Dimensionner une installation de chauffage : principes généraux

Dimensionner une installation de chauffage : principes généraux


Dimensionnement de la production de chaleur

Le principe du dimensionnement

Durant la saison de chauffe, deux besoins de chauffe apparaissent :

  • Un transfert de chaleur s’effectue de l’ambiance intérieure chaude vers l’extérieur plus froid, au travers des parois.
  • De l’air hygiénique entre dans le bâtiment « neuf et froid »,… et sort « vicié et chaud ».

Ces pertes de chaleur sont appelées les déperditions du bâtiment.

Le but de l’installation de chauffage est de compenser ces déperditions pour maintenir la température intérieure constante. Dimensionner les systèmes de chauffage, c’est calculer la puissance utile nécessaire pour y parvenir lors des conditions extrêmes : lorsque la température extérieure est minimale, qu’il n’y a pas de soleil et que les apports internes sont nuls.

Les déperditions du bâtiment doivent être calculées suivant la norme NBN B 62-003. (nouvelle norme NBN EN 12831 : 2003).

Toutefois, le Cahier des Charges 105 de la Régie des Bâtiments (1990) ne prend en compte que la moitié des déperditions par infiltration calculées pour chaque local. En effet, celles-ci ne se manifestent jamais simultanément : selon la direction du vent, une façade est en surpression et la façade opposée est en dépression. Conséquence, seule une partie du bâtiment (environ la moitié) voit son air renouvelé par de l’air extérieur, l’autre se voit traversé par cet air déjà préchauffé.

Actuellement, la réglementation impose l’organisation d’une ventilation permanente :

  • S’il s’agit d’une ventilation permanente organisée naturellement, une règle similaire peut être d’application : les débits qui entrent dans les locaux munis d’orifice d’alimentation sont les mêmes que ceux qui sont évacués par les locaux en dépression, après passage dans les couloirs (« le même air est utilisé 2 fois »). Si bien que le taux de renouvellement d’air moyen β peut être pris égal à 0,5.
  • Si l’installation est mécanique, c’est l’entièreté du débit d’air neuf hygiénique qui doit être pris en compte.

Attention à la température extérieure de référence !

La température extérieure extrême pour laquelle il faut dimensionner l’installation est mentionnée dans la norme NBN B 62-003 (nouvelle norme NBN EN 12831 :2003), pour chaque commune de Belgique. Cette température, appelée « température de base », correspond à la « température extérieure moyenne journalière qui, en moyenne, n’est dépassée vers le bas que pendant un seul jour par an ».

C’est cette température qui doit servir de référence et non l' »impression » du chauffagiste qui pense qu’il fait souvent plus froid dans sa région, ou qui veut à tout prix que le confort soit garanti en cas de gel à – 20 °C comme on en rencontre tous les 30 ans.

En fait, un bâtiment a de l’inertie et ses besoins de chauffage sont sensibles à la T°moyenne jour/nuit. D’ailleurs, lorsque la température de – 10 °C est choisie, il s’agit d’une moyenne entre les extrémis jour et nuit. En fait, dimensionner pour « – 10 °C », c’est en réalité dimensionner pour – 15 °C la nuit et – 5 °C le jour, par exemple. Donc une installation calculée pour – 10 °C « tiendra » pour – 15 °C la nuit.

Températures extérieures minimales de base, en Belgique.

Faut-il surdimensionner la production de chaleur pour permettre l’intermittence ?

Lorsque l’on pratique un chauffage discontinu (coupure nocturne, de week-end, …), la relance de l’installation demande une surpuissance par rapport au fonctionnement continu. Cette surpuissance sera surtout fonction de l’inertie thermique du bâtiment (la masse des matériaux) qu’il faudra réchauffer. Et l’isolation renforcée des bâtiments récents augmente l’importance relative de la puissance de relance par rapport à la puissance des déperditions en régime permanent.

La norme NBN B62-003 (nouvelle norme NBN EN 12831 :2003) estime qu’il faut tenir compte de cette surpuissance dans le dimensionnement de la production de chaleur. Mais le calcul (emprunté à la norme allemande DIN 4701) est assez complexe et peut générer des surpuissances « exagérées » (selon « rapport n°1 » du CSTC).

