Choisir le compresseur de la machine frigorifique [Climatisation]

Choisir le compresseur de la machine frigorifique [Climatisation]

Choix du type de compresseur

Il existe de nombreuses technologies de conception des compresseurs.

Techniques

Pour découvrir ces diverses technologies, cliquez ici !

Pour aider à la sélection, il est possible de les regrouper par « familles » et d’en tirer leurs propriétés communes.

On distingue les compresseurs par le mode de compression :

  • Le compresseur volumétrique, la compression du fluide frigorigène se fait par réduction du volume de la chambre de compression. Il existe des compresseurs à piston, à vis, à spirales (compresseurs scroll) et des compresseurs rotatifs.
  • Le compresseur centrifuge, où la compression du fluide est créée par la force centrifuge générée par une roue à aubes. On parle de turbocompresseur.

On les distingue également par l’association moteur-compresseur :

  • Le compresseur ouvert, où le moteur est dissocié du compresseur et raccordé par un manchon ou une courroie. L’accès aux différents éléments est possible pour réparation et la vitesse de rotation est modifiable en changeant la poulie du moteur. Mais ces deux avantages (fort théoriques…) ne compensent pas le défaut majeur de l’existence d’un joint d’étanchéité rotatif à la traversée du carter par l’arbre. Ce joint, qui doit être lubrifié pour assurer l’étanchéité, est source de fuites… inacceptables aujourd’hui dans un contexte « zéro-fuite ».
  • Le compresseur hermétique, où moteur et compresseur sont enfermés dans une même enveloppe. Le joint tournant disparaît et avec lui le risque de fuite. Mais des contraintes nouvelles apparaissent, dont le fait que le refroidissement du moteur est réalisé par le fluide frigorigène lui-même. Cet échauffement est préjudiciable au cycle frigorifique puisque la température à l’aspiration du compresseur augmente. De plus, si le moteur vient à griller, c’est l’ensemble du circuit frigorifique qui sera pollué : un nettoyage complet du circuit doit être réalisé si l’on veut éviter de nouveaux ennuis. En cas de problème, il n’est plus possible de réparer… Dès lors, un organe de sécurité contre la surchauffe (Klixon) est incorporé. Grâce à cette sécurité thermique, montée dans les enroulements du moteur ou sur ces derniers, l’alimentation électrique sera coupée lors d’une surchauffe du moteur.Le compresseur hermétique est couramment utilisé pour les petites et moyennes puissances : climatiseurs, armoires de climatisation, pompes à chaleur, …
  • Le compresseur semi-hermétique, qui réalise un compromis entre les deux produits précédents. Il tente de bénéficier des avantages du groupe ouvert (accès aux mécanismes) et du groupe hermétique (limitation des fuites). Mais l’étanchéité reste imparfaite (nombre de joints non négligeable) et le prix est sensiblement plus élevé que pour le compresseur hermétique.Le compresseur semi-hermétique est utilisé pour les moyennes puissances.

Critères énergétiques de sélection parmi les différents types de compresseur

Tous les compresseurs ne présentent pas une performance égale. Cette performance peut être mesurée via le COP de la machine frigorifique dans laquelle ils seront insérés. Le tableau ci-dessous (valeurs recommandées par le standard ARI) permet d’apprécier globalement la performance que l’on peut attendre des différents types de compresseurs :

Type d’équipement

COP min. recommandé (kWr/kWe)

Groupes de production d’eau glacée à pistons

A refroidissement par air

– Jusqu’à 100 kWr
– Supérieur à 100 kWr

A refroidissement par eau

– jusqu’à 10 kWr
– Supérieur à 10 kWr

 

 

3,0
3,0

 

3,7
4,0

Groupes de production d’eau glacée à vis

A refroidissement par air

A refroidissement par eau

– jusqu’à 800 kWr
– Supérieur à 800 kWr

 

4,5

 

4,6
5,0

Groupes de production d’eau glacée centrifuges

A refroidissement par air

– jusqu’à 800 kWr
– Supérieur à 800 kWr

A refroidissement par eau

– jusqu’à 800 kWr
– Supérieur à 800 kWr

3,8
3,84,5
4,7

Conditions standard ARI 550/590-98. Exemple : pour groupes de production d’eau glacée, température départ eau glacée = 6,7°C ; température entrée condenseur à eau = 29,4°C / à air = 35,0°C.

Comment choisir ?

Globalement, la tendance actuelle est :

  • à l’abandon des machines à mouvement alternatif (compresseur à piston),
  • au développement des machines tournantes, à came rotative, à spirale rotative (scroll) ou à vis.


Le compresseur à vis …


… et la vis en question !

Compresseur scroll.

Les avantages portent :

  • sur une réduction des pièces mécaniques en mouvement (suppression des clapets) et donc une plus grande fiabilité,
  • un rendement volumétrique d’un compresseur assez bon grâce à l’absence d’espaces morts, comme dans les compresseurs à pistons,
  • une meilleure modulation de puissance,
  • une plus grande longévité,
  • un niveau sonore nettement plus favorable (moins de vibrations), surtout pour les appareils hermétiques,
  • une moindre sensibilité aux entrées de fluide frigorigène liquide (« coups de liquide » destructeurs des compresseurs à pistons),
  • un coût de maintenance également plus faible, puisque le risque de panne est diminué.

Pas de secret : leur coût d’achat est encore plus élevé…

On choisira des compresseurs hermétiques ou semi-hermétiques pour atteindre l’objectif zéro-fuite de fluide frigorigène, objectif qui sera un jour obligatoire au niveau réglementaire.

La puissance frigorifique à atteindre constitue un critère de choix de départ, mais la sélection d’un compresseur demande une vue globale sur les typologies disponibles en fonction de la puissance frigorifique et sur le mode de régulation de puissance. Un camion peut être très performant, mais s’il est trop puissant, il n’atteint pas la performance de 2 camionnettes…

Dans le tableau synthèse de sélection, on trouvera les deux critères rassemblés.

Critères énergétiques de sélection du compresseur lui-même

Pour les compresseurs à vis comme pour les compresseurs scroll, le risque est de sélectionner un compresseur dont le taux de compression est trop élevé : le compresseur travaillera « pour rien » puisque le fluide frigorigène sera trop comprimé puis se détendra au travers de l’orifice de refoulement jusqu’à atteindre la pression de condensation.

La pression de condensation est liée au régime de fonctionnement du condenseur de l’installation. Il importe que la pression interne de refoulement soit la plus proche possible de la pression de condensation.

Le concepteur choisira un « rapport de volume interne » (cela correspond au taux de compression, mais exprimé sous forme d’un rapport entre les volumes à l’entrée et à la sortie du compresseur) approprié au cas d’utilisation et pour lequel le compresseur exige la plus faible puissance d’entraînement possible.

Pour les cas où les conditions de pression de fonctionnement varient fortement, on a mis au point le compresseur à vis à rapport de volume interne variable. Le taux de compression s’adapte automatiquement au rapport de pression utile en fonction des paramètres de température de condensation et de température d’évaporation.

Cette technique optimalise le rendement énergétique tant à pleine charge, qu’à charge partielle.

L’insertion d’un économiseur (ou « superfeed » ou « suralimentation »)

Le fonctionnement technique de l’économiseur dépasse la portée de nos propos, mais le principe de base consiste à injecter une quantité de fluide frigorigène supplémentaire dans le compresseur, à une pression intermédiaire entre la pression de condensation et d’aspiration.

La puissance frigorifique en est nettement améliorée alors que la puissance absorbée n’augmente que légèrement.

On rencontre différentes modalités d’application de ce principe dans trois technologies de compresseur :

  • Dans les compresseurs à vis, où un orifice est prévu dans la paroi du stator pour injecter du fluide juste après la phase d’aspiration.
  • Dans les compresseurs rotatifs à palettes multiples, où une augmentation de 10 % de la puissance absorbée, génère de 20 à 30 % de la puissance frigorifique, suivant le régime de fonctionnement.
  • Dans les compresseurs centrifuges, où ce système est prévu par certains constructeurs lorsque le compresseur comporte deux roues. Les gaz supplémentaires sont injectés à l’entrée de la deuxième roue où ils se mélangent aux gaz refoulés de la première roue. Même si la puissance absorbée augmente, le coefficient de performance en est accru. On cite par exemple un COP accru de 6 % pour une température d’évaporation de 0°C et une température de condensation de 40°C.

Refroidisseur de liquide à compresseur centrifuge de 3 900 kW.

Prévoir dès le départ la mesure du COP de l’installation :

Pour la bonne gestion future d’une grosse installation, on peut imaginer de placer un compteur d’énergie sur l’eau glacée et un compteur électrique sur le compresseur (coût de l’ordre de 5 000 Euros). Il sera alors possible d’imposer un COP moyen annuel minimum à la société de maintenance… en laissant celle-ci se débrouiller pour y arriver. Un remboursement de la différence peut être prévu comme pénalité en cas de non-respect.


Choix de la technique de régulation de puissance

La puissance de la machine frigorifique a été dimensionnée pour répondre aux conditions de fonctionnement extrêmes (période de canicule), sans compter les surdimensionnements liés aux incertitudes d’occupation.

La première économie consiste à évaluer au plus près la puissance frigorifique nécessaire car la machine frigorifique s’adapte mal aux bas régimes. Chaque palier de diminution de 25 % de la puissance frigorifique du groupe ne réduit la puissance électrique absorbée que de 10 % en moyenne ! Pour vérifier les ordres de grandeur dans un cahier des charges, un ratio (très approximatif !) de 100 W/m² peut situer les besoins d’un bureau. La puissance totale du bâtiment ainsi trouvée sera multipliée par 2/3 pour tenir compte de la non-simultanéité des besoins.

Ensuite, il faut choisir une régulation qui lui permette de répondre à des besoins généralement beaucoup plus faibles que la valeur nominale et fluctuant dans le temps.

Diverses techniques de régulation sont possibles :

  • la régulation par « tout ou rien » (marche/arrêt ou pump-down),
  • la régulation progressive de la pression d’évaporation,
  • la régulation par « étages »,
  • la régulation par cascades (ou « centrales »),
  • la régulation par variation de vitesse ou « INVERTER »,
  • la mise hors-service de cylindres,
  • le by-pass des vapeurs refoulement-aspiration,
  • l’obturation de l’orifice d’aspiration,
  • la régulation par injection des gaz chauds,
  • la régulation « par tiroir » des compresseurs à vis,
  • la prérotation du fluide frigorigène dans les turbocompresseurs.

Les investissements dans une régulation performante sont très rentables. Le supplément de prix demandé par l’installation de plusieurs unités en cascade (centrale) ou d’unités avec un réglage fin de la production (turbocompresseurs et compresseurs à vis avec régulation de l’aspiration) est rapidement compensé par les économies d’énergie réalisées. Un surcroît d’investissement de 10 à 15 % génère de 20 à 30 % d’économie d’énergie.

Le découpage de la puissance

Classiquement, la solution consiste à répartir la puissance :

  • soit en choisissant un compresseur à plusieurs étages (= plusieurs cylindres ou plusieurs pistons),
  • soit en créant une cascade entre plusieurs compresseurs (= compresseurs en centrales).

Le choix d’un compresseur à plusieurs étages est réservé aux machines frigorifiques utilisées en congélation. Suite à la très basse température de l’évaporateur, la différence des pressions à vaincre par le compresseur est fort élevée. Il est alors très utile de décomposer la compression en deux étapes : c’est le rôle du compresseur bi-étagé. On choisit également ce système lorsque la température de refoulement des gaz comprimés devient trop élevée : c’est par exemple le cas de l’ammoniac.

Par contre, en climatisation, un montage en parallèle de plusieurs machines (montage « en centrale ») est simple et fiable puisque les machines restent indépendantes.

Compresseurs alternatifs
montés en tandem.

La variation progressive de la puissance est énergétiquement favorable puisqu’aucune machine n’est dégradée dans son fonctionnement.

Bien sûr, le coût d’investissement est plus élevé que si l’on utilisait une seule grosse machine, mais imaginerait-on d’installer une grosse chaudière sans prévoir une cascade pour reprendre les faibles besoins de la mi-saison ?

Un découpage de la puissance en étages est recommandé, tout particulièrement lorsque les variations de charge sont importantes.

Il en résultera :

  • Un gain sur les kWh (énergie) :
    • car le « petit » compresseur alimentera un condenseur surdimensionné pour ses besoins, d’où une pression de condensation plus basse,
    • car le rendement du moteur du compresseur sera amélioré.
  • Une longévité accrue de l’installation par un fonctionnement plus régulier.
  • Une sécurité d’exploitation.
  • Un gain sur la pointe 1/4 horaire en kW (puissance), facturée par la société distributrice.

En général, on établit les enclenchements en cascade sur base de l’évolution de la température de retour de la boucle d’eau glacée, température qui constitue une image des besoins du bâtiment. Le tout est temporisé de telle sorte que les compresseurs ne s’enclenchent pas tous les uns à la suite des autres.

Une bonne solution peut être également de réguler en fonction de la température du ballon-tampon, lorsqu’il est existant.

Pourquoi un ballon tampon ? Un compresseur ne peut démarrer et s’arrêter trop fréquemment sous peine de s’échauffer. Pour prolonger la durée de vie du matériel en diminuant le nombre de démarrages, le constructeur prévoit un « anti-court cycle », c’est-à-dire la temporisation du redémarrage si l’installation vient de s’arrêter. La présence du ballon tampon amplifie l’inertie thermique de l’installation, prolonge la durée de fonctionnement du compresseur, améliore le rendement du compresseur et supprime le risque qu’il soit bloqué par l’anti-court cycle.

On dimensionne un ballon tampon de telle sorte que son stockage corresponde à 5 à 10 minutes de la consommation en eau.

La variation de vitesse du compresseur

C’est une autre solution avantageuse en plein développement : soit un moteur d’entraînement à deux vitesses, soit un entraînement à vitesse variable. Cette dernière technique est sans aucun doute à recommander actuellement. Le régime de vitesse s’adapte à la puissance de réfrigération souhaitée. Par exemple, un variateur de fréquence génère une tension dont la fréquence varie entre 20 et 60 Hz. S’il s’agit d’un moteur prévu pour fonctionner à 1 500 tours à 50 Hz, il tournera entre 600 et 1 800 tours/min selon les besoins.

Pourquoi la limitation à 20 Hz ? Un défaut de lubrification du compresseur peut apparaître à basse vitesse, mais les constructeurs améliorent les systèmes régulièrement et trouvent des solutions.

Cette technique de variation de puissance par la variation de vitesse du compresseur (encore appelée INVERTER) entraîne :

  • un confort élevé (bonne stabilité de la température à l’évaporateur car régulation de la pression à l’aspiration du compresseur),
  • un rendement énergétique supérieur aux autres techniques de régulation de puissance, car on ne détruit pas le rendement volumétrique, on givre moins (en chambre frigorifique), on limite les dépassements de consigne de régulation propres aux systèmes de régulation tout ou rien (liés au différentiel de régulation),
  • une réduction du bruit et des vibrations,
  • un cos phi élevé (entre 0,95 et 0,98), ce qui permet d’éviter des pénalités ou le placement de condensateurs de compensation.

Audit

Pour comprendre la facture électrique, cliquez ici !

Réseau électrique

Pour comprendre le placement de condensateurs de compensation, cliquez ici !

Le supplément de coût (si un compresseur coûte 100, sa version avec variateur de vitesse tournera entre 150 et 180) sera rapidement amorti par l’économie d’exploitation. Il ne sera plus nécessaire de prévoir un démarrage « étoile-triangle » puisqu’un démarrage « en douceur » est réalisé par le variateur.

A priori, les différents types de compresseurs peuvent être équipés de cette technique (exceptés les petits compresseurs hermétiques), mais s’il s’agit de greffer un variateur sur un matériel existant, une consultation préalable du fabricant sera bienvenue (risque de défaut de lubrification).

Cette technique est également intéressante pour les compresseurs à vis (énergétiquement plus efficace que la régulation par tiroir), mais des troubles de lubrification et un échauffement du moteur peuvent apparaître à vitesse réduite.

La mise à l’arrêt de cylindres

Méthode assez répandue parmi les techniques de découpage de la puissance, il est possible de jouer avec la mise hors-service des cylindres (ce qui peut s’adapter sur une installation existante).

Avantage : pour éviter les pointes de courant de démarrage, il est possible de démarrer à vide le compresseur.

Inconvénients :

  • Ce réglage est énergétiquement moins favorable; les cylindres tournant à vide ont pour conséquence que, pour une puissance de réfrigération de 50 %, par exemple, la machine absorbe encore environ 65 % de la puissance d’entraînement.
  • La variation de la puissance n’est pas continue (sauts de puissance).
  • L’usure de la machine est pratiquement identique à vide ou en charge.

L’obturation de l’orifice d’aspiration

À cet égard, le réglage par un étranglement dans la conduite d’aspiration n’est pas meilleur. On modifie alors la puissance de réfrigération en agissant sur le débit du réfrigérant.

L’injection des gaz chauds

Quant au réglage de la puissance du compresseur par injection des gaz chauds dans l’évaporateur ou à l’entrée du compresseur, il faut le qualifier de « pur anéantissement d’énergie ». Dans ce cas, la puissance absorbée reste la même lorsque la puissance de réfrigération diminue. De plus, ils provoquent un échauffement du moteur. Dans la mesure du possible, il faut mettre ce système aberrant hors service dans les installations existantes.

C’est le compresseur qui travaille sur lui-même. On pourrait tenter l’image suivante : une pompe remonte de l’eau de la cave vers le rez-de-chaussée. Si l’eau vient à manquer, on risque de faire caviter la pompe. Aussi, on décider de redescendre de l’eau vers la cave, de réinjecter de l’eau supplémentaire à l’entrée de la pompe. Ainsi, on est sûr que le débit de la pompe restera suffisant !

Attention à l’injection de gaz chauds rencontrée en climatisation sur des groupes avec un compresseur n’ayant pas de système interne de régulation de puissance, utilisé sur des petits chillers et des systèmes à détente directe (roof-top, par exemple) : c’est absolument à proscrire.

(A ne pas confondre avec le dégivrage par injection de gaz chauds, qui est par contre une technique très efficace de dégivrage).

Tableau synthèse de sélection

L’importance d’une mesure préalable !

La mise en place d’une régulation performante demande de connaître la puissance effective nécessaire en fonction des saisons. Aussi, si le choix d’un compresseur doit être fait en vue du remplacement d’une machine existante, on placera un simple compteur horaire sur l’alimentation électrique du compresseur actuel pour ainsi connaître son temps de fonctionnement et donc la puissance moyenne demandée. Cela permettra de mieux choisir la nouvelle machine frigorifique.

Si l’installation doit vaincre les apports d’une machine spécifique à enclenchement discontinu, la puissance moyenne peut être trompeuse : à certains moments, c’est la puissance totale qui est demandée, et zéro le reste du temps… Idéalement, on enregistrera la puissance demandée, en relevant en parallèle la source des apports thermiques.

Type de compresseur Plages de puissance
(kW frigorifiques)
Régulation adaptée
Compresseur rotatif 10 W maximum
(climatiseurs individuels,
petits refroidisseurs d’eau)
  • Variation de la vitesse de rotation
  • Régulation admission gaz à l’aspiration
  • La tendance est d’associer deux ou plusieurs compresseurs sur une même machine

(*)

Compresseur scroll de 3 à 40 kW par compresseur
(mais possibilité de puissance supérieure par mise en parallèle de compresseurs)
Modulation de puissance optimale, par variation de la vitesse de rotation ou par mise en « centrale »
Compresseur à piston
Ouvert quelques dizaines de kW à plus de 1 000 kW Étanchéité aux fluides frigorigènes insuffisante aujourd’hui
Semi-hermétique de quelques dizaines de kW à quelques centaines de kW
  • Un compresseur à plusieurs étages
    ou plusieurs compresseurs en cascade (« centrale »)
  • Variation de la vitesse de rotation
Hermétique de quelques kW à plusieurs dizaines de kW Régulation type « marche/arrêt » commandée par thermostat d’ambiance ou sur circuit d’eau.

