la fraicheur de l’environnement. Cette propriété valorise tout particulièrement la technique de free-chilling qui consiste à by-passer le groupe frigorifique et à refroidir directement l’eau de 17 à 15°C par l’air extérieur.

Puisque cette possibilité existe dès que la température extérieure est inférieure à 13°C, cette technique sera particulièrement intéressante si des besoins de refroidissement des locaux existent en période froide, ou si l’inertie du système permet de valoriser la fraîcheur nocturne. C’est l’analyse des besoins du bâtiment en fonction de la température extérieure qui devra le dire.

Plafonds froids et dalles actives seront de même aisément couplés à des forages géothermiques ou d’autres sources froides naturelles (nappe phréatique, rivière, lac,…), auxquels cas ils profiteront d’une eau de refroidissement en boucle ouverte. Un échangeur, spécialement traité pour résister à la corrosion et au colmatage, permettra le refroidissement à la source froide. Pour fournir l’appoint en plein été, le système est épaulé par un groupe frigorifique (placé en parallèle et dont le condenseur est raccordé à cette même source froide).

Schéma Plafonds froids et dalles actives couplés à des forages géothermiques.

Le filtrage et traitement des eaux devra faire l’objet d’une attention soutenue.
Pour en savoir plus :

Concevoir

Valoriser la fraicheur de l’environnement.


Paramètres du dimensionnement

La nécessité de limiter les apports solaires

La limitation des plafonds est liée à leur puissance frigorifique : de l’ordre de 90 W/m² de plafond actif, soit 72 W/m² de surface au sol si on considère que 20 % du plafond ne sera pas actif, suite à la présence des luminaires, des angles, …… Les dalles actives présentent une puissance inférieure à 60W/m².

Si ce système doit vaincre des apports internes importants (bureautique : 25 W/m², éclairage : 12 à 15 W/m², occupants : 7 W/m²), la réserve disponible pour les apports solaires solaires est fortement réduite.

Concevoir

Ceci sous-entend que les apports solaires des vitrages soient fortement limités :
  • soit par la conception du bâtiment créant des ombres portées;
  • soit par la mise en place de protections solaires extérieures;
  • soit par le placement de stores intérieurs clairs combinés à des vitrages performants;
  • soit par la configuration des lieux (bureaux paysagers, salles profondes).

Dimensionner avec une eau à haute température

Classiquement, on dimensionne le réseau de plafonds froids au régime 15 ° – 17 °C. Les dalles actives sont utilisées à un régime 16 °C-20 °C.

On peut d’abord étudier l’intérêt de passer à un régime 15 ° – 18 °C. La température moyenne des plafonds n’augmenterait que d’un demi-degré (16,5 au lieu de 16 °C). La puissance émise est liée à l’écart de température par rapport à l’ambiance (26 °C nominaux). Elle n’augmentera donc que de l’ordre de 5 %, alors que la consommation électrique augmentera bien davantage puisque le débit augmente de 50 % et que les pertes de charge évoluent au carré de celui-ci.

Par ailleurs, si les besoins thermiques sont faibles, c’est la température de départ qui peut évoluer. Pourquoi pas une distribution d’eau au régime 17° – 19 °C ? Cela permet de limiter la consommation liée à la déshumidification de l’air, voire de supprimer toute post-chauffe de l’air neuf.

Travailler avec une haute température peut permettre également :

Concevoir

de récupérer la chaleur des plafonds pour préchauffer l’air neuf.

Concevoir

ou de refroidir l’eau des plafonds froids par free-chilling.

Prévoir une installation frigorifique performante

On retrouve souvent un réseau de plafonds froids à 15° et un réseau d’eau glacée à 7°, notamment pour alimenter la batterie froide du groupe de traitement d’air. Idéalement, si la taille de l’installation le permet, on installera deux machines frigorifiques. Celle qui alimentera le réseau à 15° pourra bénéficier du COP nettement plus performant (en principe, le gain est de 3 % de la consommation par degré d’augmentation de la température à l’évaporateur).

Les fabricants dimensionnant toujours avec des petits échangeurs (évaporateur, condenseur) pour diminuer les coûts, il est utile d’imposer une valeur de COP minimale à respecter.

Un appoint par poutres froides ou pulsion d’air

Lors du dimensionnement, cela « coince » parfois au niveau du local d’angle suite à l’ensoleillement sur 2 façades.

Des poutres froides sont alors parfois proposées en supplément du plafond, pour augmenter l’effet frigorifique (le fait que ces équipements travaillent à même régime de température d’eau est un avantage). Mais les risques d’inconfort par « coulée d’air froid » sont importants avec cette technique et il convient d’étudier soigneusement leur disposition dans le local.

Une alternative est de valoriser le réseau de ventilation par un traitement centralisé de l’air neuf hygiénique. A priori, le groupe de traitement d’air est déjà lié à une machine frigorifique pour assurer une déshumidification. De là à voir l’air neuf comme un appoint thermique, il n’y a qu’un pas !