Par contre, le cahier des charges type 105 de la Régie des Bâtiments, et nous penchons plutôt dans ce sens, préconise de choisir la puissance de la production correspondant aux déperditions du bâtiment et de dimensionner les émetteurs de chaleur à un régime de température d’eau inférieur à celui du générateur. Par exemple, en régime 80°/60° pour les émetteurs, si la production de chaleur est dimensionnée pour un régime de 90°/70°.

Durant la saison de chauffe

Cette méthode donne lieu à un surdimensionnement des émetteurs de 27 % en moyenne, ce qui est une surcapacité suffisante dans la plupart des situations de l’année, sachant que la production de chaleur est de toute façon surdimensionnée 364 jours par an !

En fait, sur la saison de chauffe, toute installation possède une surpuissance moyenne de 100 %. En effet, la température extérieure moyenne d’une saison de chauffe est de l’ordre de 6 °C (5 °C en Ardenne) et la température extérieure de base prise en compte pour le dimensionnement est en moyenne de – 10 °C. La différence de température entre intérieur et extérieur à vaincre est donc en moyenne de 20 °C – 5 °C = 15 °C, alors que l’installation a été dimensionnée pour une différence de 20 °C – (- 10 °C) = 30 °C, soit 2 fois plus.

Lors de la situation la plus critique

Il reste la situation la plus critique : on peut imaginer, par exemple, que le chauffage est coupé entre Noël et Nouvel An, que le bâtiment est seulement maintenu à 14 °C et qu’il gèle à – 10 °C le jour de la reprise…

Le surdimensionnement des émetteurs ne sera pas utile si la production de chaleur ne l’est pas.
Mais plusieurs critères vont renforcer la puissance de chauffe effective :

  • Lors de la sélection de la production de chaleur, la norme NBN D30-001 (1991) propose la répartition de puissance suivante :

Puissance calculée
Qtot [kW]

Nombre
minimum
de production de chaleur

Puissance utile de la production de chaleur

Production de chaleur 1

Production de chaleur  2

Production de chaleur 3

< 200

1

1,1 x Qtot

200 kW < .. < 600

2

0,6 x Qtot

0,6 x Qtot

> 600

3

0,33 x Qtot

0,33 x Qtot

0,5 x Qtot

3

0,39 x Qtot

0,39 x Qtot

0,39 x Qtot

de facto, la puissance de la (des) production (s) de chaleur sera surdimensionnée de 10 à 20 %,
  • Lors des calculs, des marges de sécurité sont prises sur la définition des caractéristiques thermiques des matériaux qui composent les parois.
  • La production de chaleur choisie dans un catalogue de fournisseur aura une puissance supérieure à la valeur calculée.
  • La ventilation mécanique des bâtiments doit être mise à l’arrêt en période d’inoccupation, et donc aussi pendant la relance. La ventilation mécanique représentant de l’ordre de 50 % de la puissance de chauffe d’un bâtiment bien isolé, c’est autant de puissance de relance qui se dégage. Si l’installation de ventilation est naturelle, une fermeture soit des grilles d’entrée d’air, soit des cheminées de sortie d’air est recommandée pour limiter les déperditions en période d’inoccupation. S’il s’agit d’un ancien bâtiment sans système de ventilation, portes et fenêtres resteront fermées durant la relance.
  • La régulation par optimisation relancera suffisamment tôt le chauffage, quitte par période exceptionnelle de gel intense, à ce que l’installation fonctionne en régime continu sans interruption.
  • Dès l’arrivée des occupants, des apports internes (éclairage, bureautique, …) viendront renforcer l’apport des corps de chauffe.
  • Les périodes de froid intense sont accompagnées de ciel serein et donc de soleil, permettant un éventuel complément de chauffe en milieu de matinée.

Et finalement, faudrait-il vraiment surdimensionner toute une installation pour une situation exceptionnelle pouvant nuire très temporairement à notre confort ?

Faut-il tenir compte des pertes de distribution ?