Tendance actuelle : plusieurs compresseurs en cascade (« centrale »)

Compresseur à vis de (20) 100 à 1 200 kW Excellente fiabilité et longévité

Modulation de puissance par « tiroirs » très souple, de 100 à 10 %, avec une très faible dégradation du COP par la régulation « par tiroirs », du moins au-dessus de 50 % de la puissance.

Compresseur centrifuge (ou turbo-compresseur) de (600) 1 000 à 4 000 kW Modulation de puissance optimale limitée à 35 %, par prérotation du fluide frigorigène à l’entrée de la roue.

(**)

(*) pour les compresseurs rotatifs, la modulation de puissance s’opère par modification du débit de fluide frigorigène, soit en faisant varier la vitesse de rotation du compresseur, soit en régulant l’admission des gaz à l’aspiration. Le rendement énergétique est sensiblement conservé à charge partielle, ce qui constitue un avantage important. Pour la même raison que pour les compresseurs à pistons, la tendance est d’associer deux ou plusieurs compresseurs sur une même machine.

(**) Pour les turbocompresseurs,

  • La variation de la vitesse de rotation ne peut se faire que sur une plage limitée et avec une diminution de rendement du compresseur. Concrètement, la variation de vitesse par moteur asynchrones triphasés est encore onéreuse, aussi la régulation par variation de vitesse n’est envisagée que lorsque le turbo compresseur est entraîné par une turbine à vapeur.
  • La régulation par modification des pressions du cycle est parfois rencontrée (augmentation de la pression de condensation par augmentation de la température au condenseur, et diminution de la température à l’évaporation en créant une perte de charge à l’aide d’un volet). cette technique est désastreuse sur le plan énergétique. Tout autant que la régulation par injection de gaz chauds à l’aspiration.
Remarque.
Choisir un compresseur performant, c’est bien. Le placer dans un environnement favorable, c’est mieux. En pratique, on sera très attentif aux assembliers qui proposent
« un échangeur + un compresseur + un échangeur ».
L’ensemble forme une machine frigorifique, certes, mais les pertes de charge liées aux échangeurs sont parfois très élevées pour le compresseur, ce qui augmente fortement sa consommation !On choisira de préférence une installation globale, montée d’usine et dont le fabricant garantit la performance globale.

Critères acoustiques

En local technique

C’est le compresseur qui génère le plus de bruit, il est donc toujours préférable de le placer en local technique lorsque l’on dispose d’un espace suffisant, tandis que le condenseur refroidi par air est placé en terrasse. Cette solution est la plus adaptée en ce qui concerne la diminution des nuisances sonores vers l’extérieur du bâtiment.

Lorsque les compresseurs sont placés en local technique, ils masquent tous les bruits de détente ou de circulation interne des fluides dans la machine. Pour diminuer les nuisances acoustiques du compresseur, il faut mettre en place les dispositifs suivants :

  • Mettre un capot acoustique sur la machine.
  • Prévoir une dalle flottante équipée d’isolateurs à ressorts.
  • Placer des plots en élastomère entre la machine et la dalle flottante.

Si le groupe évaporateur/compresseur est implanté au-dessus de locaux occupés, on peut placer un matelas de laine de verre entre la dalle flottante et le socle de propreté de la machine.

N.B. : la suspension anti-vibratile des compresseurs peut ne pas être suffisamment efficace car les compresseurs sont reliés aux autres éléments de façon rigide. Ainsi, on utilisera des manchettes souples pour relier l’évaporateur aux canalisations du réseau hydraulique.

En terrasse

Si on ne dispose pas d’un local de service, évaporateur, compresseurs et condenseur seront placés en terrasse. Mais, sur le plan acoustique, ce type de disposition est toujours à éviter.

Dans tous les cas, il faudra éloigner au maximum les compresseurs de tous les plaignants potentiels.

Remarquons que l’éloignement de la machine impose des longueurs de canalisations plus importantes, ce qui peut avoir une influence sur le dimensionnement des équipements (collecteurs, pompes, …) et augmenter le coût de l’installation.

Il faudra éviter de placer les compresseurs à proximité de parois qui pourraient augmenter sa directivité vers une zone sensible. Au contraire, il faudra envisager de placer la machine de façon à la cacher derrière un obstacle. Ainsi, en terrasse, on pourra placer la machine derrière la cabine d’ascenseur ou profiter de la présence de l’armoire électrique de la machine, par exemple.

Remarque.

Si la réduction des nuisances acoustiques est un critère important, le placement d’un variateur de vitesse sur le compresseur (qui se justifie déjà pour des raisons énergétiques) est incontournable.

Certains variateurs peuvent être paramétrés pour « sauter » la(les) gamme(s) de fréquence qui génère(nt) des vibrations du compresseur (fréquences de résonance de la machine). Simplement, il ne s’arrête pas sur ces fréquences critiques.

À titre d’exemple, voici quelques niveaux sonores donnés par un fabricant de groupes refroidisseurs de liquide (pression sonore mesurée à 10 m en champ libre en dBA).

– machines équipées de compresseur scroll hermétique :

Puissance comprise entre 17 et 35 kW : 43 dBA
Puissance comprise entre 38 et 100 kW : 55 dBA
Puissance comprise entre 101 et 200 kW : 61 dBA

Puissance comprise entre 201 et 245 kW : 65 dBA

– machines équipées de compresseur à piston semi-hermétique :

Puissance comprise entre 245 et 540 kW : 57 dBA
Puissance comprise entre 541 et 740 kW : 60 dBA

– machines équipées de compresseur à vis :

Puissance comprise entre 280 et 600 kW : 68 dBA
Puissance comprise entre 601 et 1215 kW : 71 dBA

Choisir le CO2 comme fluide réfrigérant ou caloporteur

Image par défaut pour la partie Concevoir

Le grand retour du CO2 ?

Le CO2 (R 744) revient à la charge ses derniers temps comme fluide frigorigène. Autrefois remplacé par les CFC, HCFC, HFC, il doit son retour :

  • À son faible impact sur l’environnement (ODP = 0, GWP = 1) par rapport aux autres fluides frigorigènes utilisés actuellement (jusqu’à 3 800 fois moins d’impact sur l’environnement que les HFC).
  • À  l’avancée des technologies dans le domaine de la réfrigération et de la climatisation. En effet, le problème du confinement des gaz sous haute pression semble partiellement résolu grâce, et c’est paradoxal, à la maîtrise de la climatisation dans les véhicules avec la nécessité de trouver :
    • un fluide réfrigérant propre;
    • un faible volume massique permettant des installations compactes (faible poids des équipements et volume réduit de fluide frigorigène);

Les avantages et inconvénients de l’utilisation du CO2 comme fluide frigorigène sont les suivants :

Avantages

Inconvénients

  • pas d’action sur l’ozone (ODP = 0);
  • peu d’impact direct sur l’effet de serre (GWP = 1) sachant par exemple que le R404A a un GWP de 3 800;
  • fluide naturel et largement disponible;
  • ininflammable (utilisation comme gaz dans les extincteurs);
  • non corrosif, compatible avec tous les matériaux;
  • non toxique;
  • alimentaire (notamment nos voisins hollandais l’utilise dans la conservation des repas dans les hôpitaux);
  • production frigorifique volumétrique élevée, permettant à l’heure actuelle des compresseurs de faible cylindrée et des circuits à faible quantité de fluide;
  • miscible à l’huile des compresseurs;
  • peu descendre jusqu’à -54°C;
  • taux de compression faible par rapport aux autres réfrigérants (COP intéressant);
  • il forme des acides avec l’eau et du carbonate d’ammonium (corrosif) avec l’ammoniac;
  • les pressions de service sont très importantes (80, 100 bar voire plus);
  • les équipements des circuits et de sécurité, dus à la pression, doivent être performants (coûts importants);
  • la mise en œuvre de tels circuits n’est pas encore bien maîtrisée;
  • à la mise en route, la déshydratation des circuits doit être encore plus poussée.
  • en cas d’arrêt prolongé, des dégazages à l’atmosphère doivent être opérés, nécessitant une recharge ultérieure;


Utilisation du CO2 comme fluide frigorigène : Cas pratique

Actuellement, un supermarché GB à Aywaille teste un système de réfrigération-chauffage combiné où :

  • les sources froides sont :
    • les meubles frigorifiques;
    • échangeur air/CO2 (« évaporateur de toiture);
    • échangeur eau nappe souterraine/CO2;
  • et les sources chaudes sont :
    • échangeur CO2/air (« gaz cooler »de toiture);
    • les circuits à basse température tels que le chauffage au sol, la centrale de traitement d’air et les rideaux d’air;
    • les circuits à haute température pour l’eau chaude sanitaire.

L’intérêt de ce système est de combiner des besoins :

  • de froid au niveau des meubles frigorifiques. En effet, le nombre impressionnant de meubles frigorifiques ouverts et fermés pour ce type de supermarché nécessite une puissance frigorifique de 300 kW (positif) et 40 kW (négatif);
  • de chaud classiques d’une puissance de l’ordre de 540 kW.

avec une seule machine, à savoir une pompe à chaleur.

Les résultats du monitoring ne sont pas encore connus mais devraient permettre d’y voir plus clair sur une technologie qui a le vent en poupe.


Comparaison  CO2 – R134a  

À titre d’exemple, on compare les performances théoriques de deux fluides réfrigérants comme le CO2 et le R134a.

Les hypothèses de travail sont les suivantes :

  • la phase de refroidissement du CO2 est dans la zone « transcritique » (refroidissement au dessus du point critique : 31°C, 73,6 bar);
  • la température d’évaporation est de -10°C dans les deux cas (application classique de froid positif);
  • la température de condensation pour le R134a est de 30°C (la température ou pression de condensation est flottante en fonction du climat externe);
  • la température de fin de refroidissement pour le « gaz cooler » est de 30°C aussi.

Dans le diagramme (log p, h), on superpose les deux cycles frigorifiques :

Les avantages et inconvénients du cycle CO2 au niveau thermodynamique sont :

Avantages

Inconvénients

  • L’efficacité énergétique en production de froid est relativement bonne si on maîtrise la phase de refroidissement (au « gaz cooler ») au niveau de la température. Pour une température de condensation flottante atteignant les 30°C, l’EFF du compresseur est de l’ordre de h1/h2 = 3,8;
  • Les températures à l’entrée du « gaz cooler » ou  d’un échangeur quelconque, peuvent atteindre des valeurs de l’ordre de 80°C, ce qui est intéressant pour des applications classiques de chauffage par pompe à chaleur;
  • L’efficacité énergétique en production de chaleur peut être très bonne dans la mesure où l’installation puisse tenir des pressions importantes (de l’ordre de 90 bar), ce qui représente quand même une prouesse technologique, mais accessible actuellement. Le COP pourrait atteindre des valeurs de h3/h2= 5;
  • Que ce soit en chaud comme en froid, les valeurs de EFF et COP restent en dessous des valeurs obtenues pour le R134A dans les mêmes conditions, soit une EFF h4/h5 de 5 et un COP h6/h5 de 6.

Les avantages et inconvénients du cycle R134a au niveau thermodynamique sont :

Avantages

Inconvénients

  • pour une installation bien régulée (détendeur électronique, variateur de vitesse des compresseurs, …, les performances des compresseurs tant en chaud qu’en froid sont meilleures que celles pour le cycle CO2 (COP = 6, EFF = 5).
  • Les températures de condensation sont plus faibles que celle du cycle CO2. Ce qui signifie que ce type de fluide ne peut être utilité pour des applications de chauffage haute température combiné au froid alimentaire.


Intérêt du CO2 ?

L’intérêt de l’utilisation du CO2 comme fluide réfrigérant, est avant tout lié à un choix par rapport à l’environnement. En effet, on pointera principalement :

  • le faible impact sur la couche d’ozone et l’effet de serre de part sa composition:
  • la plus faible quantité de fluide utilisé de part son volume massique faible (en cas de fuite, la quantité rejetée est faible);
  • la disponibilité de ce fluide dans la nature (piège à CO2 réalisable);

De plus, dans le cas où l’on considère qu’il faut combiner le besoin de chaleur à haute température (80-90°C) avec celui de froid et ce afin d’éviter de choisir une chaudière et un groupe de réfrigération pour la partie froid alimentaire, une installation de pompe à chaleur au CO2 peut être intéressante.

Toutefois en conception, pour autant que :

  • l’enveloppe soit bien isolée;
  • la ventilation hygiénique soit régulée en fonction de l’occupation;
  • les entrées soit bien étudiées afin de réduire les pertes énergétiques aux accès (courant d’air par exemple);
  • la quantité de meubles frigorifiques dans les commerces ouverts soit limitée;

Il n’y a pas de raison valable d’investir dans une installation coûteuse telle que celle au CO2 car la nécessité d’atteindre des températures d’eau chaude de 80-90°C n’est plus nécessaire. Autant alors investir dans une pompe à chaleur classique dont le condenseur fonctionne à des températures avoisinant les 45°C.


Conclusion

L’utilisation du CO2 comme fluide frigorigène est probablement une piste à suivre de très près.

Il est important, en conception, avant de choisir le réfrigérant qui va naturellement conditionner tout le choix des équipements, de déterminer si le projet s’inscrit dans une démarche énergétique et durable globale. Auquel cas, il faut limiter au maximum :

  • Les déperditions de l’enveloppe par l’isolation thermique des parois, la limitation des pertes par ventilation et infiltration, …
  • Les apports internes positifs ou négatifs tels que l’éclairage intensif, les meubles frigorifiques ouverts, …, par le choix  de luminaires performants, de meubles frigorifiques fermés, apport de lumière naturelle contrôlé (sheds par exemple), …
  • Les apports externes tels que les apports solaires par l’orientation du bâtiment, les ombrages, …

En fonction de l’objectif fixé au niveau de l’esquisse du bâtiment, lors du projet on pourra déterminer l’intérêt ou pas d’investir dans un fluide réfrigérant tel que le CO2.

Choisir une production de froid « alternative » (freechilling, refroidissement adiabatique, géothermie, climatisation solaire)

Choisir une production de froid "alternative" (freechilling, refroidissement adiabatique, géothermie, climatisation solaire)


Quand opter pour un freechilling ?

Le free-chilling consiste à refroidir l’eau glacée de l’installation frigorifique par « contact » avec l’air extérieur lorsque la température de celui-ci est suffisamment basse.

Qu’est-ce qu’une installation adaptée au free-chilling ?

Au départ, il faut que des besoins de froid soient prévus en hiver.
L’intérêt est augmenté si les échangeurs des unités terminales qui seront choisis travaillent à « haute » température : ce sera le cas de plafonds froids (régime 15-17 °C), de poutres froides ou de ventilos-convecteurs surdimensionnés pour travailler au régime 12-17 °C ou 14-19 °C,… À noter qu’un tel dimensionnement diminue les pertes du réseau et la consommation liées à la condensation de la vapeur d’eau contenue dans l’air des ambiances, ce qui amplifie l’économie d’énergie.

Si l’installation demande une puissance de refroidissement faible en mi-saison ou en hiver (de l’ordre de 50 W/m²), on pourrait faire travailler les plafonds froids au régime 17 ° – 19 °C, ce qui permet un refroidissement par l’air extérieur tant que la température de l’air est inférieure à 14 °C. On peut alors imaginer une modulation de la température de consigne de l’eau des plafonds froids en fonction de la température extérieure.

Enfin, le projet se présente très favorablement si un condenseur à eau est prévu : on pourra utiliser la tour de refroidissement pour refroidir l’eau glacée directement par l’air extérieur. Dans la tour, grâce à l’évaporation partielle de l’eau, la température de l’air extérieur sera encore diminuée. Ainsi, de l’air à 15 °C et 70 % HR permet de créer de l’eau de refroidissement à 12 ° (limite basse théorique appelée température « bulbe humide »). Malheureusement, un échangeur sera nécessaire entre le circuit de la tour (eau glycolée) et le circuit d’eau glacée du bâtiment. Une partie de l’avantage est donc perdu…

Le problème du gel…

De l’eau glacée refroidie par l’air extérieur pose le problème du gel dans la tour. La solution la plus courante est l’addition de glycol, mais :

  • le glycol coûte cher,
  • le glycol diminue les capacités d’échange thermique et augmente la densité du liquide, ce qui entraîne une augmentation de puissance des pompes,
  • en général, on limite le circuit glycol au dernier tronçon en contact avec l’extérieur (l’eau de la boucle d’eau glacée n’est pas glycolée car, en cas de vidange, c’est l’entièreté du circuit qui est à remplacer),
  • un échangeur supplémentaire doit alors être prévu, entraînant une consommation électrique liée à sa perte de charge et un écart de température qui diminue la période de fonctionnement du free-chilling…
  • Attention lorsque l’on rajoute de l’eau ultérieurement…

Il est aussi possible de placer des cordons chauffants (mais peut-on protéger totalement ainsi une tour ?) ou de prévoir un circuit de chauffage spécifique qui se met en place en période de gel, mais on risque de manger le bénéfice !

 Le free-chilling : une solution miracle pour toutes les installations ?

Certainement pas. De nombreuses contraintes apparaissent.

Quelques exemples :

  • Lorsque l’installation travaille à charge partielle, il y a intérêt à ce que la température moyenne de l’eau « glacée » soit la plus élevée possible pour favoriser l’échange avec l’air extérieur. On appliquera donc une régulation des échangeurs par débit variable pour augmenter l’écart de température entre départ et retour.
  • Une tour de 300 kW pèse 3 à 4 tonnes et une tour de 1 000 kW pèse 9 à 12 tonnes, ce qui génère parfois des frais d’adaptation du génie civil.
  •  …

Adapter cette technique nécessite donc toujours une étude particulière (cadastre des énergies de froids prévues avec leur niveau de température, répartition été/hiver, …) pour apprécier la rentabilité.

Mais il est en tous cas impératif d’y penser lors d’une nouvelle installation !


Quand opter pour un refroidissement adiabatique

Le refroidissement adiabatique permet de rafraîchir de l’air en centrale par humidification. Cet air humide et frais est ensuite utilisé directement dans l’ambiance ou indirectement par un échangeur de chaleur.

Ce système basé sur des équipements existants (groupe de ventilation, tour de refroidissement) apporte un rafraichissement naturel bienvenu lorsque des techniques plus « lourdes » (fenêtres motorisées, etc.) ne peuvent être mises en œuvre. Il peut également servir d’appoint à ces techniques passives lorsque celles-ci ne suffisent plus à assurer le confort.

Le refroidissement adiabatique a cependant une efficacité limitée à trois niveaux,

  • comme tout système de transfert thermique basé sur l’air, la faible capacité calorifique de l’air bride la puissance disponible. Des débits d’air importants sont nécessaires pour que le refroidissement soit réellement sensible.
  • La température minimale à laquelle l’air peut être abaissé est la température de bulbe humide, qui correspond à la saturation. Cette température est plus élevée que celle obtenue par une machine frigorifique « classique ».
  • Le système ne fonctionne que lorsque l’air que l’on souhaite humidifier est suffisamment sec que pour présenter un potentiel de rafraichissement intéressant. Si c’est de l’air intérieur, le refroidissement adiabatique sera plus pertinent dans des locaux faiblement occupés (moins de dégagement d’humidité dans l’ambiance). Si c’est de l’air extérieur, le système ne sera pas très efficace les jours chauds et humides.