L’évaluation de la puissance intrinsèque du plafond

La transmission énergétique du système dépend :

  • de la température ambiante,
  • de la température des parois environnantes,
  • de la température de l’eau,
  • du type de plafond,
  • de la façon dont l’air est distribué dans la salle.

Quelle est la fidélité sur les chiffres de puissance avancés ? On peut penser que le fabricant qui annonce 130 W/m² suppose une ambiance très chaude (pour augmenter le delta T°) et une circulation de l’air favorable le long des panneaux, induite par l’apport d’air neuf !

Il faudra donc vérifier si la puissance intrinsèque du plafond a bien été contrôlée en laboratoire suivant la procédure reprise dans la norme DIN 4715 (avril 1993). En réalité, on sera toujours supérieur à cette puissance, car une fenêtre ensoleillée sera par exemple à une température de 30 °C environ, ce qui est supérieur aux conditions d’essai de la norme. À noter que d’autres procédures existent également.

Il est conseillé de réaliser un essai en « vraie grandeur » pour vérifier les performances du système (sur site ou en laboratoire d’essais), mais le budget nécessaire de +/- 12 500 € suppose un projet de grande envergure pour être « rentabilisé ».

On sera également attentif au fait que la puissance annoncée est une puissance délivrée par m² de panneau installé, ce qui n’est pas forcément égal à la surface au sol des locaux. Il faudra retirer la surface des luminaires, des détecteurs, des bouches, des zones de coin non couvertes, … pour arriver à la surface utile rafraîchie.

La figure ci-dessous montre l’évolution de la puissance intrinsèque pour un type donné de plafonds :

Exemple.

  • température ambiante : 26 °C
  • régime eau froide : 15 °C – 17 °C –> T°moy = 16 °C
  • Delta T° (ambiance – temp. moyenne eau) = 10 K

On en déduit un puissance intrinsèque de  77,5 W/m².

La sensibilité est forte puisque si la température ambiante monte de 1°C, la puissance frigorifique monte à 85 W/m² (+ 10 %).
Et inversément, si la température ambiante souhaitée est de 24°C, la puissance disponible descend à 63 W/m² (- 19 %) ! Mais en pratique, les 26 °C sont très bien supportés par les occupants suite au rayonnement froid. Ce serait plutôt 24°C qui génèrerait de l’inconfort par excès de refroidissement.

Il est clair que si le local nécessite des puissances frigorifiques importantes et fort variables dans le temps, le ventilo-convecteur convient mieux.

L’évaluation des apports latents dans les locaux

Il semble que les apports en eau par les occupants proposés dans la méthode « Carrier » soient fort élevés et correspondent au regard d’un fournisseur de matériel frigorifique, soucieux de vaincre les situations les plus critiques. Dans « Le Recknagel », on trouve des valeurs en apport d’eau plus modérées. L' »ASHRAE » est également légèrement plus faible que « Carrier ».

De plus, les valeurs « Carrier » sont valables pour une climatisation par convection. Les occupants augmentent l’échange par évaporation lorsque la température de l’air augmente, pour compenser la perte d’échange par convection.

Dans le cas d’une climatisation avec un plafond froid, une partie de l’échange se fait par rayonnement et cette partie n’est pas fonction de la température ambiante et il semble donc que les occupants produisent moins de vapeur.

Le débat reste ouvert et nécessite une confirmation par mesures officielles en laboratoire. Mais ces valeurs vont influencer l’évaluation du débit d’air neuf (ci-dessous) et donc la consommation finale de l’installation.

La détermination du débit d’air neuf

L’air neuf hygiénique est fortement déshumidifié en été pour supprimer le risque de condensation sur les plafonds.

Le niveau de déshumidification à atteindre est directement fonction de la température minimale d’entrée de l’eau dans les plafonds : idéalement il faudrait pouvoir travailler avec de l’eau à 17° d’entrée, 19° de sortie. Pour plus d’information à ce sujet, on consultera la régulation de la déshumidification.

Plus classiquement, on se limite à refroidir l’air extérieur jusque 13 °C en sortie de batterie froide, l’air est postchauffé jusque 15 °C et pulsé à 16 °C dans les locaux (1° est donné par le ventilateur).

Pour déshumidifier davantage, on peut augmenter le débit d’air neuf pulsé qui peut atteindre les 2 renouvellements horaires. Mais cette solution est plus énergivore dans la mesure où elle entraîne des coûts de transport de l’air plus élevé et le réchauffage d’une quantité d’air neuf plus élevée durant tout l’hiver et la mi-saison.

Il faut d’ailleurs se soucier du réflexe de l’installateur qui, étant inquiet « de ne pas y arriver » en été (= de ne pas avoir une puissance frigorifique suffisante avec les plafonds), va « pousser » le débit d’air afin qu’il puisse donner un petit effet refroidissant complémentaire.

Évaluer

Pour le Maître d’Ouvrage, c’est une consommation permanente supplémentaire non négligeable liée au traitement de l’air neuf, pour un risque limité à quelques journées par an, lors d’un été fortement ensoleillé.