Non, le dimensionnement ne doit pas tenir compte des pertes dans le réseau de distribution. En effet, celles-ci sont en partie récupérées par le bâtiment et, lorsque les conduites parcourent des zones non chauffées, leur degré d’isolation est suffisant pour rendre les pertes négligeables.

Comment vérifier que le dimensionnement a été effectué correctement ?

Déperditions au travers des parois et pertes par ventilation

C’est le bureau d’études ou l’installateur qui doit effectuer le dimensionnement, c’est-à-dire calculer les déperditions du bâtiment suivant la norme NBN B62-003 (nouvelle norme NBN EN 12831 :2003). Pour cela, il a besoin de connaître :

  • La surface et la composition de toutes les parois qui entourent le volume chauffé du bâtiment : murs extérieurs, murs intérieurs en contact avec des locaux non chauffés, portes et fenêtres, planchers sur sol, sur cave, sur vide ventilé, toiture ou plafond sous grenier non chauffé, coupoles, …
  • Les températures de consigne de chacune des zones intérieures (la norme donne des valeurs indicatives à prévoir en fonction du type de local).

Ce qui signifie que si ces données n’ont pas été demandées, le dimensionnement n’a pas été réalisé selon les règles.

À titre de contrôle, on peut se faire une idée de la puissance à installer en utilisant le tableau suivant (attention, ce tableau ne peut être utilisé pour dimensionner, mais bien pour vérifier un calcul !) :

Puissance spécifique à installer [W/m³] pour une température intérieure de consigne de 19 °C, une température extérieure de base de – 8 °C et un taux de renouvellement d’air de 0,7 vol/h

Compacité du bâtiment
(Volume chauffé / Surface déperditive) [m]

Niveau global d’isolation

K35

K45

K70

K150

0,5

23,9

31,6

46,3

67,6

1

16,7

19,4

26,6

47,3

1,5

14,7

17

22,6

40,6

2

13,9

15,9

21,0

37,2

3

13,5

15,2

20,2

33,8

4

16,8

32,1

K35 = bâtiment basse énergie ;
K45 = bâtiment bien isolé (construire avec l’énergie) ;
K70 = bâtiment isolé des années 80 ;
K150 = bâtiment ancien et non isolé.

On se rend compte que l’on atteint qu’exceptionnellement une puissance de 60 W/m³. Ce ne sera que pour un petit bâtiment très peu compact (fort étalé et présentant beaucoup de recoins) et extrêmement mal isolé.

Calculs

Pour adapter ces valeurs à votre situation et contrôler le dimensionnement de votre nouvelle chaudière.

Cahier des charges

Dimensionnement de la production de chaleur. Puissance de la production combinée de chauffage et d’eau chaude sanitaire.

Puissance de relance

A la puissance nécessaire pour vaincre les déperditions au travers des parois et les pertes par ventilation, il faut adjoindre la puissance de relance en cas d’intermittence ou de ralenti nocturne. Comme le montre le tableau suivant (extrait de la norme  NBN EN 12831), la puissance de relance dépend principalement :

  • De l’inertie du bâtiment ;
  • De la chute prévue de la température intérieure lors du ralenti ;
  • Du temps de relance toléré pour atteindre le confort.
Temps de relance pour une durée maximale de ralenti de nuit de 12 heures frh
W/m²
Chute prévue de la température intérieure lors du ralenti
2K 3K 4K
Inertie du bâtiment
faible moyenne forte faible moyenne forte faible moyenne forte
1

2

3

4

18

9

6

4

23

16

13

11

25

22

18

16

27

18

11

6

30

20

16

13

27

23

18

16

36

22

18

11

27

24

18

16

31

25

18

16

L’addition des puissances dues aux déperditions des parois et des pertes par ventilations avec la puissance de relance détermine la puissance totale à prévoir pour le système de production de chaleur.


Influence de la performance de l’enveloppe du bâtiment

Facteurs d’influence

Le dimensionnement d’une installation de chauffage dépend donc :

  • de la charge thermique due aux déperditions au travers des parois ;
  • de la charge thermique due à la ventilation et aux in/exfiltrations ;
  • de la puissance de relance nécessaire en cas d’intermittence.

Au travers de différents exemples repris ci-dessous, on se propose d’étudier l’influence de l’amélioration de la performance de l’enveloppe d’un bâtiment.