La figure ci-dessous montre, heure par heure, les conditions climatiques d’Uccle, et la zone de conditions T° et Humidité favorable à un système évaporatif direct. A l’évidence, notre climat humide n’est pas le plus favorable pour cette technique.

Elle n’est pas pour autant à dédaigner complètement. Considérons par exemple un air extérieur à 22 °c et 60 % d’humidité relative, une condition qui n’a rien d’exceptionnel en été. Pour peu qu’il y ait un peu de soleil, beaucoup de bâtiments seront en demande de refroidissement. Par humidification, cet air peut être  abaissé jusqu’à environ 17 °C. Ce gain de 5 °C, sur un débit d’air hygiénique d’environ 3 m³/(hm²) dans des bureaux représente 5 W/m² de puissance frigorifique. C’est presque équivalent à la chaleur dégagée par les occupants (70 W/personne, 10 à 15 m²/personne). C’est peu, mais non négligeable.

Quand donc opter pour ce type de système ?

Dans notre climat, un refroidissement adiabatique direct est limité par l’humidité extérieure, et surtout d’une efficacité très variable en fonction de la météo.  On évitera donc de se fier uniquement sur eux pour traiter une ambiance. Par contre, sa simplicité fait qu’il trouvera presque toujours une place en complément de stratégies de refroidissement sur boucle d’eau.

Les systèmes indirects, basés sur l’humidification de l’air extrait, seront pertinents lorsque l’air extrait peut être fortement refroidi. Pour cela, il faut qu’il ne soit ni trop chaud, ni trop humide. La condition « pas trop chaud » fait penser à des locaux disposant déjà d’un système de refroidissement  par boucle d’eau. On est alors sur de plafonner à 24-25 °C. La condition « pas trop humide » se rencontre lorsque la surchauffe du local est liée à des gains solaires et internes sans dégagement d’humidité. Autrement dit dans les locaux dont l’occupation humaine est relativement limitée. Problème : dans ces cas-là, le débit d’air a tendance à l’être aussi, ce qui limite la puissance disponible. Faut-il surdimensionner le réseau de ventilation ? C’est un calcul économique à réaliser au cas par cas.

En conclusion, le refroidissement adiabatique apparait chez nous comme un appoint intéressant à d’autres systèmes plus que comme une technique autonome de refroidissement.

Et si on reformulait les objectifs de la conception des bâtiments de façon à atteindre un niveau de maîtrise des charges thermiques au point de rendre cet appoint suffisant ?

Techniques

Pour en savoir plus sur le refroidissement adiabatique, cliquez ici !

Concevoir

Pour en savoir plus sur la façon de valoriser la physique de l’air humide, cliquez ici !

Quand opter pour une climatisation solaire ?

La climatisation solaire est une technique basée sur l’utilisation de machines frigorifiques à ab/adsorption  ou de roues dessicantes. L’énergie solaire sert alors de source de chaleur pour régénérer le sorbant.

Dans le cas des machines frigorifiques à adsorbtion, la possibilité d’utiliser le soleil pour cet usage est limité par la demande d’une température d’eau minimale qui se situe entre 70 et 95°C en fonction du couple solvant-réfigérant. Dans les roues dessicante, cette température est également supérieure à 70°C. Pour atteindre cette température, l’emploi de capteurs performants est indispensable (sélectifs, sous vide, à faible concentration), ce qui induit un coût d’investissement assez important.

Il faut aussi tenir compte de ce que, en l’absence de soleil, si les besoins de froid sont toujours présents, une autre source de chaleur doit prendre le relais. L’intérêt de la machine frigorifique à absorption couplée avec des capteurs solaires doit donc être évalué sur base d’une moyenne annuelle, en tenant compte des heures d’ensoleillement exploitables. Cette évaluation dépend de nombreuses valeurs à estimer :

  • rendement de la chaudière ;
  • rendement de la machine frigorifique à absorption ou des différents échangeurs de la roue dessicante ;
  • proportion de la demande de froid qu’on peut produire avec l’énergie solaire (X) qui dépend du nombre d’heures d’ensoleillement exploitables ;
  • rendement moyen de la production électrique en centrale ;
  • COP de la machine frigorifique à compression.

Avec les hypothèses prises dans le schéma ci-dessus, le bilan au niveau de la consommation d’énergie primaire est favorable au système de refroidissement solaire si au moins 51 % de la demande de froid peut être satisfaite par l’énergie solaire. Pour évaluer la rentabilité économique du système, il faudrait tenir compte des prix de l’énergie et des coûts d’investissement.

Est-il envisageable d’atteindre ce ratio ? A priori non : dans notre climat peu ensoleillé, les surchauffes sont en grande partie liées aux dégagements intérieurs de chaleur. Encore plus si le bâtiment est équipé de protections solaires.

Faisons l’exercice inverse : pour que la climatisation solaire soit pertinente, il faudrait que :

  • Les locaux soient peu sujets à des gains internes : des grands espaces peu occupés.
  • Les locaux soient sujets à une surchauffe au moment où le soleil brille : donc des espaces qui présentent une faible inertie thermique.
  • Les locaux disposent d’une stratégie alternative lorsque cette surchauffe apparait pour un ensoleillement moyen (en mi-saison, quand la température dans le capteur ne sera pas suffisante) : locaux que l’on peut ventiler intensivement en été.

Cela pourrait nous faire penser à des espaces d’exposition, pour autant que l’éclairage artificiel n’y représente pas une charge trop importante, ou à des atriums. On le voit, la climatisation solaire doit, chez nous, être considérée comme un produit de ‘niche’, pour lequel une étude technico-économique détaillée est indispensable.

Techniques

Pour en savoir plus sur les machines frigorifiques à ad/absorption

Techniques

Pour en savoir plus sur les roues dessicantes

Quand opter pour un geocooling ?

Le geocooling est une technique de valorisation de la fraicheur du sol grâce à un réseau véhiculant un fluide caloporteur. En principe, le champ d’application du geocooling est large. Tout bâtiment qui présente un besoin de froid pourrait théoriquement en bénéficier, quitte à compléter cette source d’un appoint par une machine frigorifique plus traditionnelle.
Les limites d’utilisation du geocooling seront :

  • Réglementaires : les forages doivent faire l’objet d’une demande de permis unique en Région Wallonne, pour laquelle il faut fournir notamment une coupe géologique probable du puits avec profondeur estimée de la nappe aquifère, la description des méthodes de forage et les équipements du puits avec coupe technique, un rapport technique sur la nature de la nappe aquifère éventuelle et un plan de situation des puits. Le sens de cette demande de permis est bien évidemment d’éviter tout risque de pollution d’une nappe aquifère, ce qui peut limiter le développement de cette technologie dans certaines zones sensibles.
  • Technologiques : Décharger d’année en année une quantité d’énergie dans le sol mène à son échauffement progressif. Il en découle une perte de performance liée à des moindres écarts de température entre le sol, la boucle d’eau et le bâtiment. On privilégiera donc le geocooling dans les situations où le sol est également utilisé comme source de chaleur en hiver (géothermie), t en particulier lorsque les besoins de chauffage et de refroidissement du bâtiment sont dans une certaine proportion. Puisqu’en géothermie l’énergie utile (la demande de chaud) = l’énergie extraite du sol + l’énergie consommée au compresseur de la pompe à chaleur, alors qu’en geocooling, l’énergie utile (la demande de froid) = l’énergie injectée dans le sol, on déduit que le geocooling sera particulièrement pertinent lorsque la demande de froid = la demande de chaud / (1-(1/COPpac)). Autrement dit, si on considère qu’une pompe à chaleur à un COP de l’ordre de 4, il faut que les besoins de froid soient environ 133 % des besoins de chaleur.

Schéma évolution de la température du sol sur 20 ans.

Simulation de la température d’un sol dont on retire du froid chaque été. Après 240 mois (20 ans), la température moyenne a grimpé de 3°C, rendant difficile la production d’eau froide à destination du système de climatisation du bâtiment.

  • Économiques : La pertinence économie qu’un geocooling dépend de la nature du sol et de l’équilibre entre besoins de chaleur et de froid. Pour ce qui est de la nature du sol, il est évident qu’un forage dans une roche demandera un investissement plus important qu’un forage dans du sable. Certains sols offrent également une plus grande diffusivité thermique, ce qui améliore leur rôle de tampon thermique. Un test de réponse thermique (TRT) permet de chiffrer la qualité d’un sol relativement à des applications thermiques. L’équilibre chaud-froid dans les proportions discutées au point précédent permet de limiter le recours à des technologies d’appoint (chaudière ou machine frigorifique à compression) pour valoriser au maximum l’investissement fait au niveau du forage.

Pour illustrer tout cela, voici un exemple de bilan réalisé pour un bâtiment de bureaux (source : MATRIciel sa). Il s’agit de la comparaison entre la géothermie/geocooling et des installations de production traditionnelles, pour plusieurs combinaisons d’enveloppe (coefficient de déperdition des murs de 0,2 à 0,4 W/m²K et facteur solaire des vitrages de 22 à 39 %). Certaines combinaisons ne sont pas possibles si on désire installer une géothermie, car elles entraînent un trop grand déséquilibre entre les besoins de chauffage et de refroidissement et donc une mauvaise dynamique du sol d’une saison à l’autre. Dans ces cas, la stabilité de la température du sol à long terme n’est pas garantie. Globalement, lorsqu’elle est possible, la valorisation du sol permet une division par 2 des émissions de CO2 et une économie d’un tiers de l’énergie primaire liée au chauffage et refroidissement. Mais, on constate que la combinaison qui minimise la consommation d’énergie primaire pour des techniques traditionnelles ne permettait pas, pour ce cas-là, d’opter pour le geocooling ! Même si cela peut paraître paradoxal, il est alors préférable d’aller un peu moins loin dans la réduction des besoins (de froid dans ce cas-ci) pour rendre possible l’investissement dans une technique qui minimisera l’impact global du bâtiment.

Schéma comparaison entre la géothermie/geocooling et des installations de production traditionnelles.

Schéma comparaison entre la géothermie/geocooling et des installations de production traditionnelles.

Techniques

Pour en savoir plus sur les techniques de geocooling, cliquez ici !

Influence du régime de température

Le régime de température d’un système de climatisation influence directement la quantité d’énergie produite en valorisant la fraicheur de l’environnement. À titre d’exemple, le tableau suivant reprend les gains énergétiques potentiels par free-chilling et par géocooling qui ont été simulés en fonction du régime de température, pour un bâtiment de bureaux nécessitant 302 MWh de besoin en froid.

  Géocooling
Régime 09°C-14°C 15°C-17°C 17°C-19°C
Gain énergétique potentiel 33% 66% 75%

Free-chilling

Régime 09°C-14°C 15°C-17°C 17°C-19°C
Gain énergétique potentiel 0.5% 8.6% 15.5%

Le géocooling consiste à refroidir directement l’eau avec le sol, la température du sol  doit donc être inférieure à la température de départ de l’eau. Dans cette exemple, le choix d’un régime 17-19 °C au lieu de 9 °C – 14 °C permet bénéficier de 2 fois plus d’énergie gratuite et d’ainsi couvrir 75 % des besoins en froid du bâtiment !

Pour un régime de température de 9 °C – 14 °C, l’utilisation d’énergie gratuite de l’air est quasi nulle (0.5 % de la consommation annuelle).  Dans cet exemple, l’augmentation du régime de température de 2 °C (17-19 au lieu de 15-17) permet d’utiliser 1.8 fois plus d’énergie gratuite.

En outre, un régime plus élevé diminue fortement le risque de condensation et peut permettre de se passer de la déshumidification de l’air. Il est dès lors possible d’utiliser des émetteurs de types plafond froid.

Mettre en place un stockage d’énergie frigorifique [Climatisation – concevoir]

Mettre en place un stockage d'énergie frigorifique


Choix entre les différentes technologies

L’objectif est de fabriquer et de stocker l’énergie frigorifique avant son utilisation, par exemple la nuit.

Deux types de technologie existent sur le marché :

  • soit des réservoirs d’eau très froide, sortes d’énormes ballons « tampon », qui sont des réservoirs à « chaleur sensible« .
    Le bac constitue une réserve d’eau à 5°C, un tampon mis en série dans l’installation. On pourra en disposer facilement au moment de la pointe. Mais la capacité de stockage est faible… L’objectif est seulement de délester le groupe frigorifique durant quelques minutes sur le quart-d’heure critique.
  • soit des réservoirs de glace, sous forme de barres de glace ou sous forme de nodules, qui sont des réservoirs à « chaleur latente« .

    L’installation (et sa régulation) est plus coûteuse mais nettement plus efficace ! Il est possible de stocker 80 fois plus d’énergie dans un litre d’eau qui gèle que dans un litre d’eau que l’on refroidit d’1 degré ! Le projet est alors véritablement de diminuer l’équipement frigorifique (au lieu de deux machines de 300 kW, c’est une machine de 300 kW et un stockage de glace qui est installé) et de réaliser un écrêtage de la puissance électrique durant plusieurs heures.


Avantages et inconvénients

Avantages

  • Le kWh frigorifique produit la nuit et/ou en dehors des heures de pointe revient nettement moins cher.
  • Si la réserve est utilisée au moment de la pointe ¼ horaire du bâtiment, les compresseurs peuvent être délestés, ce qui permet de réelles économies financières sur le coût de la pointe.
  • Nouvelles installations : diminution de la puissance frigorifique installée, par étalement de la charge dans le temps, et donc diminution de l’investissement initial en machines frigorifiques et équipements annexes.
  • Installations existantes : augmentation de la charge frigorifique sans augmentation de la puissance électrique installée (c’est intéressant pour des bâtiments en rénovation dont on souhaite augmenter l’équipement bureautique, sans devoir augmenter la puissance du transformateur).
  • Diminution de l’encombrement des tours de refroidissement en toiture.
  • Augmentation de la durée de fonctionnement des compresseurs (à la limite, fonctionnement 24h/24), ce qui améliore leur rendement moyen.
  • Possibilité d’un secours partiel (quelques heures seulement…) en cas de panne de la machine frigorifique ou d’interruption de la fourniture d’énergie électrique, seules les pompes étant alimentées par le groupe de secours. C’est une sécurité parfois recherchée pour les salles informatiques.
  • Pour les grands bâtiments, le réservoir d’eau obligatoire pour la protection incendie peut parfois être utilisé comme bâche d’eau glacée.

Inconvénients

  • Aucun gain sur le bilan énergétique thermique ! Même plutôt quelques pertes de frigories durant le stockage … C’est essentiellement une opération tarifaire, financière et non énergétique.
  • Lorsque la machine frigorifique « fait de la glace », la température à l’évaporation descend. Elle travaille avec un moins bon rendement que lors du régime normal de préparation de l’eau glacée ! Ceci est partiellement contrebalancé par le fait que la température de condensation va également pouvoir diminuer, suite aux températures plus fraîches de la nuit.
  • La puissance de la machine frigorifique descend à 60 % … 70 % de sa valeur nominale lorsqu’elle prépare de l’eau glacée.

Par exemple, voici l’évolution pour une machine particulière : la puissance lors de la charge de nuit est donc réduite à 324 kW / 458 kW = 71 % de la valeur nominale.

  • L’installation est plus complexe et nécessitera une régulation pour la gestion des cycles charge-décharge.
  • Le stockage thermique est volumineux et sera donc généralement limité à une part de la consommation journalière.

La démarche à suivre

Le choix de la mise en place d’un stockage de froid nécessite d’analyser correctement le profil de consommation du circuit froid.

Fixer les objectifs du stockage

De multiples combinaisons entre capacité de stockage, puissance de déstockage et puissance frigorifique sont possibles.

Il est donc utile de préciser les objectifs visés par le stockage : diminution de la pointe quart-horaire ? diminution de la puissance frigorifique installée ? réduction de l’encombrement des condenseurs/tours de refroidissement en toiture ? réserve stratégique de froid en cas de rupture de la machine frigorifique ?…

On distingue de multiples stratégies d’utilisation.

Par exemple :
Un stockage total de la charge frigorifique durant la nuit :

Un stockage partiel pour limiter la pointe frigorifique :

Un stockage partiel avec une utilisation spécifique à la gestion de la pointe quart horaire :

Seul un bilan financier global (coût d’investissement initial et coût d’exploitation associé) de chaque configuration peut permettre de sélectionner la combinaison optimale.

Vérifier l’encombrement

Les réservoirs de stockage sont parfois adoptés parce qu’ils permettent une diminution de l’encombrement des tours de refroidissement en toiture.

Par contre, ils nécessitent de la place à l’intérieur du bâtiment… Dans certains cas, le stockage est enterré dans le sol, devant le bâtiment ou sous celui-ci.

On tiendra compte également du poids supplémentaire sur la structure du bâtiment, ainsi que des pressions d’eau atteintes suivant la configuration du réseau.

Établir le profil des charges

Au contraire des systèmes de refroidissement classiques où il suffit de connaître la puissance de refroidissement maximale pour pouvoir faire son choix, l’accumulation de glace exige un profil de charge.

Il s’agit d’une présentation graphique (ou sous forme de tableau) de la charge de froid demandée en fonction du temps, et ce pour la journée de l’année où la charge de refroidissement est la plus importante (journée de référence, celle servant de base à la conception).

Le profil de charges est, en général, sous forme d’une courbe en cloche, dont la surface représente de 60 à 80 % de la surface du rectangle dans lequel la courbe s’inscrit. Ce pourcentage est appelé « facteur de simultanéité ». Plus ce facteur est bas, plus le rendement de l’installation sera défavorable.

Si la puissance maximale atteinte varie en fonction de la saison, la forme du diagramme reste relativement stable.

Etablir un scénario de charge et de décharge

Qui fait quoi et à quel moment ?

Voici 2 exemples :

  • L’objectif est de réduire la pointe électrique : le délesteur de charge arrête la machine frigorifique au moment critique et le réservoir prend le relais.
  • L’objectif est de garantir du froid en cas de panne du secteur : pour la sécurité du refroidissement du local informatique, un réservoir restera en permanence en glace, en stand-by pour le cas où… Dans ce cas, le groupe électrogène de secours doit seulement alimenter la pompe qui va envoyer l’eau glacée sur la glace.

Le dimensionnement des équipements et leur régulation sont fonction des objectifs recherchés…


La sélection du groupe frigorifique

Une machine frigorifique capable de préparer de la glace se distingue de celle destinée uniquement à la préparation de l’eau glacée :

  • La préparation de la glace requiert une température à l’évaporateur de plusieurs degrés sous zéro (de – 4° à – 10°C, en fonction du type de stockage choisi), alors que l’eau glacée se prépare généralement avec une température d’évaporation réglée sur + 2°C.
  • Si le stockage de l’énergie frigorifique est partiel, la même machine produira la glace la nuit et l’eau glacée le jour. Elle doit donc pouvoir s’adapter aux deux températures d’évaporation différentes.
  • La machine frigorifique travaillant de nuit, la machine doit être prévue pour pouvoir travailler avec une température de condensation réduite et profiter ainsi d’un coefficient de performance (« COPfroid » ou « efficacité frigorifique ») amélioré (les machines standards fonctionnent avec des températures de condensation élevées en permanence). En général, ceci suppose la présence d’un détendeur électronique, capable de s’adapter aux fluctuations de température de condensation.
  • Le système choisi requiert parfois la mise en place d’un fluide secondaire, type eau glycolée.