A noter qu’il est possible d’augmenter plus astucieusement la puissance frigorifique du plafond en valorisant l’effet convectif de l’air neuf. L’idée est de faire en sorte que de l’air en mouvement vienne lécher le plafond en augmentant ainsi l’effet frigorifique. Mais il ne faut pas souffler l’air neuf directement le long du plafond. En effet, cet air est déjà froid (16  °C) et il ne captera pas l’énergie du plafond (16°C). Au contraire, il supprimera le contact entre une partie du plafond et l’air chaud du local. Par contre, si l’air neuf est distribué par bouches toriques verticalement, en plusieurs points du plafond, il va générer un brassage de l’air du local par induction et celui-ci va entrer en contact avec le plafond. Des essais menés à l’ULg ont permis ainsi d’augmenter jusqu’à 30 % la puissance frigorifique du plafond.

Le réseau de distribution d’eau

La distribution est basée sur des tuyauteries-mères (généralement disposées au plafond du couloir) qui alimentent les serpentins des différents locaux.

On souhaite souvent diminuer au maximum le delta de T° entre aller et retour, afin d’avoir le plafond le plus froid possible et la puissance maximale. Mais cela entraîne une augmentation du débit et donc du diamètre de la tuyauterie. La longueur maximum des circuits sera déduite d’une volonté de limiter à DN 80 ou DN 100 le diamètre des conduites-mères et de critères de dilatation des réseaux.

Il faudra prévoir la gestion de la pression différentielle du réseau, suite à la fermeture des vannes 2 voies. Cela se fera de préférence au moyen d’un circulateur à vitesse variable.

Un projet global

Le plafond froid ne peut être considéré comme un élément indépendant parcouru par de l’eau froide. C’est un système global qui intègre des exigences techniques et esthétiques :

  • le plafond froid : finition, forme, matériaux, puissance intrinsèque garantie;
  • l’architecture : aspect, planéité, sécurité au feu, performances acoustiques,…
  • les équipements à incorporer : luminaires, détecteurs, bouches,…
  • la pulsion d’air neuf : débit réglementaire ou sur-évalué pour répondre aux besoins de froid, refroidissement, déshumidification, confort (vitesse résiduelle)…
  • l’eau froide : débit et niveau de température, pression statique admissible, disposition des tuyauteries, production,…
  • la régulation : contrôle individuel de la température ambiante, contrôle des températures d’air et d’eau en fonction de la température extérieure, contrôle de l’humidité, asservissement à l’ouverture des fenêtres,…
  • la récupération d’énergie : capteur d’énergies « gratuites » venant des espaces de travail, récupération d’énergie, intégration des circuits plafonds froids dans l’ensemble du circuit de production de froid,…

Une collaboration entre Ingénieur Conseil et Architecte s’impose dès le début du projet, en y associant le Maître d’Ouvrage car il influencera les premières réflexions :

  • le niveau de confort à atteindre;
  • le souhait de faire également le chauffage par faux plafond;
  • le niveau de puissance à atteindre;
  •  …

Réception des installations

Planéité du plafond

La pose est généralement délicate car tout défaut dans la planéité d’un faux plafond est directement visible, surtout si la lumière est rasante. Les réceptions d’installation donnent généralement lieu à des discussions tendues entre architecte et installateur !

Bon fonctionnement hydraulique

Une fois le plafond fermé, tout est caché et il est très difficile de pouvoir dire quel est le fonctionnement réel du réseau !

Imaginons la plainte d’un occupant futur : est-ce lui qui est de mauvaise foi … ou le débit d’eau qui est réellement insuffisant ?

Il est tout à fait possible qu’une vanne d’isolement soit par erreur fermée (sic !), qu’un thermostat soit défectueux, qu’un flexible soit croqué, …

La vérification sur site comprend :

  • les contrôles et essais hydrauliques systématiques (positions des tuyaux, points d’éventage, essais de pression);
  • la vérification de la bonne circulation d’eau dans les réseaux et l’irrigation correcte de chaque élément de plafond.

Idéalement, il faudra procéder à une thermographie infrarouge du plafond lors de la réception de l’installation. Le coût de cette mesure a fortement baissé grâce à l’amortissement des caméras et se justifie amplement par rapport aux ennuis que l’on peut avoir tout au long de la vie de l’équipement. De plus, ce type de contrôle se fait beaucoup plus facilement tant que le bâtiment est inoccupé.

Il suppose une bonne préparation avant le passage des agents contrôleurs (notamment en mettant la pleine puissance de l’installation en route, quitte à chauffer parallèlement le bâtiment par le système de chauffage).

Après la mise au point finale et les vérifications de la performance finale (température ambiante, vitesses résiduelles, confort,… ), l’information de l’exploitant et de l’occupant seront nécessaires afin d’utiliser ce système au mieux de ses possibilités. Il est utile d’expliquer le principe d’apport de froid pour éviter le risque d’un excès de froid. La température de l’air n’est pas le seul critère. Un thermostat classique peut être réglé sur 25 ou 26°C car le plafond froid entraîne un équivalent-confort de 24°C. On rencontre d’ailleurs des installations où les thermostats ne sont pas gradués…!

Source : Conférence de Mr P.A. Delattre – Tracrebel Development Engineering – journée ATIC du 25.09.98.