Exemple 1

Soit un immeuble de bureau modélisé avec les caractéristiques suivantes :

  • Composé d’un sous-sol enterré sur la moitié de la surface au sol, d’un RDC + 2 ;
  • Empreinte au sol de 980 m² ;
  • 3 411 m² de surface nette totale ;
  • 10 233 m³ de volume intérieur ;
  • La hauteur sous plafond est de 2,5 m ;
  • Le bâtiment est équipé d’un système de ventilation double flux avec un récupérateur de chaleur de rendement thermique de 70 % ;
  • Le taux de renouvellement est de 1 vol/h ;
  • Le rendement moyen du récupérateur de chaleur sur l’air hygiénique est de 70 % ;
  • La compacité volumique du bâtiment (V/At) est de 3.3 ;
  • L’inertie du bâtiment est moyenne.

Sur base de la norme de dimensionnement NBN EN 12831 : 2003, on calcule les charges thermiques par transmission (déperditions des parois) et par renouvellement d’air, ainsi que la puissance de relance, et ce en fonction de l’évolution de la performance de l’enveloppe. On entend par performance de l’enveloppe, la prise en compte du niveau d’isolation des parois externes et de l’étanchéité du bâtiment. Une image parlante (mais à prendre avec des pincettes) est la valeur K du bâtiment.

Les hypothèses suivantes sont prises :

  • La température extérieure de dimensionnement est de – 8 °C ;
  • La température interne est de 20 °C ;
  • La moyenne de la température externe est de 8 °C ;
  • Le temps de relance est de 3 heures ;
  • En fonction de la performance de l’enveloppe, les hypothèses suivantes sont prises :
Niveau de performance de l’enveloppe Taux de renouvellement n50 (h-1) Rendement thermique du récupérateur (%) U moyen du bâtiment (W.m-2.K
K70 5 1.2
K45 2,5 70 0.8
K30 2 70 0.5
K19 0,6 70 0.3

Remarque : de manière tout à fait arbitraire, on considère que le bâtiment de type  K70, à l’époque, n’était pas équipé d’un récupérateur de chaleur.

Le graphique suivant donne une idée de l’évolution de la puissance de chauffe en fonction du niveau d’isolation du bâtiment.

Image de la performance de l’enveloppe.

Lorsque le niveau d’isolation augmente :

  • Les charges thermiques par transmission diminuent. En d’autres termes, le Umoyen du bâtiment  (W/m².K) s’améliore de par l’augmentation de l’épaisseur d’isolant dans les parois externes.
  • Les charges thermiques par ventilation et infiltration  diminuent sachant que :
    • Celles par ventilation du système de ventilation hygiénique restent constantes. En effet, on considère que les débits ne sont pas changés. Dans le cas du bâtiment K70, le système de ventilation n’étant pas équipé d’un récupérateur (courant sur les vieilles installations), la charge thermique augmente de 70 %.
    • Celles par infiltration diminuent. Effectivement, lorsqu’on améliore le niveau d’isolation, on peut considérer qu’un soin particulier doit être pris à réduire aussi le niveau d’infiltration.
  • Concernant la puissance de relance :
    • En absolu, elle diminue. En effet, par la pratique de l’intermittence ou de l’abaissement de la consigne de température de nuit, le bâtiment se refroidit. Plus l’enveloppe du bâtiment est performante, moins la chute de température interne sera conséquente et plus facile sera la relance.
    • En relatif, par rapport aux autres charges thermiques, elle augmente comme le montre les diagrammes ci-dessous :

Exemple 2

En décidant de réduire l’inertie du bâtiment (plancher et plafond en bois par exemple), l’influence de la puissance de relance sur la puissance totale de dimensionnement se réduit comme le montre le graphique suivant.

Image de la performance de l’enveloppe.

Exemple 3

A l’inverse, quand l’auteur de projet décide de renforcer l’inertie du bâtiment (plancher et plafond en béton), l’influence de la puissance de relance sur la puissance totale de dimensionnement augmente comme le montre le graphique suivant.

Image de la performance de l’enveloppe.