Même s’il est possible d’utiliser les machines standards, il sera toujours utile de procéder à une analyse spécifique pour ce type d’application. Notamment pour sélectionner le type de fluide frigorigène adapté à la fluctuation de température souhaitée, tant à l’évaporateur qu’au condenseur.

On sera particulièrement attentif à l’isolation des équipements : une isolation étanche à la vapeur pour éviter la condensation et la formation de glace. Cette isolation doit être scellée avant les essais.


La répartition des charges frigorifiques

La charge frigorifique doit être répartie entre la machine frigorifique et le stockage.

À titre d’exemple, considérons le profil de charge suivant :

Les besoins effectifs journaliers sont de 750 kWh. Une puissance maximale de 100 kW n’est requise que durant 2 heures sur un total de 10 heures d’exploitation.

On distingue deux principes de sélection des équipements :

Accumulation complète (Full Storage)

Dans le cas de ce système, on stocke dans la glace toute la quantité de froid nécessaire pour une journée complète. La machine frigorifique est arrêtée en journée et seule la glace en cours de fonte assure le refroidissement.

Il en résulte un système d’accumulation de glace très imposant, mais les coûts d’exploitation sont faibles (toute l’énergie est produite au tarif de nuit).

La puissance de la machine frigorifique est déterminée par le rapport entre l’énergie totale à accumuler (ici 750 kWh) et la durée de la période de production en Heures Creuses (ici 14 heures).

750 kWh / 14 h = 54 kW

Ce système est rarement appliqué, à cause du coût d’investissement et de l’espace disponible très élevés.

Accumulation partielle (Partial Storage)

Dans ce système, la même machine frigorifique réalise :

  • la préparation de glace durant la nuit,
  • le refroidissement partiel de l’eau glacée durant la journée, en étant alors secondée par la fonte de la glace.

La machine frigorifique fonctionnera donc 24 heures sur 24 lors de la journée de référence. Elle est alors dimensionnée en fonction de la charge de froid totale sur les 24 heures (ici 750 kWh en 24 heures) plutôt que sur la base de la charge de pointe (ici 100 kW).

En appelant :

  • Pc = puissance compresseur en direct
  • Pr = puissance réduite du compresseur la nuit = f x PC
  • f  = 3 % par °C d’abaissement de la température à l’évaporateur (valeur typique), soit une perte de puissance de 30 à 35 % en fonctionnement de nuit par rapport au fonctionnement de jour
  • En = énergie frigorifique journalière
  • Td = Temps de fonctionnement de la machine en direct
  • Ts = Temps de fonctionnement de la machine en phase de stockage de glace

La machine sera dimensionnée par :

en = Td x PC + Ts x Pr

d’où :

  • en = Td x PC + Ts x f x PC
  • PC = en / (Td + Ts x f )

Exemple de sélection

Pour expliquer la méthode de sélection, nous avons choisi de recourir à un exemple d’une installation selon le principe de fonte interne.

* A supposer

  • une charge de pointe de 1 000 kW
  • un régime de température de 12°C / 7°C
  • un refroidissement nécessaire entre 8 heures du matin et 18 heures (soit 10 heures)
  • une charge de refroidissement totale 8 000 kWh

* Il est demandé

La sélection d’un système d’accumulation de glace pour une machine frigorifique aussi petite que possible.

* Solution

La plus petite machine frigorifique est celle qui tourne 24 heures sur 24.

Pour faire de la glace, la machine frigorifique produira du glycol à une température négative (ex : – 5°C). Mais, pendant la journée, la machine frigorifique fonctionnera à des températures positives dans la mesure où elle devra seulement pré-refroidir le glycol à 12°. Sa puissance étant limitée, la glace assurera le post-refroidissement.

Les caractéristiques de fonctionnement de la machine frigorifique ne sont donc pas identiques pour la production de glace et pendant la journée. La nuit, lors de la fabrication de la glace, la machine présente une puissance de l’ordre de 65 à 70 % de la puissance nominale. Cette valeur de 70 % n’est qu’indicative et devra donc être vérifiée a posteriori avec les fournisseurs de la machine frigorifique en fonction des températures d’évaporation et de condensation réelles.

Dans notre exemple, nous avons un temps de fabrication de glace de 14 heures et un temps de fonte de 10 heures. La machine frigorifique fonctionnera donc 10 heures à 100 % de capacité et 14 heures à 70 % de capacité. La quantité totale de froid à fournir est de 8 000 kWh. Dès lors, si nous comparons le froid produit au froid nécessaire, nous obtenons :

(10 h x 100 % de cap.) + (14 h x 70 % de cap.) = 8 000 kWh

cap. x (10 + 14 x 0,7) = 8 000 kWh

cap. = 404 kW

La machine frigorifique fournira donc 404 kW pendant la fonte et 70 % de cette valeur pendant la fabrication de glace, soit 283 kW.

La puissance de stockage de glace nécessaire est alors égale au temps de fabrication multiplié par la puissance de production de froid pendant la fabrication, soit :

14 heures x 283 kW = 3 960 kWh.

On trouve la même puissance de stockage en soustrayant de la charge totale de froid de 8 000 kWh la puissance de froid fournie par la machine frigorifique pendant la fonte :

8 000 kWh – (10 h x 404 kW) = 3 960 kWh.

*Conclusions

Il faut un appareil d’accumulation de glace d’une puissance de stockage minimale de 3 960 kWh.

Si le réservoir présente une capacité de 50 kWh/m³, il faudra prévoir un stockage de :

3 960 / 50 = 80 m³

Attention à la température de restitution de la glace !

La méthode de sélection ci-dessus est une première approche simplifiée !

Ainsi, il faut également vérifier si l’appareil d’accumulation de glace peut garantir la puissance de fonte souhaitée à la température demandée (ce n’est pas tout d’avoir les kWh, encore faut-il qu’ils soient restitués à une température suffisamment basse !).

Pour des applications exploitant le principe de la fonte externe, cela ne pose généralement pas de problème dans la mesure où un réservoir peut être complètement fondu en 2 heures à une température d’eau de 1 à 2°C. Dans le cas de la fonte interne, en revanche, il est conseillé d’examiner cet aspect avec le fabricant, étant donné que la puissance de fonte est nettement inférieure et dépend en outre dans une large mesure de la quantité de glace restante. Généralement, on admet dans le cas de la fonte interne que la puissance de fonte restante est d’autant plus faible que la quantité de glace restante est petite. Mais cette situation est améliorée si une pompe à air pulse des bulles d’air au fond du réservoir. L’agitation est favorable à l’homogénéité des températures, notamment par bris de la glace en fin de fonte interne.

Dans notre exemple, la puissance de fonte la plus importante à fournir est de :

1 000 kW – 404 kW = 596 kW
(puissance de pointe – capacité de la machine frigorifique).

Comparé à la puissance de stockage de l’appareil d’accumulation de glace (3 960 kWh), il s’agit d’un temps de fonte « équivalent » de 6,2 heures. Avec les systèmes de fonte interne couramment utilisés, on peut alors s’attendre à des températures de fonte autour de 5°C. Cela convient donc pour la température demandée de l’ordre de 6°C.

Le fournisseur dispose de logiciels de dimensionnement plus élaborés qui vérifieront si la température lors de la décharge reste compatible avec la demande.

 Études de cas 

Un exemple d’analyse de l’évolution de la température, issue d’un logiciel de ce type, est donné dans les études de cas.

Le dimensionnement du réservoir de stockage

Capacité d’un stockage eau

La chaleur sensible de l’eau est de 1,163 kWh/m³.K.
La capacité de stockage dépend dès lors du régime de fonctionnement :

  • en régime 5°/12°C, un m³ d’eau stocké à 5° dispose d’un delta T° = 7°C, soit une réserve de 8,14 kWh/m³.
  • en régime 5°/15°C, un m³ d’eau stocké à 5° dispose d’un delta T° = 10°C, soit une réserve de 11,63 kWh/m³.

Pour stocker 1 000 kWh, il faudra 123 m³ sous un delta T° = 7°C, et 86 m³ sous un delta T° = 10°C.

Capacité d’un stockage glace

La chaleur latente de cristallisation de l’eau est de 93 kWh/m³ (en eau), soit de 84,5 kWh/m³ (en glace). en quelle sorte, on pourrait parler d’une capacité de stockage équivalente, en chaleur sensible, à un delta T° de l’ordre de 80°C ! Et cette propriété peut encore être renforcée par l’addition d’un sel eutectique dans l’eau.

Mais en pratique, l’entièreté d’un m³ de stockage ne se transforme pas en glace, ne fût-ce que pour pouvoir encore laisser passer le fluide caloporteur.

Aux valeurs de stockage en chaleur latente, on peut ajouter la chaleur sensible, en eau et en glace, fonction des niveaux de température atteints.

Les valeurs moyennes suivantes peuvent être prises :

Capacité de stockage

Volume pour 1 000 kWh

Bac à eau chal. latente 40 kWh/m³ 25 m³
chal. sensible et latente 50 kWh/m³ 20 m³
Bac à glace chal. Latente 48 kWh/m³ 21 m³
chal. Sensible et latente 58 kWh/m³ 17 m³
Nodules chal. Latente 40 à 50 kWh/m³ 25 à 20 m³
chal. Sensible et latente 50 à 60 kWh/m³ 20 à 17 m³

On constate que, en moyenne, un m³ de stockage en « glace » emmagasine 4 à 6 fois plus de froid qu’une bâche de stockage en « eau glacée ».

Ces valeurs permettent de dimensionner grossièrement le système. Les fabricants disposent d’outils de simulation permettant d’affiner ce calcul.

Études de cas

Un exemple de dimensionnement pour une installation de 500 kW frigorifique est donné dans les études de cas.

Les schémas d’installation

Stockage d’eau glacée

Les schémas d’installation diffèrent en fonction de la place relative du ballon par rapport au chiller.

 Techniques

Pour plus d’informations : cliquez ici !

Stockage de glace

Les schémas de principe sont basés sur trois types de configuration :

  • Stockage en série avec la charge, la machine frigorifique étant en aval des bacs de stockage.
  • Stockage en série avec la charge, la machine frigorifique étant en amont des bacs de stockage.
  • Stockage en parallèle avec la charge.

Voici différents schémas possibles extraits de l’ouvrage « Production de chaud et de froid » de Bouteloup chez Pyc Éditions :
Stockage de glace dans des réservoirs à faisceaux tubulaires

  Techniques 

Pour plus d’informations : cliquez ici !

Stockage de glace en parallèle avec réservoir à nodules

   Techniques 

Pour plus d’informations : cliquez ici !

Études de cas

Un exemple de schéma d’une installation existantes est donné dans les études de cas.

Régulation du système stockage-chiller

La régulation du système « stockage – machine frigorifique » est fonction de divers paramètres :

  • l’importance relative du stockage par rapport aux besoins journaliers,
  • la configuration du système (série amont, série aval, parallèle),
  • les objectifs stratégiques (puissance frigorifique minimale, gestion de la pointe ¼ horaire, conservation d’une réserve de froid permanente pour la salle ordinateur en cas de défaillance du groupe frigorifique,…),

Si le stockage est total, la gestion est simple : le stockage assure les besoins journaliers totaux. Une simple vanne trois voies motorisée ajuste l’offre à la demande. Dans certains cas, il est même possible de profiter des Heures Creuses du week-end pour précharger le stockage au maximum.

Si le stockage est partiel, on distingue deux possibilités :

  • Chiller prioritaire : la machine frigorifique assure la charge permanente de base, tout en disposant de l’appoint du stockage pour vaincre les pointes. Ce système permet de charger le compresseur de façon constante, ce qui est l’idéal pour son rendement.
  • Stockage prioritaire : la charge de base est couverte par la décharge du stockage. La machine frigorifique est prévue pour couvrir les pointes de la journée. Ce système, qui suppose une capacité de stockage plus importante, valorise davantage les kWh frigorifiques produits la nuit, mais pénalise la machine frigorifique dans son fonctionnement direct.

Quelques schémas d’installation pratiques sont proposés dans la publication « Production de chaud et de froid » de Bouteloup chez Pyc Éditions.

Exemples de scénarios possibles avec une GTC :

> « Stockage total » : pour les mois de novembre, décembre, janvier et février, le stockage a été dimensionné pour fournir seul les besoins de froid. L’installation fonctionnant en tarif horo-saisonnier, il est très important de limiter au maximum les pointes de puissance. La machine frigorifique sera donc délestée.
> « Priorité stockage » : en mi-saison, la priorité est donnée à la décharge du stockage, avec appoint de la machine frigorifique en fin de journée et durant les pointes.
> « Priorité chiller » : en été, c’est la machine frigorifique qui assure la base et le stockage est utilisé pour couvrir les pointes grâce à la rapidité de l’apport frigorifique qu’il permet. Lorsque vient la fin de la journée, le système bascule en mode « déstockage uniquement » afin de vider l’excédent. La décision de basculer est prise par la GTC en fonction de divers paramètres. Suivant les cas on prendra en compte : l’épaisseur de glace restante, la température extérieure, l’ensoleillement, l’heure dans la journée, l’historique des deux derniers jours, l’historique de l’année précédente,… Un tel modèle, mis au point progressivement, permet des économies importantes à terme. Toute la difficulté consistant à conserver une réserve de froid suffisante pour une pointe éventuelle !
> « Charge nocturne » : cette charge peut être démarrée « au plus tard », afin d’être juste suffisante en début de journée. Un historique peut permettre d’optimaliser le moment de la relance en fonction des besoins.
> Le fin du fin : si l’on prévoit quelques besoins de relance de chauffage dans le bâtiment en début de journée, une récupération de chaleur sur le condenseur de la machine frigorifique est possible; la préparation du froid de l’après-midi génère le petit coup de chaleur du matin, le stockage faisant office de réservoir tampon entre ces deux besoins !

Évaluation de la rentabilité

La rentabilité d’un stockage de glace s’établit par le rapport entre le surcoût au niveau de l’installation frigorifique et l’économie financière réalisée.

Le surcoût est estimé entre 20 et 30 % de l’installation frigorifique initiale. Cette estimation comprend :

  • Les bacs à glace : on peut compter 30 €/kWh de stockage pour une petite installation de 2 000 kWh, 25 €/kWh pour une installation de 5 000 kWh, 20 €/kWh pour une belle installation de 10 000 kWh.
  • Les équipements annexes : pompes, échangeurs,…
  • La déduction du prix de la machine frigorifique que l’on a pu économiser.

Ce qui est difficile à chiffrer et qui constitue un frein majeur du développement du stockage de nuit, c’est le volume nécessaire dans le bâtiment pour entreposer les bacs !…

L’économie financière est essentiellement résultante de l’écrêtage de la pointe quart-horaire. L’économie réalisée sur le coût moindre du kWh de nuit par rapport au kWh de jour est proportionnellement plus faible.

En effet, prenons le tarif « binôme A – Éclairage » :

Le prix du kWh de jour est de 6,25 c€/kWh (HTVA) contre 4,33 c€/kWh la nuit. En passant d’une production de jour vers une production de nuit, l’économie est donc de 31 %. Mais le fait de produire de la glace engendre un abaissement de la température d’évaporation, et le compresseur n’apprécie pas !

Ainsi, un compresseur qui voit la température d’évaporation passer de + 2°C à – 5°C voit son rendement baisser de 20 % environ. Si, parce qu’un échangeur intermédiaire supplémentaire est placé, la température d’évaporation passe à – 10°C, le rendement chute de 30 %… ! En y ajoutant quelques pertes inévitables par les parois des bacs, et les consommations des pompes,… tout le bénéfice est mangé !

Il n’empêche que les installations à – 5°C sont possibles et que l’on peut sélectionner des machines frigorifiques capables de valoriser la faible température nocturne (et donc la faible température de condensation).

Mais c’est sur le coût de la pointe de puissance que le gros de l’économie doit être trouvé (8 €/kW de pointe, chaque mois) ! Le temps de retour du projet pour une installation électrique de 500 kW et plus descend sous les 3 ans, d’après les fournisseurs.

Chaque scénario doit être étudié sérieusement. Ainsi, un bâtiment avec une prédominance de consommation électrique en été aura avantage à choisir le tarif horo-saisonnier. Dans ce cas, le délestage du groupe frigorifique durant les 4 mois d’hiver sera très rentable : 14 €/kW HTVA. Mais c’est également le moment où la demande de froid est la plus faible… L’équipement peut-il s’amortir sur ces mois d’hiver ?


La réception du matériel

Lors de la réception du matériel, il sera bon de vérifier :

Au niveau du circuit hydraulique :

  • la concentration en glycol à plusieurs endroits du circuit,
  • l’isolation des circuits et des vannes,
  • la stabilité hydraulique (équilibrage) dans tous les modes de fonctionnement du réseau, avant même d’enclencher le groupe frigorifique,
  • les débits et les pertes de charge dans diverses configurations (pour vérifier notamment si on a tenu compte de la viscosité du glycol lors de la sélection des pompes),
  • les points repris dans la régulation et la stratégie de commande choisie,
  • la protection du circuit secondaire éventuel (boucle d’eau glacée vers les ventilos, par exemple) contre tout risque de gel.

Au niveau du stockage :

  • le niveau d’eau dans le réservoir,
  • le débit et les températures lors de la charge et de la décharge.

Au niveau de la machine frigorifique :

  • la charge effective du stockage dans les conditions prévues et les températures d’évaporation spécifiées, et ceci dans le temps prévu.

Plusieurs essais sous des régimes différents seront nécessaires. On tiendra compte du fait que lors de la première mise en charge, la température initiale du bac est plus élevée que celle en régime (généralement autour des 5°C). Le premier temps de charge sera donc plus long.


La maintenance

La maintenance d’un stockage de glace est faible. On suivra les recommandations du fabricant, dont la vérification régulière de la concentration en eau glycolée.

La présence de vannes d’isolement doit permettre de démanteler facilement le réservoir de stockage sans interrompre le restant du circuit.

Si l’isolation doit être remplacée, on sera attentif à sécher au préalable soigneusement la zone traitée et à rétablir l’étanchéité au passage de la vapeur d’eau afin d’éviter la corrosion ultérieure des installations.

Récupérer la chaleur du condenseur de la machine frigorifique [Concevoir – Climatisation]

Récupérer la chaleur du condenseur de la machine frigorifique [Concevoir - Climatisation]


Principe de fonctionnement

Une machine frigorifique transfère de la chaleur extraite du bâtiment vers l’extérieur.

Il semble dès lors logique de tenter de récupérer la chaleur sur le condenseur de la machine frigorifique.

Fonctionnement du condenseur

En principe, trois opérations successives se passent dans le condenseur de la machine frigorifique :

Évolution des températures du fluide frigorigène
et du fluide de refroidissement.

  1. Dans une machine frigorifique, les gaz qui sont expulsés par le compresseur en fin de compression sont à très haute température (de 70 à 80°C). On dit qu’ils sont surchauffés. Comme la condensation se fait à une température largement inférieure (aux alentours de 40°C, par exemple), une quantité de chaleur va devoir être évacuée des gaz surchauffés pour les amener à leur température de condensation qui correspond à la pression de refoulement (dite pression de condensation). C’est la désurchauffe.
  2. Puis lors de la condensation elle-même, une importante quantité de chaleur va aussi devoir être évacuée pour liquéfier (si possible complètement) le fluide frigorigène gazeux.
  3. Enfin, si les conditions des échanges thermiques dans le condenseur le permettent (température du fluide refroidisseur suffisamment basse, débit du médium de refroidissement suffisamment important), le liquide condensé va subir le sous-refroidissement, ce qui améliore le rendement de l’évaporateur.

Récupération de l’énergie

Dans certains cas, on pourrait envisager de récupérer cette énergie pour chauffer de l’eau ou de l’air, au lieu de la gaspiller en pure perte :

  • si on a des besoins en eau chaude sanitaire de température pas trop élevée (45° à 50°C);
  • si on a des besoins de chauffage pour des locaux contigus;
  • si on veut éviter ou diminuer la puissance de climatisation du local des machines, ou faire des économies d’énergie sur ce poste;
  • si on veut participer à la lutte contre le réchauffement global de l’atmosphère.

Par exemple, voici ce qui peut être réalisé à partir du préparateur d’eau glacée ci-contre.

Le fonctionnement normal est de refroidir l’eau glacée à l’évaporateur (cooler). La chaleur contenue dans le fluide frigorigène évaporé est comprimée puis condensée dans un condenseur à air (fonctionnement classique d’une machine frigorifique).

Par contre, si un récupérateur de chaleur est placé, le réfrigérant passe d’abord dans un condenseur à eau (le récupérateur en question) pour donner la chaleur de désurchauffe, puis pour se condenser. Le liquide à haute pression passe au travers du détendeur avant de repasser à l’évaporateur. La chaleur excédentaire est rejetée via le condenseur à air.

La récupération de l’énergie du côté des condenseurs suppose évidemment des investissements supplémentaires par rapport à des machines classiques plus simples

  • des échangeurs de condenseurs adaptés;
  • des réservoirs-tampons pour l’eau chaude sanitaire ou de chauffage;
  • une disposition plus compliquée des tuyauteries;
  • une bonne évaluation des pertes de charge dans les tuyauteries;
  • une régulation complète permettant le contrôle correct de toute l’installation, y compris des récupérateurs.

Étant donné les spécificités inhérentes à chaque projet, le rapport entre l’investissement et les économies d’énergie doit faire l’objet de calculs adaptés, à demander aux auteurs de projet. Il faut en effet considérer ensemble la machine frigorifique et les appareils de production d’eau chaude sanitaire ou de chauffage.

Le bilan doit prendre en compte :

  • l’apport d’énergie « gratuite » par la machine frigorifique,
  • le fait que l’on doit quand même disposer, en plus des récupérateurs, d’une puissance installée suffisante pour pallier les périodes où la machine frigorifique ne fonctionne pas,
  • la pénalisation énergétique apportée toute l’année par l’échangeur supplémentaire,
  • le cas où le condenseur de la machine frigorifique doit assurer à lui seul, l’évacuation de toute la chaleur (lorsqu’il n’y a pas de besoin d’énergie dans les récupérateurs, ou quand ces derniers sont arrivés à leur consigne maximale de température).
Exemple d’application très intéressante

Le plus logique est de récupérer la chaleur sur le condenseur à air pour chauffer directement l’air d’un local. Ainsi, un supermarché Delhaize à Bruxelles évacue la chaleur du condenseur du groupe frigorifique (armoires de congélation) en créant un rideau d’air chaud à l’entrée du magasin. En été, la chaleur est déviée en toiture par un clapet.

Études de cas

Pour visualiser un exemple de schéma d’une installation avec stockage de glace et récupération de chaleur au condenseur.

Application sur une installation de ventilo-convecteur 4 tubes

Dans le cas des ventilos-convecteurs à 4 tubes, si le réseau d’eau glacée fonctionne en hiver et en mi-saison, n’y a-t-il pas intérêt à récupérer la chaleur au niveau du condenseur de la machine frigorifique ?

Par exemple, ne pourrait-on pas imaginer que le chauffage apporté vers les locaux en façade Nord soit récupéré sur le condenseur de la machine frigorifique refroidissant le centre informatique du bâtiment ?

En pratique, il semble que ce soit difficile :

  • La récupération de chaleur risque de se faire à une température trop haute. Les ventilos-convecteurs ont besoin d’eau à 40°…45°C en hiver. Donc la condensation devrait se faire à une température de 50°C. Or, à cette saison, le condenseur peut être refroidi à une température bien inférieure, puisque l’air extérieur est très froid. La récupération risque de pénaliser le COP de la machine frigorifique
    Par exemple, une machine frigo qui prépare de l’eau à 7°C, avec un condenseur à eau refroidi à 27…32°C, génère un COP-froid de 6. Soit 6 kWh froid pour 1 kWh électrique. Pourquoi risquer de dégrader un tel système …?
  • La récupération de la désurchauffe semble surtout intéressante, puisque les températures y sont plus élevées, mais la quantité d’énergie y est plus faible que dans la phase de condensation (refroidir un gaz libère peu d’énergie par rapport à condenser ce gaz).
  • Les puissances en jeu ne s’accordent pas forcément puisqu’elles sont antagonistes : en plein hiver, la demande de froid risque d’être trop faible pour apporter de la chaleur utile au réseau d’eau chaude et en mi-saison, la demande de chaleur risque d’être insuffisante pour évacuer la chaleur au condenseur, générant ainsi sa montée en température défavorable.

De plus, en hiver, il y a concurrence avec le procédé de free-chilling qui refroidit directement la boucle d’eau froide avec l’air extérieur. Plutôt que de récupérer au condenseur de la machine frigorifique, celle-ci est totalement arrêtée !

Enfin, il faudrait comparer ce système avec le système DRV (Débit de Réfrigérant Variable) qui dispose d’une version avec récupération d’énergie apte à réaliser ce type de transfert directement au niveau des locaux.

Exemple

Ci-dessus, d’une part, un réservoir à glace a été adjoint à l’équipement frigorifique, permettant de stocker du froid la nuit au moment où l’électricité est moins chère, pour l’utiliser le jour par la fonte de la glace.

D’autre part, en mi-saison, on récupère la chaleur au condenseur : à ce moment, la chaleur captée dans les locaux à refoidir est récupérée dans les locaux à réchauffer. L’installation est alors particulièrement économe puisque seule la consommation des compresseurs est à fournir.

En plein été, la dissipation de chaleur se fait par un condenseur traditionnel (dit condenseur de rejet). En plein hiver, une chaudière d’appoint reste nécessaire pour vaincre la forte demande.


Application au préchauffage de l’eau chaude sanitaire

L’idée est ici de profiter d’un besoin de chauffage d’un fluide à basse température (la température de l’eau de ville varie entre 5° en hiver et 15°C en été).

Mais le système ne fonctionnera bien que lorsque la puissance de récupération nécessaire est supérieure à la puissance fournie par le condenseur. Autrement dit, il faut que les besoins d’eau sanitaire soient très importants par rapport à la puissance de la machine frigorifique.

Ainsi, dans un immeuble de bureaux, les besoins d’eau chaude sanitaire sont faibles. La température de l’eau sera élevée dans le ballon (…60°C…). Si le condenseur est intégré dans le ballon d’eau chaude sanitaire, la machine frigorifique va travailler avec une pression de condensation élevée. La performance de la machine frigorifique va se dégrader. Si la pression de condensation s’élève encore, le pressostat HP (Haute Pression) de sécurité risque d’arrêter la machine… Un deuxième condenseur en série est alors nécessaire pour éliminer les calories. Le coût de l’installation paraît difficile à rentabiliser. D’ailleurs, faut-il encore de l’eau chaude dans les bureaux ?

Tout au contraire, dans un hôtel, dans un hôpital, dans des cuisines industrielles, des boucheries, … les besoins d’eau chaude sont élevés et une récupération de chaleur au condenseur se justifie tout à fait. Mais un ballon de préchauffage est propice au développement de la légionelle. Il faut donc s’assurer que l’eau séjournera durant un temps suffisamment long dans le dernier ballon : 60°C durant 30 minutes ou 70°C durant 4 minutes, par exemple (en cas de débit de pointe, de l’eau « contaminée » risque de traverser seulement le 2ème ballon).

Schéma 1 : un échangeur thermique parcouru par le fluide frigorigène est inséré au bas d’un ballon d’eau chaude

Dans le système ci-contre, un simple échangeur thermique (placé en série et en amont du condenseur normal) est inséré au bas d’un ballon d’eau chaude. Par effet de cheminée, la chaleur sera donnée à la zone la plus froide du ballon puis communiquée à l’ensemble du réservoir.

On parle de condenseur-désurchauffeur parce que la désurchauffe des gaz provenant du compresseur aura lieu dans cet échangeur.

La réglementation impose le principe selon lequel il ne doit pas y avoir de contact possible entre le fluide frigorigène et l’eau potable. En cas de perforation de l’enveloppe du fluide, la détérioration éventuelle doit se manifester à l’extérieur du dispositif.

Dans l’échangeur ci-dessus, une double paroi de sécurité est prévue selon DIN 1988.

Schéma 2 : un ballon intermédiaire à double échange est intégré comme interface

On peut également prévoir un système à double échange : deux échangeurs sont intégrés dans un même ballon (1). Le premier échangeur est celui du condenseur de la machine frigorifique, le deuxième est le serpentin de préchauffage de l’eau chaude sanitaire.

Dans ce ballon intermédiaire, il n’y a aucun risque de dépôt calcaire puisque l’eau n’est jamais renouvelée.

En cas de fuite de fluide frigorigène, la pression dans le ballon augmente et une alarme est déclenchée.

Un deuxième condenseur en série est nécessaire pour le cas où le besoin de chauffage de l’eau sanitaire serait insuffisant.

Schéma 3 : en présence d’une boucle de distribution

Le régulateur de température de départ de la boucle utilise l’appoint lorsque le niveau de température du ballon est insuffisant.

Un tel schéma (contrairement au précédent) risque cependant d’être propice au développement de la légionelle, puisque le ballon de récupération peut être à une température inférieure à 60°C durant un temps assez long. Il n’est pas à recommander si des douches sont présentes dans l’installation.

On trouvera de nombreux schémas techniques d’application dans l’excellent ouvrage Climatisation et Conditionnement d’air – Tome 2 – Production de chaud et de froid de J. Bouteloup.

Choisir le condenseur et la tour de refroidissement

  

Critères de choix généraux

Il faut évacuer la chaleur du réfrigérant vers l’air ambiant.
On distingue deux techniques :

  • soit refroidir directement le fluide frigorigène par l’air : c’est le rôle du condenseur à air,
  • soit refroidir le fluide frigorigène par de l’eau : la machine frigorifique sera équipée par un condenseur à eau. Mais cette eau doit alors être elle-même refroidie en toiture, via une tour de refroidissement.

Pour accroître la puissance de refroidissement, on peut profiter de l’énergie de vaporisation d’une eau pulvérisée au travers du courant d’air. Le principe est le même que lorsque nous nous aspergeons la figure par temps très chaud : la vaporisation de l’eau refroidit notre peau.

Soit la pulvérisation est celle de l’eau qui circule dans le condenseur, soit c’est de l’eau indépendante de l’eau du circuit de condensation qui est pulvérisée.
Cela conduit aux 5 technologies développées dans la technologie des condenseurs.

Critères de choix globaux

Energétiquement, la solution d’un refroidissement direct du fluide frigorigène par l’air extérieur possède des avantages, puisque tous les intermédiaires (et leurs consommations) sont évités et ainsi que la maintenance coûteuse de la tour de refroidissement. Aujourd’hui, la pression de condensation des condenseurs à air est bien gérée par l’arrivée des détendeurs électroniques. C’est la solution couramment adoptée lorsque l’on peut placer le groupe frigorifique sur la toiture : le condenseur fera partie du système « monobloc ».

En toute logique, on retouvera donc le condenseur à air en toiture. Mais la machine frigorifique est parfois située en cave. Dans ce cas, il est exclu de faire confiance à des « ventilations naturelles », des « soupirails », … la température dans la cave risquerait de monter fortement et le condenseur se retrouverait balayé par de l’air déjà réchauffé. La pression de condensation du fluide monterait et le compresseur verrait sa consommation fortement augmenter. Par forte chaleur, le compresseur ne pourrait suivre et déclencherait par son pressostat haute pression.

L’évacuation de la chaleur demande un réel balayage par un fluide frais et il appartient au bureau d’études de comparer 2 solutions :

  • Soit une gaine d’air est prévue pour apporter l’air extérieur au condenseur et évacuer l’air réchauffé (les pertes de charge générées créent des consommations au ventilateur).
  • Soit il est décidé de placer un condenseur à eau et de transférer l’eau chaude en toiture pour la refroidir dans une tour de refroidissement.

Le transfert de la chaleur par cette deuxième solution est plus efficace (bon coefficient d’échange de l’eau, faible consommation d’une pompe par rapport à un ventilateur),… mais il y a investissement et consommation de la tour. Un bilan global doit être réalisé.

Paramètres de dimensionnement

Pour augmenter les performances du compresseur, on a tout intérêt à abaisser la température de condensation. Autrement dit, il faut augmenter la surface d’échange et augmenter le débit de circulation de l’eau ou de l’air. Le « pincement », c’est-à-dire l’écart entre la température du fluide refroidissant à la sortie du condenseur et la température du fluide frigorigène sera minimal. Mais l’investissement et les pertes de charge en seront augmentées, et donc la consommation de la pompe…

Schéma technique.

En pratique, pour un condenseur à eau, le bureau d’études choisit couramment un pincement final de 4 à 8°C et un échauffement de l’eau de 5 à 10°C. Autrement dit, si l’eau entre avec une température de 36°, elle ressortira entre 41 et 46°C et la température de condensation s’établira entre 45 et 54°C.

De même, pour un condenseur à air, la vitesse sera comprise entre 2 et 4 m/s et, si l’air entre avec une température de 30°C, la température de condensation s’établira entre 40°C et 50°C.

Schéma technique.

Un constructeur annonce que l’optimum entre la température de condensation et la température d’entrée du fluide refroidissant doit être de 12°C, maximum. Maximum car la régulation permet de moduler cette valeur en fonction de la charge réelle du compresseur.

Comparaison entre les modes de refroidissement

À partir d’une température de l’air de 30°C, quelle sera la température de condensation ? Tout dépend du type de refroidissement de l’eau de condensation choisi !

En partant du fonctionnement d’une tour de refroidissement, voici les résultats comparés pour une température d’air de 30°C 40 % HR
Comparons les systèmes en fixant des valeurs moyennes : une « approche » de 5°C, un pincement des échangeurs de 6°C et un échauffement de la température de l’eau de 7°C.

Entrée condenseur Sortie condenseur T°condens. fluide frigorifique
 

Condenseur à air

normal T° air sec = 30° T° air = 30° T° air = 37° 43°
avec évaporation d’eau T° air sec = 30° T° air = 25° T° air = 32° 38°
 

Condenseur à eau

tour ouverte T° air humide = 20° T° eau cond = 25° T° eau cond = 32° 38°
tour fermée T° eau pulvér. = 25° T° eau cond = 31° T° eau cond = 38° 44°
dry-cooler T° air séche = 30° T° eau cond = 36° T° eau cond = 43° 49°

Dans cette approche très simplifiée, on constate que le condenseur à eau est un échangeur intermédiaire entre le fluide frigorigène et l’air extérieur. Il provoque une augmentation de température de condensation du fluide (et donc une augmentation de la consommation du compresseur). Cette pénalité se retrouve entière pour l’aéro-refroidisseur ou dry-cooler. L’augmentation de la consommation du compresseur est de 2 à 3% par degré K, ce qui n’est pas négligeable !

Si une tour de refroidissement est insérée, on va rattrapper cet handicap par la fabuleuse capacité de refroidissement de l’eau lors de son évaporation !
La tour ouverte fait mieux que combler l’handicap puisqu’elle permet même de descendre la température de condensation. Mais elle entraîne beaucoup de soucis de corrosion…

La tour fermée semble un très bon compromis dans les installations avec condenseur à eau, tandis que l’appoint d’une pulvérisation d’eau est à étudier pour les condenseurs à air.

Abaisser la température de l’air extérieur

La consommation énergétique augmente si la température de condensation augmente.

Aussi, l’emplacement du condenseur doit éviter un réchauffement local de l’air de refroidissement. Par exemple, un condenseur placé sur une toiture couverte de roofing noir entraînera une surchauffe locale de l’air de plusieurs degrés en période d’ensoleillement … Le placement de gravier blanc sur la toiture sera favorable.

L’emplacement du condenseur devra éviter un ensoleillement direct de l’échangeur. Si le placement à l’ombre est impossible, le placement d’un système d’ombrage permettra d’abaisser le niveau de température.

Il faut éviter également qu’un recyclage de l’air ne se fasse autour du condenseur : de l’air chaud se mélange à l’air froid, la température de l’air d’aspiration augmente, … de même que la température de condensation.
C’est pourtant parfois une solution réalisée pour la limitation du niveau de bruit, puisque les parois latérales peuvent être couvertes d’absorbant acoustique… Qu’il est difficile de concilier toutes les contraintes…!

Dans le même esprit, il faut éviter que l’air de refroidissement d’un condenseur ne soit recyclé sur lui-même ou dans un condenseur voisin.

Sans commentaires…

Dans la mesure du possible, il faut donc aussi proscrire le placement le condenseur dans un local fermé. Si c’est le cas (pour des condenseurs de chambres frigorifiques, par exemple), il faut assurer une forte ventilation du local et même parfois sa climatisation, si on veut que la température de l’air du local reste suffisamment basse pour pouvoir continuer à refroidir les condenseurs sans faire monter la pression de condensation. On conviendra que cette situation est aberrante sur le plan énergétique !

Protéger l’isolation extérieure

Les tuyauteries d’eau glacée sont toujours isolées, ne fut-ce que pour éviter la condensation de l’eau de l’ambiance. Mais il est utile d’insister sur la nécessité d’entourer l’isolant d’une gaine en plastique rigide. À défaut, les oiseaux sont friands de cette mousse de polyuréthanne pour la confection de leur nid !


Choix d’un condenseur à air

Le gaz chaud du réfrigérant cède sa chaleur à l’air traversant le condenseur et passe à l’état liquide.

L’entretien du condenseur à air est limité. Il n’y a aucun risque de gel en hiver.

Mais le coefficient d’échange avec l’air étant faible, le condenseur sera volumineux, et donc lourd et encombrant.
Les températures de condensation sont directement liées aux conditions de température extérieure : la pression de condensation sera forte en été (dégradation du COP de la machine frigorifique), mais plus faible en hiver, entraînant d’ailleurs un besoin de régulation adaptée pour un fonctionnement correct.

Choix du ventilateur

La circulation forcée de l’air nécessite des ventilateurs dont la consommation électrique n’est pas négligeable. De plus, ils constituent une source de bruits, par frottement sur les pales du ventilateur, mais aussi par frottement sur les ailettes de l’échangeur.

Pour information, des condenseurs à air à convection naturelle existent (pas de ventilateur, pas de bruit, pas de consommation) mais leur puissance très faible en limite l’usage à des climatiseurs ne dépassant pas 1 kW.

Deux types de ventilateurs sont utilisés :

ventilateur hélicoïdal

Le ventilateur hélicoïdal (ou axial), pour des appareils placés à l’air libre, là où le bruit ne constitue pas une nuisance pour le voisinage. Le niveau sonore dépend de la vitesse de rotation du ventilateur. Dans les emplacements exposés, le régime ne doit pas dépasser 500 t/min.

Si des ventilateurs existants sont trop bruyants, on peut les munir d’amortisseurs de bruit cylindriques (tenir compte de la perte de charge).

ventilateur centrifuge

Le ventilateur centrifuge, souvent pour des appareils placés à l’intérieur d’un immeuble, raccordé à l’extérieur par des gaines (le ventilateur centrifuge peut vaincre des pertes de charges plus élevées).

Si le bruit du ventilateur dépasse les valeurs admissibles, on peut le munir d’amortisseurs de bruit.

La vitesse de passage de l’air est comprise généralement entre 2 et 4 m/s. Cette information dans le catalogue constructeur est un indice qualité puisque si elle se rapproche de 2 m/s, on a plus de garantie que l’appareil fera peu de bruit et que la consommation du ventilateur sera limitée (en fait, le constructeur a dû écarter davantage les ailettes pour faciliter le passage de l’air, donc l’appareil demandera plus de matière, sera plus volumineux et… sera plus cher : la qualité se paie !).

Complément de puissance par aspersion d’eau

Schéma complément de puissance par aspersion d'eau.

Pour augmenter la puissance d’échange, on peut transformer le condenseur à air en tour fermée par aspersion de l’échangeur avec de l’eau. Par exemple, de l’air extérieur de 30°C 50 % HR passe à 25°C 100 % HR . On abaisse donc la température de condensation en dessous de la température de l’air ambiant. Ce qui facilite le travail du compresseur !

Schéma technique.

Dans ce cas, il faut cependant tenir compte du risque de corrosion de l’échangeur et, de ce fait, des fuites possibles de l’agent réfrigérant. L’eau évaporée est remplacée par de l’eau du réseau. Un débit complémentaire de déconcentration est nécessaire afin de réduire l’entartrement. Un traitement de l’eau peut donc s’avérer nécessaire.

Récupération de chaleur du condenseur

Une récupération de la chaleur est possible pour chauffer directement un local. Ainsi, un supermarché Delhaize à Bruxelles évacue la chaleur du condenseur du groupe frigorifique (armoires de congélation) en créant un rideau d’air chaud à l’entrée du magasin. En été, la chaleur est déviée en toiture par un clapet.


Choix d’un condenseur à eau

Photo condenseur à eau.

Le réfrigérant de la machine frigorifique cède sa chaleur à l’eau circulant dans le condenseur.
Grâce au coefficient d’échange avec l’eau de 20 à 30 x plus élevé que le coefficient d’échange avec l’air, la taille du condenseur à eau sera plus réduite. L’échangeur sera moins encombrant.

Machine frigorifique avec condenseur à eau, installée en salle des machines et raccordée à une tour de refroidissement à l’extérieur.

Il est moins bruyant que le condenseur à air. Il permet plus facilement la récupération de chaleur puisque la chaleur est contenue dans de l’eau, plus facilement déplaçable.

La température de condensation peut plus facilement être stabilisée que dans les condenseurs à air.

Mais le condenseur à eau nécessite forcément une tour de refroidissement complémentaire qui, elle, est encombrante, génère du bruit, des frais d’entretien parfois importants, une éventuelle consommation d’eau, … Pourrait-on dire que l’on a déplacé le problème ?

La matière utilisée est souvent le cuivre ou l’acier, bons conducteurs thermiques, en fonction des contraintes (le cuivre ne peut être adopté pour l’ammoniac, par exemple).

Pour le refroidissement, on peut utiliser :

  • L’eau du réseau (eau potable), mais cette solution est à proscrire vu la consommation exorbitante d’eau qu’elle entraîne.
  • L’eau de nappes phréatiques, de lac ou de rivière (demander l’autorisation). Les eaux contiennent plus ou moins d’impuretés qui se déposent sur les tubes. Ces dépôts peuvent réduire considérablement le coefficient de transfert de chaleur. À défaut de la mise en place d’un système de nettoyage automatique, il faut surdimensionner l’échangeur de sorte que les performances de l’installation restent suffisantes.
  • Un circuit d’eau, ouvert ou fermé. C’est le cas le plus fréquent. Il entraîne l’utilisation d’une tour de refroidissement.

Choix de la tour de refroidissement

Photo tour de refroidissement.

Pour évacuer la chaleur captée par le condenseur à eau, on rencontre trois technologies de tour de refroidissement. Voici quelques critères de choix.

Le refroidissement atmosphérique ouvert : la tour ouverte

L’eau est pulvérisée dans l’air qu’un ventilateur pulse à travers la tour de refroidissement. Une partie de l’eau s’évapore. Simultanément, elle refroidit le reste de l’eau qui retourne vers le condenseur. L’eau évaporée est continuellement remplacée par de l’eau fraîche spécialement traitée. Cette configuration entraîne donc une consommation d’eau, estimée à 1,5 litre par kWh dissipé. Elle se rencontre généralement dans les installations de plus de 1 000 kW.

Schéma tour ouverte.

Cette tour ouverte a la faveur :

  • du financier : solution bon marché, ne prenant pas beaucoup de place,
  • de l’énergéticien : la température de condensation est très basse (ce qui diminue le travail du compresseur).

Mais elle constitue le cauchemar de l’équipe de maintenance : corrosion par oxygénation de l’eau, encrassement par introduction de poussières et de grains de sable qui risquent de se déposer dans le condenseur, risque de gel accru,… problèmes qui limitent d’ailleurs la durée de vie moyenne à une dizaine d’années.

Photo tour ouverte.

Elle peut poser également un risque en matière de contamination par la légionelle : l’eau pulvérisée se situe à une température de 30 à 50°C. Emporté par le vent, le nuage de vapeur d’eau + fines gouttelettes qui s’échappe de la tour risque d’être respiré par des personnes à proximité… On sera particulièrement attentif à ne pas placer une tour ouverte près de la prise d’air neuf du bâtiment, ou près d’un autre bâtiment plus élevé dont les occupants pourraient respirer le panache de vapeur en ouvrant leur fenêtre. Un entretien régulier doit de plus être prévu.

À noter qu’il existe des tours ouvertes sans ventilateurs. La pulvérisation d’eau est réalisée avec une pression assez élevée et cette pulsion d’eau entraîne l’air avec elle par effet induit (effet Venturi). L’avantage premier est la diminution des bruits et des vibrations. La consommation un peu plus élevée de la pompe est très largement compensée par la suppression du ventilateur. Mais ce type de tour est limité dans la gamme de puissance de refroidissement.

Schéma technique.

Si la tour doit travailler par des températures extérieures assez basses, une régulation de la température de l’eau du circuit « tour » est à prévoir. En effet, si l’eau du condenseur est anormalement froide, la haute pression s’établira difficilement et on aura des difficultés au démarrage.
La solution consiste à agir d’abord sur la diminution de la vitesse du ventilateur et ensuite sur la vanne trois voies diviseuses qui permettent à l’eau de by-passer la tour de refroidissement.

Schéma technique.

Remarques.

  • Si l’installation reste en fonctionnement en période de gel, une résistance chauffante sera prévue dans le bac de collecte d’eau, avec une régulation qui autorise le chauffage pour une température de l’eau inférieure à 5°C, par exemple.
  • Puisque le risque de corrosion est élevé dans les tours ouvertes, il est judicieux d’utiliser des tuyauteries en polyéthylène à haute densité ou en PVC haute densité, pour raccorder la tour au condenseur.

Le refroidissement atmosphérique fermé : la « tour fermée »

L’échangeur de chaleur eau/air est également aspergé d’eau quand la puissance de réfrigération est élevée. Cette eau d’aspersion constitue toutefois un circuit autonome. Pour cette installation il faut compter environ 20 % d’emplacement supplémentaire au sol et 50 % de budget en plus par rapport à la tour ouverte.
Le principal avantage est d’abaisser le point de condensation tout en conservant propre le circuit du condenseur. Les problèmes hydrauliques sont résolus mais les autres problèmes subsistent :

  • consommation d’eau (évaporation et déconcentration),
  • régulation,
  • protection contre le gel.

La réserve (mentionnée pour les tours ouvertes) concernant le risque de contamination par légionellose reste d’application dans ce cas-ci. Ici encore, le choix de ce système sera donc moins adéquat si des personnes sont susceptibles de respirer l’air sortant de la tour de refroidissement (fenêtres à proximité).

Le refroidissement atmosphérique fermé : l’aéro-refroidisseur où « dry-cooler »

Cette fois, pas d’aspersion d’eau, c’est le ventilateur qui pulse simplement l’air extérieur dans une batterie d’échange. Technologiquement, il s’agit d’un condenseur à air, à la seule différence que c’est de l’eau qui le parcourt et non du fluide frigorigène.

Pour éviter le gel, l’eau sera glycolée. Par exemple, pour atteindre une protection contre le gel à – 16°C, la concentration en éthylène-glycol sera de 30 % en masse.
Problème : la température de l’air en été peut dépasser les 30°C. Par rapport aux tours de refroidissement avec aspersion d’eau, la surface d’échange doit être plus importante, l’emplacement au sol également. Le coût d’investissement peut atteindre le double de celui de la tour ouverte.
Mais le dry-cooler est cependant souvent utilisé pour sa fiabilité (absence de corrosion du circuit hydraulique), la possibilité de le faire fonctionner en toutes saisons (avec eau glycolée), l’absence de consommation d’eau.
Ces caractéristiques sont appréciées surtout pour le refroidissement des installations informatiques dont le fonctionnement et la charge thermique sont constants toute l’année, et donc aussi en hiver.

Aéro-refroidisseur.

Quelques recommandations particulières

Pour une installation de qualité, on sera attentif aux éléments suivants :

  • Pour limiter la corrosion, préférer de l’acier revêtu (polymères) à l’acier galvanisé (il n’est pas lisse, ce qui favorise le développement d’algues),
  • Choisir des ailettes très larges ou des batteries lisses pour un nettoyage facile,
  • Choisir une pompe à eau en inox,
  • Privilégier un accouplement et des roulements de haute qualité (> 80 000 heures), sachant qu’une tour peut fonctionner jusqu’à 5 à 6 000 heures/an !
  • Si le bruit est un facteur important, favoriser les ventilateurs à aubes inclinées vers l’avant, malgré leur moins bonnes performances énergétiques que les ventilateurs à aubes inclinées vers l’arrière (qui doivent fonctionner à 3 000 tours), ou penser au placement d’un silencieux,
  • Vérifier la résistance de la structure : une tour fermée de 300 kW pèse de 3 à 4 tonnes et une tour de 1 000 kW pèse de 9 à 12 tonnes !
  • Prévoir l’absorption des vibrations sonores par des silent-blocs,
  • Prévoir un appareil de mesure de la conductivité de l’eau (pour mieux gérer le débit d’eau de déconcentration),
  • Pour les très grosses tours, le placement de capteurs de vibration pour la surveillance des paliers sera un outil très efficace de maintenance et d’économie à long terme.

Choix de la régulation

Principe de base : abaisser la température de condensation

Abaisser la température de condensation, c’est abaisser le niveau de pression à la sortie du compresseur, c’est donc diminuer le travail de celui-ci et l’énergie qu’il consomme.

Par exemple, abaisser la température de condensation de 10°C génère généralement plus de 10 % de réduction de la puissance électrique. Les constructeurs annoncent même 2 % d’économie par degré abaissé, dans certains cas.
De plus, une basse température de condensation entraîne un niveau moins élevé de pression, ce qui permet souvent de choisir un compresseur d’un modèle plus petit, donc moins cher.

Nous devrions avoir d’ excellents rendements dans nos régions où les canicules sont rares ! La température extérieure avoisine les 12 à 20°C lorsque la climatisation est en route. La température de condensation devrait être de l’ordre 24 à 32°C. Mieux, certains locaux à charges internes importantes (par exemple, les salles informatiques) doivent être aussi climatisés en mi-saison ou encore en hiver. Dans ce cas, lorsque la température de l’air extérieur diminue, la capacité de refroidissement du condenseur augmente.
En théorie, c’est tout bénéfice pour le compresseur qui a moins de mal à travailler !
Et pourtant …

Problème avec les détendeurs thermostatiques

Le constructeur souhaite qu’une différence de pression minimale existe au niveau du détendeur, pour assurer une quantité de débit de fluide frigorifique suffisante dans l’évaporateur. C’est la Haute Pression qui pousse le réfrigérant à travers l’orifice de la vanne du détendeur. Il en résulte, avec une haute pression trop faible, que l’alimentation en réfrigérant est insuffisante, particulièrement au démarrage. Le compresseur aspire mais il est sous-alimenté.

La basse pression devient aussi insuffisante et le groupe se met en sécurité basse pression. Mais comme cette sécurité est à réenclenchement automatique, le groupe « pompe », se fatigue et finalement déclenche par son thermique.

Avec un détendeur thermostatique, il est donc nécessaire de maintenir une haute pression suffisamment élevée. Dès lors, le constructeur impose une pression minimale, côté HP, à la sortie du condenseur (par exemple 12 bars pour le R22).
Ce problème est renforcé en hiver… Si l’air est à 0°C, la surface d’échange devient excessive. De plus, on n’aura plus besoin de la pleine puissance frigorifique. De sorte que le condenseur sera largement surdimensionné pendant les périodes froides.
S’il fait plus froid dehors, le constructeur va diminuer le débit d’air de refroidissement (en arrêtant l’un ou l’autre ventilateur, par exemple), mais il va maintenir le niveau de pression ! en fait, la régulation des ventilateurs sera réalisée sur base du pressostat HP.

Schéma régulation des ventilateurs sera réalisée sur base du pressostat HP.

Il y a économie sur le ventilateur… mais pas sur le compresseur !

Première amélioration : travailler avec un ventilateur à vitesse variable ou une cascade de ventilateurs

Supposons que le ventilateur du condenseur fonctionne en tout ou rien, avec l’exigence constructeur de maintenir les 12 bars minimum.
Par exemple, il s’enclenche lorsque la pression monte à 16 bars et déclenche lorsque la pression descend à 12 bars. Ceci entraîne des cycles on-off « rapides » (+/- 2 min.) et une « fatigue » du moteur. En plus la mise en route brutale du ventilateur provoquera une chute soudaine de la pression et de la température de condensation. Ceci provoque à son tour une ré-évaporation du liquide resté à la même température. Les bulles de vapeur provoqués par ce phénomène peuvent perturber le bon fonctionnement du détendeur et donc de l’installation. (« flash gaz »).

Si par contre, on utilise un ventilateur à vitesse variable (moteur spécial ou régulateur de vitesse de rotation externe), en plus de la réduction de consommation du ventilateur, on optimisera le fonctionnement du compresseur qui restera régulé à 12 bars (dès que la pression augmente, le ventilateur accélère; et si la charge augmente encore, c’est la pression qui augmente naturellement).

Si le condenseur dispose de plusieurs ventilateurs, on obtient un résultat similaire à partir d’une mise en cascade des ventilateurs, via un pressostat à plusieurs étages. Cette fois, la pression de condensation est stable, ce qui évite la formation de bulles de gaz à l’entrée de l’évaporateur.

Cas particulier

Comme le condenseur est entièrement à l’extérieur, par très basse température, c’est toute la masse métallique qui est à 0°C et, même clapets complètement fermés, le réfrigérant se condense à trop faible pression. Il faut dans ce cas rendre inopérants un certain nombre de tubes.

Pour les rendre inopérants, il suffit de remplir d’office certains tubes avec du réfrigérant liquide. Ce réfrigérant liquide sera sous-refroidi mais la surface d’échange utile du condenseur ayant fortement diminué, il ne pourra en condenser trop. Ce remplissage est obtenu par une vanne à 3 voies fonctionnant automatiquement et branchée sur un réservoir auxiliaire de réfrigérant.

Comme il faut une certaine quantité de liquide pour remplir ces tubes, il y a lieu de prévoir un réservoir et une quantité de réfrigérant suffisamment grande.

Exemple.

Un climatiseur devant fonctionner pour des températures extérieures inférieures à 17°C doit être équipé d’un ventilateur de condenseur à vitesse variable. La diminution de vitesse du ventilateur est alors commandée par un pressostat ou un thermostat placé sur le condenseur. La puissance d’échange de celui-ci est ainsi maintenue constante quelle que soit la saison.

Au minimum, le fonctionnement du ventilateur sera commandé en tout ou rien. Idéalement la vitesse sera modulée, soit en continu, soit par paliers.

Deuxième amélioration : travailler avec un détendeur électronique

Si le détendeur thermostatique travaille généralement avec une température minimale de condensation de 35°C, le détendeur électronique peut travailler avec une température minimale de condensation de 20°C !

Photo détendeur électronique.

Détendeur électronique.

Il est plus cher à l’investissement, mais ce prix est largement récupéré par l’usage de l’installation.
De plus, la présence d’un détendeur numérique permet d’optimiser la température de condensation en fonction de la charge du compresseur.

Exemple.

Voici la séquence prévue par un constructeur de régulation :

A 100 % de puissance, l’écart « température de condensation – fluide de refroidissement » est choisi à 12 K.

A 0 % de puissance, l’écart est de 4 K : la consommation du compresseur est diminuée par la baisse de pression de condensation et le ventilateur adaptera sa vitesse de rotation pour maintenir cette consigne. L’écart n’est pas de 0 K, car les ventilateurs tourneraient tout le temps.


** à corriger

Exemple.

si la T°ext = 30°C et Travail compresseur = 25 %, la T°condensation = 36°C
si la T°ext = 30°C et Travail compresseur = 50 %, la T°condensation = 38°C
si la T°ext = 20°C et Travail compresseur = 25 %, la T°condensation = 26°C

si la T°ext = 10°C et Travail compresseur = 25 %, la T°condensation = … 20°C car c’est la valeur minimale de condensation.

Remarque.
Adopter une température minimale de condensation de 20°C suppose que le sous-refroidissement soit suffisamment élevé.
À défaut, la moindre perte de charge sur le tracé va provoquer une vaporisation dans le condenseur (« flash-gaz »). C’est parfois un problème rencontré lorsqu’il faut remonter plusieurs mètres avec la tuyauterie.

Pour s’en prémunir, il est possible de sous-refroidir volontairement le liquide par la création d’une zone de sous-refroidissement dans le condenseur (voir figure), ou en plaçant un échangeur à plaques sur le liquide (à la sortie).

Illustration zone de sous-refroidissement dans le condenseur.

Régulation de la tour de refroidissement

La tour de refroidissement sera commandée suivant la même logique : maintenir constante la température de l’eau de refroidissement.
Classiquement, on retouvera une régulation par vanne 3 voies mélangeuses. La température de l’eau de sortie de la tour est mélangée à l’eau venant du condenseur. Si ce système permet de conserver le débit constant dans le condenseur (ce qui limite le dépôt de sédiments), il est peu efficace au niveau des ventilateurs : ceux-ci tournent en permanence quels que soient les besoins de refroidissement. En dehors du gaspillage d’énergie, le coût de fonctionnement des ventilateurs est loin d’être négligeable…

Schéma régulation de la tour de refroidissement.

Aussi est-il préférable de concevoir une installation qui régule d’abord sur le nombre et la vitesse des ventilateurs, pour ensuite affiner en modulant sur la position de la vanne mélangeuse (si ventilateur à 2 vitesses, par exemple). Idéalement, c’est un ventilateur à vitesse variable qui sera choisi.
N’oublions pas que toute l’installation de climatisation est dimensionnée pour les jours de canicule. Hélas, ces jours sont rares dans nos contrées…!

Il est donc facile d’imaginer que les besoins réels moyens seront largement en dessous des puissances de dimensionnement. Réduire la vitesse du ventilateur de moitié, c’est diviser sa consommation par 8 !


Critères acoustiques

Bruit aérien

La principale source de bruit d’un condenseur est constituée par le(s) ventilateur(s). On aura toujours intérêt à les faire fonctionner à faible vitesse.

L’émission du bruit des aérocondenseurs à ventilateurs hélicoïdes est pratiquement uniforme dans un plan perpendiculaire à l’axe de rotation des ventilateurs. Les faces d’aspiration et de refoulement d’air étant plus bruyantes que les autres, l’aérocondenseur doit être convenablement orienté par rapport aux plaignants potentiels.

Certains constructeurs proposent des moteurs de ventilateur à deux vitesses, option qui peut être déterminante dans certains cas. Ainsi, la petite vitesse pourra être utilisée la nuit, les bruits de fond et les besoins frigorifiques diminuant la nuit. Certains constructeurs annoncent qu’une réduction de moitié de la vitesse de rotation des ventilateurs entraîne un gain de 15 dB(A) sur le niveau de puissance acoustique de l’aérocondenseur.

Il est aussi possible d’utiliser des silencieux à baffles sur l’aspiration et le refoulement d’air mais ceux-ci risquent d’augmenter considérablement l’encombrement et les pertes de charge des aérocondenseurs. Certains matériaux absorbants peuvent servir de revêtement insonorisant de la carcasse, mais ceux-ci ne peuvent constituer une solution à eux seuls. Il est possible enfin, dans les cas les plus délicats, de disposer des écrans acoustiques autour de l’appareil.

Photo écrans acoustiques.

Exemple de baffles acoustiques
intégrés sur une tour ouverte (vue du dessus).
Les poignées permettent de les retirer facilement lors de l’entretien.

Bruit solidien (ou bruit d’impact)

Les vibrations se transmettent vers les locaux sensibles par les tuyauteries en cuivre, et par la dalle sur laquelle est posé l’appareil. Il faut traiter les vibrations par dalle flottante posée sur isolateurs à ressort, utiliser des manchons anti-vibratoires pour le raccordement sur des canalisations, et des suspensions anti-vibratiles pour les supports des canalisations.

Choisir un fluide frigorigène [Concevoir – Climatisation]

Il existe différents types de fluides frigorigènes sur le marché. En voici les critères de choix :

Choisir un fluide frigorigène


L’impact environnemental

Reprenons différents fluides en fonction de leur impact environnemental dans le tableau ci-dessous. Ce tableau met bien en évidence le fait que les HFC sont en sursis comme le prévoit la réglementation européenne (règlementation dite F-gaz). Celle-ci prévoit en effet une réduction d’utilisation de 79% de l’utilisation des gaz fluorés d’ici 2030 par rapport à l’utilisation faite en 2015.

Aujourd’hui les solutions de remplacement ne sont pourtant si pas évidentes. Il faudra s’orienter vers des (nouveaux ?) fluides à faible Potentiel de Réchauffement Global (PRG) ou des fluides naturels.

Cependant, pour ces derniers, il faudra faire face aux contraintes de sécurité associées au CO2 (haute pression) au propane et au butane (inflammabilité) et à l’ammoniac (toxicité).

ODP
(/R-11)
GWP
(kg éq. de CO2)
ODP
(/R-11)
GWP
(kg éq. de CO2)
CFC
(interdits)
Mélanges de HCFC
R-11 1 4 000 R-404A 0 3 260
R-12 0,8 8 500 R-407C 0 1 530
R-502 0,2 5 490 R-410A 0 1 730
HCFC Mélanges à base R-22
R-22 0,04 1 700 R-408A 0,7 2 650
HFC
(corps purs)
Autres
R-134a 0 1 300 Propane / Butane 0 20
R-125 0 2 800 Ammoniac 0 <1
R-143a 0 3 800 CO2 0 1

Remarque : certains imaginent qu’à défaut de trouver le gaz parfait, on pourrait produire le froid dans des machines frigorifiques très compactes (donc contenant peu de fluide), puis transférer le froid par des caloporteurs (eau glycolée, CO2,.). Dans ce cas, le problème du fluide ou de sa sécurité est moins crucial.


L’impact énergétique (ou qualité thermodynamique)

Par ses propriétés thermodynamiques, le fluide frigorigène influence la consommation énergétique de la machine frigorifique. Pour illustrer ce point, nous reprenons ci-dessous les résultats d’une étude comparative entre 5 fluides différents, utilisés dans une même machine, avec les mêmes conditions de fonctionnement.

Source : ADEME, « le froid efficace dans l’industrie ».

Dans chaque cas, l’objectif est de produire une puissance frigorifique de 100 kW.

NH3 R-134a R22 propane R-404A
Puissance effective sur l’arbre [kW] 30,7 30,9 32,1 33,1 35,1
Coefficient de performance frigorifique 3,26 3,24 3,12 3,03 2,85
Débit volumique balayé dans le compresseur [m³/h] 239 392 224 250 217
Débit volumique de liquide frigorigène [m³/h] 0,53 1,91 1,75 2,42 2,70
Température de refoulement de la compression réelle adiabatique [°C] 156 60 87 63 59

Hypothèses de l’étude

  • Cycle à compression monoétagée;
  • Température d’évaporation : – 15°C;
  • Surchauffe à la sortie de l’évaporateur : 5 K;
  • Surchauffe à l’entrée du compresseur : 10 K;
  • Température de condensation : 30 °C;
  • Sous-refroidissement en sortie de condenseur : 5 K
  • Taux d’espace mort du compresseur : 3 %.

Analyse

Les températures de refoulement de la compression indiquée sont légèrement plus élevées qu’en réalité parce que le compresseur est placé dans une situation de non-échange avec l’extérieur (adiabatique). Par exemple, le compresseur réel à l’ammoniac qui échangerait 1/10 de sa puissance sur l’arbre aurait une température au refoulement d’environ 142°C.

On constate que le groupe au R-404A consomme 14 % de plus que le groupe à l’ammoniac. La machine équipée de propane n’est pas très performante non plus.

Le R-134a est très performant sur le plan énergétique. Par contre, le débit volumique balayé par le compresseur est nettement plus élevé, ce qui va augmenter la taille du compresseur et des conduites d’aspiration (coût d’investissement plus élevé).

L’ammoniac présente un très faible débit volumique de liquide frigorigène et donc un faible diamètre de la conduite de liquide.

Reprenons les chiffres du COP frigorifique en partant d’une référence 100 pour le R-22 :

NH3 R-134a R22 propane R-404A
Coefficient de performance frigorifique 3,26 3,24 3,12 3,03 2,85
Si le R-22 est pris en référence 100 : 105 104 100 97 91

Des résultats similaires ressortent d’une autre étude relatée par l’ASHRAE, avec comme différence notable un coefficient 99 pour le R-404A. Il faut dire que ce genre d’étude est fonction des options choisies : prendre la même machine frigorifique et changer juste le fluide, ou optimiser tous les composants en fonction des caractéristiques de chaque fluide pour produire la même puissance ?

Cette deuxième étude fournit les coefficients pour d’autres fluides :
R-410A : 99
R-407C : 95

À noter que les débits demandés par le R-407C sont, à 1 % près, identiques à celui du R-22 : il a justement été conçu comme fluide de remplacement. Il est malheureusement zéotrope et présente donc un glissement de température lors du changement d’état (un « glide ») de 7,2 °C, ce qui lui fait perdre 5 % de rendement énergétique.

Conclusion

L’ammoniac et le R-134a présentent une performance énergétique meilleure, mais cet avantage n’est pas suffisant que pour conclure sur ce seul critère.


La sécurité d’usage

De nombreuses études poussées sont menées sur les aspects :

  • toxicité (par inhalation);
  • action biologique (cancers, malformations des nouveaux-nés);
  • action sur les denrées entreposées en chambre froide;
  • inflammabilité.

Certains critères sont facilement quantifiables

  • par la concentration limite d’exposition (exprimée en ppm);
  • par la limite inférieure d’inflammabilité (concentration, en volume, dans l’air sous la pression atmosphérique).

Ce qui a permis de définir un code sécurité (Standard 34 Safety Group) :

NH3 R-134a R22 propane butane R-407C R-404A R-410A
Conc. limite d’exposition (ppm) 25 1 000 1 000 2 500 800 1 000 1 000 1 000
limite inf. d’inflammabilité (%) 14,8 2,3 1,9
Code sécurité B2 A1 A1 A3 A3 A1 A1 A1

La toxicité de l’ammoniac et l’inflammabilité des hydrocarbures entraînent des mesures de sécurité toutes particulières pour leur usage.

La norme NBN EN 378-1 traitant des Systèmes de réfrigération et pompes à chaleur – Exigences de sécurité et d’environnement – Partie 1: Exigences de base, définitions, classification et critères de choix est une norme utilisée plutôt pour la conception, la fabrication, l’installation, le fonctionnement et la maintenance des installations frigorifiques. Cependant, elle nous donne aussi une idée précise dans l’évaluation des risques liés à l’utilisation de ces fluides.


Les contraintes techniques

Elles sont nombreuses (niveaux de pression requis, comportement du fluide en présence d’eau, viscosité et donc tendance à fuir de l’enceinte, commodité de détection d’une fuite) et vont influencer l’efficacité et la fiabilité de l’installation.

Une des contraintes fort importantes est le couple formé par le fluide frigorigène et l’huile de lubrification.

De l’huile est nécessaire au bon fonctionnement du compresseur. Un séparateur d’huile est prévu à la sortie du compresseur, mais son efficacité n’est jamais totale. Et la petite quantité d’huile entraînée par le fluide risque de se déposer au fond de l’évaporateur (basse température et faible vitesse). L’échange thermique est diminué et, à terme, l’huile risque de manquer au compresseur. Si autrefois la miscibilité entre le fluide CFC et les huiles minérales était très bonne (le fluide « entraînait » avec lui une certaine dose d’huile assurant une lubrification permanente), il faut aujourd’hui adopter des huiles polyolesters, plus coûteuses, très sensibles à la présence d’eau, et dont on doit vérifier la compatibilité avec les différents matériaux en contact (métaux, joints élastomères, vernis moteur,.).

L’élimination des fluides frigorigènes chlorés, bonne chose pour l’ozone stratosphérique, en est une mauvaise pour la lubrification, le chlore étant bénéfique à la présence du film d’huile. L’emploi d’additifs divers dans les huiles a dû y suppléer.


Le coût

Le prix au Kg du frigorigène est très différent selon qu’il s’agisse d’un fluide simple, comme l’ammoniac, ou d’un fluide plus complexe comme un mélange de HFC.

Mais le coût du fluide frigorigène rapporté à celui de l’installation se situe entre 1 et 3 %, ce qui reste faible. Et les coûts indirects liés au choix du fluide (dispositifs de sécurité, équipements électriques anti-déflagrant, conception étanche du local technique,…) sont sans doute plus déterminants.


Les tendances futures

En HVAC, l’utilisation courante des fluides frigorigènes CFC (R11, R12 et R502) et HCFC (R22)  a été proscrite, car ils avaient le pouvoir de détruire la couche d’ozone et de renforcer l’effet de serre.

Depuis 1990 est apparue une nouvelle famille : les HFC, fluides purement fluorés, dont le R-134a est le plus connu. Malgré tout, ce genre de fluide frigorigène n’est pas idéal sur le plan de l’environnement. Dès lors, l’utilisation dégressive de ces gaz fluorés est imposée par la réglementation. On devra alors s’orienter vers des fluides à potentiel de réchauffement global faible. Cela passera très certainement par :

  • L’élargissement de l’utilisation des fluides toxiques (amoniac) et inflammables (propane, butane)
  • Le développement de nouvelles molécules et de nouveaux mélanges
  • La réduction drastique de la charge et confinement du fluide frigorigène
  • Le retour du CO2

À ce sujet, une étude a été menée en France par  Armines CES, le Cemafroid et ERéIE pour l’AFCE avec le soutien de l’ADEME et d’UNICLIMA. Ce rapport présente notamment un série d’alternatives par secteur. Vous pouvez le télécharger en  ouverture d'une nouvelle fenêtre ! cliquant ici.

Concevoir une installation frigorifique : critères généraux

Concevoir une installation frigorifique : critères généraux


Limiter le surdimensionnement

On connaît le besoin de limiter la puissance d’une installation. Parole d’un installateur : « aucun système de climatisation ne peut apporter le confort si la puissance frigorifique spécifique est élevée ». Mais on ne reviendra pas ici sur cette nécessité de limiter le besoin de froid (limitation des surfaces vitrées, placement de protections solaires, …).

Pour un bâtiment donné, l’objectif est ici de limiter la sur-puissance de l’installation et de ses composants auxiliaires (pompes, ventilateurs, tours de refroidissement,…) et donc d’établir le calcul des charges sur base de paramètres de dimensionnement corrects.

Évaluer

Pour en savoir plus sur l’impact énergétique du surdimensionnement de l’installation frigorifique, cliquez ici !

On peut comprendre qu’un bureau d’études souhaite se protéger de toute contestation ultérieure (manque de puissance). Dans ce but, la tendance est d’utiliser des coefficients de sécurité maximaux… et de surdimensionner l’installation. Par contre, le maître d’ouvrage peut expressément « prendre sur lui » les risques éventuels d’inconfort et préciser au bureau d’études qu’il souhaite des critères plus précis de dimensionnement.

S’il souhaite limiter l’investissement initial et la consommation future, le maître d’ouvrage pourra demander que le dimensionnement des installations de conditionnement d’air soit réalisé :

Sur base de température et humidité extérieures réalistes :

Les valeurs extrêmes qui servent au dimensionnement pour l’été sont souvent de 30°C et 50 % HR (c’est la valeur proposée par l’AICVF, Association des Ingénieurs en Climatique, Ventilation et Froid, pour le Nord de la France), parfois même 32°C est choisi « par sécurité ». Or, le fabricant Carrier (dont la méthode de calcul pour le dimensionnement fait autorité dans le monde entier) propose 28° et 40 % HR pour Lille et 30° et 40% pour Reims.

Il est important de dissocier les valeurs de dimensionnement des valeurs limites de fonctionnement. On peut sélectionner un équipement capable de ne pas déclencher en dessous de 35, voire 40°C. Ainsi, l’appareil dimensionné pour donner sa puissance nominale pour 30° fonctionnera à 40°, tout en ne fournissant pas temporairement toute la puissance requise (40°C = lors d’une période de canicule, où en plus l’air serait localement chauffé par la présence d’une toiture en roofing noir et d’un mur stoppant tout balayage par le vent !).

Par exemple, si on dimensionne sur 30°C, la centrale de traitement d’air risque de ne pas avoir la puissance suffisante par 32°C extérieurs, et donc de pulser l’air hygiénique à 17°C au lieu de 16°C, mais les ventilo-convecteurs (qui ont été dimensionnés avec une incidence très faible de la température extérieure et en choisissant le modèle « juste au-dessus dans la gamme des appareils ») pourront compenser localement ce léger déficit.

De plus, l’IRM atteste que la température à Uccle ne dépasse jamais 30°C sur une année type-moyenne (. Cette température n’est dépassée que quelques jours par an durant les années « chaudes ».

Répartition des conditions climatiques à Uccle sur base de l’année-type moyenne de l’IRM. Un point correspond à 1 h. Cela signifie l’heure pour laquelle la charge énergétique extérieure est la plus grande (correspond à l’enthalpie maximale) correspond à l’enthalpie du point (30°C et 50%).
Dimensionner sur base d’un point correspondant à 30°C, 40% ne laisse « échapper » que quelques heures par an.

Un cahier des charges qui impose un dimensionnement sur base de 30° et 40%, voire même, 28° et 40% HR limitera les consommations durant toute la vie des équipements.

C’est le responsable du bureau d’études qui demandera au fournisseur de sélectionner un appareil qui ne déclenche pas par action du pressostat de sortie du compresseur pour une température trop faible.

Sur base de température et humidité intérieures « enveloppes » qui réservent une « zone neutre » :

Les puissances frigorifiques seront établies sur base d’une température de consigne minimale de 24°C en période de refroidissement, le critère énergétique optimum étant de 26°C. L’AICVF propose une température de l’air de 25°C, saufs locaux particuliers.

À noter que la température de 26°C n’est pas pour autant la température de consigne permanente. C’est la température de dimensionnement pour une température extérieure extrême. Cela signifie que, par très forte chaleur extérieure, le bâtiment pourrait « monter » jusqu’à 26°C. Or, les occupants venant d’une température élevée à l’extérieur apprécieront que l’écart thermique ne soit pas trop important.

Dans le cas de la technique de climatisation par plafonds froids, une température d’air de 26°C génère un confort équivalent à une température de 24°C obtenue avec un système classique du type ventilo-convecteur, grâce à l’effet de rayonnement frais sur les têtes des occupants.

Un tel niveau de consigne permet l’existence d’une zone neutre entre la consigne d’hiver et la consigne d’été, gage de ne pas voir les productions de chaud et de froid fonctionner simultanément dans le bâtiment.

Sur base de besoins d’air de ventilation limités

Le respect du RGPT est souvent la base du calcul 30 [m³/h.pers] mais la norme européenne NBN EN 13779: 2004 (Ventilation dans les bâtiments non résidentiels-Spécifications des performances pour les systèmes de ventilation et de climatisation) peut constituer une nouvelle référence de base opposable. Il propose 3 débits d’air neuf à respecter en fonction de la qualité de l’ambiance à respecter (dans des locaux dont la pollution principale est d’origine humaine) pour les locaux sans fumeur en fonction de la qualité d’air souhaitée :

Norme européenne EN 13779: 2004
pour les locaux sans fumeur.

Catégorie de qualité d’air

Débit d’air neuf
Excellente qualité
(niveau ambiant de CO2 < 400 ppm au dessus du niveau extérieur).
> 54 [m³/h.pers]
Qualité moyenne
(niveau ambiant de CO2 400-600 ppm au dessus du niveau extérieur).
de 36 à 54 [m³/h.pers]
Qualité acceptable
(niveau ambiant de CO2 600-1 000 ppm au dessus du niveau extérieur).
de 22 à 36 [m³/h.pers]
Faible qualité
(niveau ambiant de CO2 > 1 000 ppm au dessus du niveau extérieur).
< 22 [m³/h.pers]

Sur base de taux d’occupation des locaux prédéfinis en fonction de leur usage

Il est important d’informer le bureau d’études de l’occupation des personnes la plus réaliste. En cas de doute, on sollicitera la mise en place d’une gestion de la ventilation en fonction des besoins.

Sur base de niveaux d’apports internes prédéfinis en fonction du niveau d’équipement

L’équipement prévisible des locaux doit lui aussi être défini avec soin si l’on ne désire pas que le bureau d’études se base sur des valeurs standards qui sont parfois bien au-delà de la réalité : le 25 W/m² pris traditionnellement pour estimer les charges de la bureautique par exemple, n’est plus atteint aujourd’hui, sauf dans des secteurs spécifiques comme le secteur bancaire.

Sur base de besoins de déshumidification limités

Traditionnellement, sauf indication contraire, le bureau d’études dimensionne sur base d’un taux d’humidité de 50 % intérieur. Or le corps humain n’est pas sensible à l’humidité dans la fourchette de 35 à 65 % HR. La déshumidification d’été est donc coûteuse, d’autant qu’elle risque de générer l’enclenchement de la post-chauffe pour ne pas pulser un air trop froid dans l’ambiance. Ce qui est dommageable au niveau énergétique.

Un dimensionnement basé sur une humidité intérieure de 60 % est suffisant et recommandé.

Remarque : dans la technique des plafonds froids, un taux d’humidité particulièrement bas est requis pour limiter le risque de condensation dans les locaux.

Sur base de coefficients de foisonnement réalistes

Sur les puissances moyennes d’équipements, sur les taux d’occupation, . des coefficients de foisonnement peuvent être appliqués sur base de l’idée que tout le monde n’est pas toujours présent en même temps. Une étude réaliste des taux d’occupation prévisible est nécessaire.

Sur base d’un fonctionnement 24h/24 en période de canicule

Le temps de fonctionnement supposé de l’installation frigorifique va influencer les résultats (fonctionnement 12h/24 ? 16h/24 ? 24h/24 ?). Un dimensionnement sur base d’un fonctionnement 24h/24 va diminuer la puissance installée (et donc le coût d’investissement) et donc permettre un meilleur rendement durant toute l’année.

La régulation de base travaillera au régime 8h00 – 18h00 et, en cas de canicule, la régulation prolongera automatiquement la période de fonctionnement (en fonction du maximum atteint par la température extérieure, par exemple).

Exemple.

1. En collaboration avec le bureau d’études de Tractebel, un test à été fait sur un immeuble de bureaux pour tester l’impact de la période de fonctionnement des équipements. Les résultats sont très variables en fonction de l’inertie du bâtiment :

Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
lourd
12h/24
0,8
99
100 %
lourd
16h/24
0,8
86
87 %
– 13 %
lourd
24h/24
0,8
84
85 %
– 15 %
Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
léger
12h/24
0,8
113
100 %
léger
16h/24
0,8
112
99 %
– 1 %
léger
24h/24
0,8
112
99 %
– 1 %

L’acceptation de faire fonctionner les équipements pendant 16h/24 au lieu de 12 lors de pointes de chaleur permet de sous-dimensionner les équipements de 13 %, si l’inertie du bâtiment est élevée. L’impact est inexistant sur les bâtiments légers.

2. L’impact de l’inertie sur la valeur de la puissance installée nous a motivés à creuser ce paramètre. Voici les résultats (toujours valable pour l’immeuble étudié) :

Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
lourd
24h/24
0,8
85
100 %
moyen
24h/24
0,8
91
108 %
+ 8 %
léger
24h/24
0,8
111
132 %
+ 32 %

Un bâtiment léger va majorer la puissance frigorifique de l’ordre de 30 % !

3. Voyant l’intérêt de nos lecteurs passionnés par l’étude, divers compléments ont été encore testés pour relativiser les impacts :

La prise en compte d’un facteur d’occupation du bâtiment de 80 % permet de sous-dimensionner les équipements de 9 %. (dans les tableaux ci-dessus le facteur d’occupation était de 100 %)

Une réduction drastique du facteur solaire des baies permet de sous-dimensionner les équipements frigorifiques de 42 %.

La couleur des parois extérieures est sans influence sur le dimensionnement.


Prévoir les outils de gestion

À l’image d’un moteur diesel, une installation frigorifique sera d’autant plus efficace qu’elle travaille sur des longues périodes, sans arrêts successifs.

A l’aide d’une horloge, il sera utile de pouvoir minimiser le temps de marche du système de réfrigération en fonction des périodes d’occupation du bâtiment et de la charge de refroidissement. Si l’on prévoit un système de régulation numérique, il peut être imaginé de rendre ces temps de fonctionnement dépendants de la température extérieure. Par période de forte chaleur, on pourra alors laisser fonctionner les équipements 24h/24.

Attention : l’horloge ne doit pas redémarrer l’installation en période de tarif électrique défavorable, pour limiter le coût de la pointe de puissance quart-horaire.

Pour permettre cette gestion lorsque parmi les utilisateurs, certains demandent une production de froid permanente, il peut être intéressant de dissocier les productions de manière à éviter de faire fonctionner en continu, notamment en hiver, une machine frigo beaucoup trop puissante par rapport aux besoins.


Créer un réseau d’eau glacée qui favorise une température élevée à l’évaporateur

Un régime de fonctionnement qui s’adapte aux besoins réels du bâtiment

Le bureau d’études dimensionne l’installation afin qu’elle puisse répondre aux conditions extrêmes de température extérieure (30°C) et d’ensoleillement (ciel serein).

Souvent, pour limiter le coût d’investissement, il prévoit pour la boucle d’eau glacée un régime départ 6° – retour 11°.

Or la boucle d’eau glacée circule dans un bâtiment à 22°…24°C. Elle présente donc des pertes tout au long de son parcours. En rehaussant la température de départ de l’eau, on diminue le Delta T° et donc les pertes des tuyauteries.

De plus, l’air ambiant condense en dessous de 12°C environ. Beaucoup d’énergie du compresseur sera donc consacrée à déshumidifier l’air dans les échangeurs, déshumidification qui n’est souvent pas nécessaire.

Enfin, le compresseur verra son travail diminuer si la température d’évaporation est augmentée.

Faire travailler le réseau d’eau froide au régime 12° – 17° est donc beaucoup plus efficace.

Comment ? Divers concepts d’installation sont possibles afin de mieux « coller » aux besoins variables.

Adopter des échangeurs à haute température

Il faut « faire du froid » avec l’équipement « le plus chaud possible » !

Photo plafond froid.

Le plafond froid est très performant à ce sujet : il profite de l’importante surface qui lui est donnée pour faire du froid avec de l’eau comprise entre 15 et 18°C.

Photo ventilo-convecteur.

Le ventilo-convecteur peut être également efficace pour autant qu’il soit choisi pour fonctionner au régime 12° – 17°C. Mais l’échangeur du ventilo devra alors être surdimensionné. Donc un coût d’investissement et un encombrement plus importants.

Photo unité terminale du système de climatisation à DRV.

L’ unité terminale du système de climatisation à Débit de Réfrigérant Variable est également très performante puisque la régulation numérique va adapter la température de refroidissement aux besoins effectifs de déshumidification de la pièce : la température du fluide frigorigène ne descendra à 6°C que lorsque le local sera en demande de déshumidification.

Réaliser une température glissante par vanne 3 voies sur le départ de la boucle d’eau glacée

Par exemple, adopter les régimes suivants pour le départ de l’eau froide : 6° en été, 9° en mi-saison, 12° en hiver.

Pour que cette solution convienne, il faut que le profil de consommation du bâtiment soit fortement lié à l’évolution de la température extérieure. En climatisation, c’est le cas lorsque les besoins de réfrigération sont ceux liés au traitement de l’air neuf. Par contre, les apports dus aux machines, à l’éclairage, aux personnes sont constants. Les apports solaires sont plus ou moins liés à l’évolution de la température extérieure (c’est en été que température et soleil sont au maximum) mais le soleil peut être important certaines journées d’avril…

En mi-saison, l’installation pourra toujours répondre à un apport solaire momentané, mais proportionnellement avec une puissance maximale plus faible puisque la température de départ de l’eau glacée sera plus élevée. Cette régulation peut se faire, soit manuellement (2 ou 3 adaptations par an), soit automatiquement. Dans ce cas, il faudra trouver l’emplacement du capteur qui sera fidèle des besoins de l’installation.

Parallèle : en chauffage, un régulateur avec courbe de chauffe adapte la température de départ en fonction de la sonde extérieure.

Exemple.

Soit le réseau alimentant la batterie de froid du caisson de préparation de l’air neuf (débit = 50) et le réseau d’eau glacée (débit = 100).

Si les deux réseaux sont au régime 7 – 12, la température moyenne à l’évaporateur est de 9,5°C.

Si le réseau d’eau glacée passe au régime 12 – 17, la température moyenne à l’évaporateur passe à 10,75°C, soit une hausse de 1,25°C.

Cet impact est faible, mais il aura lieu durant toute la vie de l’installation, et il se cumulera aux pertes par tuyauteries plus élevées et à la consommation de latente plus forte également.

Réaliser des réseaux d’eau froide distincts, avec une modulation par vanne 3 voies sur chaque départ

Si l’installation comporte plusieurs types de locaux dont les besoins sont différents, cela se complique !

Par exemple, imaginons qu’il existe un local à apports internes importants et constant (salle informatique par exemple) et dont la puissance des émetteurs est juste suffisante : il devront toujours être alimentés à 6°. Si par ailleurs, plusieurs locaux plein sud avec larges baies vitrées présentent des besoins liés à la température extérieure et à l’ensoleillement, une modulation de la température de départ de ce circuit sera intéressante.

On peut alors réaliser des circuits différents commandés à des températures différentes, via des vannes trois voies motorisées. Ici, on ne modulera que la température du circuit « locaux plein sud ».

Parallèle : en chauffage, il apparaît normal de séparer les circuits en zones thermiquement homogènes (façade Sud, façade Nord,…), puis de moduler la température de départ de chaque circuit en fonction des besoins de la zone qu’il alimente. Ne disposer que d’une seule boucle d’eau glacée à 6°, c’est un peu comme si le chauffage n’était alimenté que par une seule boucle à 90°… !

Réguler les équipements terminaux sur le débit, en fonction de la température de retour

En thermique, il existe deux manières de réguler : agir sur le débit ou agir sur la température.

Moduler le débit sous-entend conserver une température constante.

En chauffage, le régime de température adopté lors du dimensionnement du matériel est élevé : généralement 90° – 70°. Ceci entraîne un écart de température élevé par rapport à l’ambiance et donc des pertes de maintien élevée. On aura donc tout intérêt à réguler sur la température.

En réfrigération, par contre, le régime classique 6° – 11° ou 7° -12° présente peu d’écart par rapport à l’ambiance. De plus, le débit est important (à puissance égale, il faut 4 fois plus de débit pour transporter du froid que du chaud puisque le Delta T° est 4 fois plus petit) et sa modulation est plus aisée. Si les besoins sont fort variables, on sera dès lors plus facilement tenté par une régulation sur le débit, avec une température de départ constante, une température de retour la plus élevée possible… et des économies d’énergie sur le transport de l’eau par l’utilisation d’une pompe à vitesse variable. Cependant, un débit minimum dans l’évaporateur est requis par le constructeur, sous peine de le geler à certains endroits. L’installation devra comprendre un by-pass de recyclage ou un découplage hydraulique par une bouteille casse-pression.

Cette technique nécessite des éléments terminaux (comme les ventilo-convecteurs, les centrales d’air, les sous-stations, …) régulés avec des vannes deux voies. Lorsque les besoins diminuent, le débit total de la boucle diminue également. Pour maintenir la pression constante aux bornes des équipements, on utilise des pompes à débit variable pilotées soit par la température de retour, soit par la pression.

Par opposition à la possibilité de régulation sur sonde extérieure, on réalise ici une régulation sur boucle fermée plus fidèle aux besoins du bâtiment. Pour l’évaporateur, ce n’est plus la température de départ qui est augmentée, mais la température moyenne de fonctionnement (régime 6° – 14° par exemple). La température moyenne à l’évaporateur est donc augmentée, ce qui est favorable.

Placer les consommateurs en série en fonction de leur température de fonctionnement

Pour augmenter la température à l’évaporateur, on peut penser à trois solutions :

  • Augmenter la température de départ de la machine frigo : cela sera possible si tous les utilisateurs demandent une température d’eau plus élevée.
  • Freiner le débit à l’évaporateur : c’est limiter car il faut irriguer en permanence la machine frigorifique à un débit minimal (voire constant) imposé. À défaut de débit insuffisant à l’évaporateur, la machine se mettra en sécurité.
  • Placer les échangeurs frigorifiques en série en fonction de leur température de travail : l’alimentation des unités terminales sera greffée en série, après la batterie froide du caisson de traitement d’air.

De plus, on préférera un couplage en injection car il permet de couper l’alimentation d’un échangeur sans perturber le reste de l’installation.

Schéma de couplage a injection.

Une seule condition de bon fonctionnement : le débit de la boucle primaire doit toujours être >> débit de chaque boucle partielle (pour éviter toute inversion dans le by-pass).


Insérer un réservoir tampon

Un ballon tampon amplifie l’inertie thermique de l’installation, ce qui prolonge la durée de fonctionnement des compresseurs. Il permet de résoudre le problème de l’anti-court cycle (c’est-à-dire la temporisation du démarrage si l’installation vient de s’arrêter) et de prolonger la durée de vie du matériel en diminuant le nombre de démarrages par heure ou par jour.

De plus, cela permet également de réguler le compresseur en fonction de la température du ballon-tampon, ce qui est une bonne solution.

On dimensionne un ballon tampon de telle sorte que son stockage corresponde à 5 à 10 minutes de la consommation en eau glacée.

Schéma bâche tampon simple.

On peut amplifier encore cette possibilité en insérant une bâche à eau glacée dans l’installation. Cette solution peut permettre de diminuer la pointe quart-horaire de l’installation par délestage des groupes frigorifiques.


Choisir une régulation numérique

Quel intérêt ?

La régulation numérique (ou digitale) est en plein essor ces dernières années. Cette fois, ce n’est plus le câblage qui va déterminer les séquences mais bien le programme inclus dans l’automate programmable ou le régulateur du groupe.

Il s’agit en fait d’une gestion globale du système qui vient se superposer aux équipements décrits ci-dessus.

La régulation d’ensemble en sera fortement améliorée :

  • Possibilité de modifier les points de consignes, les horaires de fonctionnement,… à distance.
  • Régulation modulante de la température par l’usage d’un détendeur électronique.
  • Possibilité de réaliser un délestage du groupe au moment de la pointe ¼ horaire du bâtiment.
  • Visualisation meilleure du fonctionnement par mesure des pressions et des températures tout au long du cycle.
  • Estimation des performances, de l’énergie consommée …

Il suffit d’imaginer la difficulté d’un technicien appelé pour résoudre une panne pour comprendre tout l’intérêt d’enregistrer différents paramètres de l’installation.

Exemple d’entretien prévisionnel.

Les pressions d’entrée et de sortie d’un compresseur et les mesures des températures d’entrée et de sortie du frigorigène de cette machine ont été repérés lors de la mise au point de l’installation. Si la température de refoulement est plus élevée qu’elle ne le devrait, c’est que ce compresseur a un problème d’étanchéité de clapet. Il faut agir.

Exemple de délestage.

Chez Delhaize, on met en place un délesteur de charge sur les groupes frigorifiques de telle sorte que ceux-ci ne s’enclenchent pas simultanément au démarrage des fours à pain, lorsque le bâtiment est en période de pointe électrique.

L’inertie des équipements frigorifiques est telle que l’arrêt de quelques minutes ne pose pas de difficulté majeure. Et l’économie tarifaire est appréciable !

Quels paramètres faut-il superviser dans une GTC de machine frigorifique ?

La réponse est fonction de l’importance de l’installation et de la qualité du personnel d’intervention pour en exploiter les résultats. On trouvera dans la maintenance des installations frigorifiques une liste de paramètres qui peuvent être suivis.

Améliorer

Pour en savoir plus sur la maintenance de l’installation frigorifique, cliquez-ici !

Récupérer la chaleur sur eau glacée [Climatisation – Concevoir]

Récupérer la chaleur sur eau glacée [Climatisation - Concevoir]

Groupe de production d’eau glacée à condensation à air.


Objectifs de la récupération

Objectif prioritaire : transférer la chaleur extraite du bâtiment vers le préchauffage de l’air neuf

Suite à l’isolation des bâtiments et à la chaleur interne (éclairage, bureautique, …), la température d’équilibre d’un bâtiment d’aujourd’hui se situe autour des 10°C extérieurs. Autrement dit, au-dessus de 10°C, le bâtiment devra être refroidi. De l’eau glacée est produite et circule dans les pièces à refroidir.

Par ailleurs, au même moment, l’air hygiénique de ventilation doit être préchauffé jusque …16°C… pour éviter des courants d’air froids sur les occupants.

Conclusion : pour transférer la chaleur de l’un vers l’autre, il faut travailler avec des émetteurs de froid à la plus haute température possible. Par exemple, les ventilo-convecteurs travailleront au régime 12°C – 17°C, les plafonds froids travailleront au régime 15°C – 17°C, voire idéalement 17°C – 19°C.

Ainsi l’eau, une fois réchauffée en passant dans le plafond, peut utilement donner sa chaleur vers l’air neuf. Seule, la consommation d’une pompe est encore nécessaire.

Si des locaux internes, des locaux informatiques, … sont demandeurs de froid durant toute l’année, ce principe est encore davantage à mettre en place.

Objectif secondaire : augmenter la température à l’évaporateur de la machine frigorique

Un deuxième objectif est d’exploiter l’énergie frigorifique de telle sorte que la température d’eau glacée soit la plus élevée possible à l’évaporateur. En moyenne, chaque degré gagné à l’évaporateur augmente de 3 % le rendement de la machine frigorifique.


Principes hydrauliques de base

Exploiter l’énergie frigorifique en fonction de la température

Le bâtiment admet des besoins d’eau froide à des températures différentes.

La batterie froide du caisson de traitement d’air sera généralement alimentée à 6°C :

  • parce que l’on voudrait déshumidifier l’air en été,
  • pour limiter le nombre de rang et donc la perte de charge sur l’air à l’échangeur.

Par contre, les unités terminales (ventilo-convecteurs, plafonds froids, …) ne devraient pas déshumidifier l’air, et ont tout avantage à travailler à haute température pour favoriser la récupération de chaleur.

Exemple.

Soit le réseau alimentant la batterie de froid du caisson de préparation de l’air neuf (débit = 50) et le réseau d’eau glacée (débit = 100).

Si les deux réseaux sont au régime 7°C – 12°C, la température moyenne à l’évaporateur est de 9,5°C.

Si le réseau d’eau glacée passe au régime 12°C – 17°C, la température moyenne à l’évaporateur passe à 10,75°C, soit une hausse de 1,25°C, ce qui génère une amélioration de 3% du rendement de la machine frigorifique.

Cet impact est faible, mais il aura lieu durant toute la vie de l’installation, et il se cumulera aux gains suite à la température des tuyauteries plus élevée et à la consommation de latente plus faible également.

Disposer les échangeurs frigorifiques en série et préférer le couplage en injection (ou en dérivation)

Pour augmenter la température à l’évaporateur, on peut penser à deux solutions :

  • Freiner le débit à l’évaporateur : ce n’est possible que dans une certaine limite car il faut irriguer en permanence la machine frigorifique avec un débit minimal. À défaut de débit suffisant à l’évaporateur, la machine se mettra en sécurité.
  • Placer les équipements en série en fonction de leur température de travail : l’alimentation des unités terminales sera greffée en série, après la batterie froide du caisson de traitement d’air.

Exemple de récupération de chaleur sur plafonds froids

Lorsque les plafonds fonctionnent en mi-saison et que l’air extérieur est suffisamment froid, la machine frigorifique est arrêtée et l’eau des plafonds est refroidie naturellement par l’air extérieur, en utilisant la batterie froide comme batterie de préchauffage de l’air neuf.

Fonctionnement estival normal :

Fonctionnement en récupération :

> Avantages : pas de pertes de charges supplémentaires (pas de batterie de récupération supplémentaire) et bénéfice d’une grosse batterie pour la récupération puisque c’est la batterie froide.
> Inconvénients : il y a nécessité de préchauffe anti-gel (donc perte d’intérêt pour les très basses températures) et régulation difficile si les puissances en jeu ne sont pas du même ordre (si la puissance de refroidissement de l’air neuf est trop faible par rapport aux besoins des plafonds, le groupe s’enclenche et la récupération est perdue). Il faut en outre rester dans les limites de débit de la machine frigorifique, puisqu’avec un tel schéma, le débit irrigant l’évaporateur est réduit (on travaille avec une différence de température nettement plus importante au niveau de l’évaporateur).

Ce schéma convient bien lorsqu’une préparation d’air neuf importante est envisagée (salles de conférences, salles de réunions, …).

Concevoir

Conclusions : Cet exemple montre la nécessité d’une analyse fine des besoins thermiques du bâtiment dès le début du projet. Pour parcourir un  : exemple de ce type d’analyse.