En résumé

L’augmentation de la performance énergétique de l’enveloppe :

En absolu, s’accompagne d’une réduction de la puissance de dimensionnement du système de chauffage. En effet :

  • Les déperditions au travers des parois sont réduites de par l’isolation croissante.
  • Le taux d’in/exfiltrations diminue. En d’autres termes, l’étanchéité du bâtiment s’améliore.
  • En cas d’intermittence, la puissance de relance diminue :
    • Pour un bâtiment à faible isolation, la coupure du chauffage en période nocturne ou le WE peut engendrer des variations de température entre le début et la fin de la coupure de l’ordre de 4 K.
    • Pour un bâtiment à forte isolation, toute autre chose restant égale (par exemple l’inertie), l’intermittence ou le ralenti nocturne provoque une réduction de la température interne limitée. Sur une période de 12 heures, on pourrait observer une chute de température de l’ordre de 2 K par exemple.

En relatif, met en évidence une augmentation significative de la part de puissance prise en charge pour la relance. Ce  qui signifie, qu’au cours d’une journée un bâtiment bien isolé :

  • Demandera tôt le matin une puissance de relance proche de la puissance nominale du système de chauffage, et ce pendant un temps relativement court.
    • Lorsque le bâtiment sera occupé, nécessitera une puissance très faible pour contrecarrer les déperditions relativement faibles pendant un temps plus long.

Dimensionner les pompes à chaleur les plus courantes

Dimensionner les pompes à chaleur les plus courantes

Les propos de cette page concernent surtout les installations domestiques …

L’objectif n’est pas ici de donner une méthodologie de dimensionnement, mais bien de mettre en évidence les points caractéristiques à prendre en compte lors de la conception.


Optimiser l’installation

Une évolution de la puissance en sens contraire de la demande

Prenons le cas d’une pompe dont la source froide est l’air extérieur. On constate que malheureusement, l’évolution de la puissance fournie par la PAC se fait en sens contraire de la puissance appelée par le bâtiment.

Dimensionner une PAC capable de fournir la chaleur nécessaire par – 10 °C extérieurs générerait une puissance beaucoup trop élevée en mi-saison. Elle serait coûteuse à l’investissement et fonctionnerait alors durant de courtes périodes, avec une performance réduite.

Mais choisir une petite pompe à chaleur suppose un appoint de chaleur fort important, ce qui n’est pas plus performant, surtout si l’appoint est électrique.

Il faut donc évaluer la situation au cas par cas et optimiser le système.

Température de dimensionnement, de bivalence et limite

Le diagramme représente, dans la partie supérieure, les courbes relatives au circuit de chauffage, et, dans la partie inférieure, les besoins calorifiques et la puissance de chauffage de la PAC, le tout en fonction des températures extérieures.

Trois paliers importants sont définis en fonction des températures extérieures :

  • La température de dimensionnement (ou de base) : le système de chauffage est dimensionné en fonction de cette température.
  • La température de bivalence : en cas de fonctionnement bivalent, c’est au-dessous de cette température que la chaudière est utilisée.
  • La limite du chauffage : au-dessous de cette température, un système de chauffage est nécessaire.

Dans le diagramme supérieur, on voit que la PAC tente de donner un ΔT° à l’eau de retour mais que en dessous de la température de bivalence, elle n’arrive plus à assurer le niveau de t° de départ souhaité.

Le diagramme inférieur présente 2 fonctionnements bivalent-parallèles dont les sources de chaleur sont fondamentalement différentes :

  • Puissance chauffage PAC à peu près constante : la température de sortie du condenseur évolue parallèlement à la température de retour du chauffage (source de chaleur : par exemple nappe phréatique).
  • Puissance chauffage PAC fortement variable : la différence de température dans le condenseur augmente si la température extérieure croît (source de chaleur : par exemple air extérieur).

Dimensionnement de la pompe à chaleur Air/Eau

La première chose à faire est d’estimer les besoins calorifiques du bâtiment Q selon les normes en vigueur. Comme estimation rapide, on peut multiplier la surface chauffée (en tertiaire) par les besoins calorifiques suivants :

  • bâtiment neuf, isolation au niveau passif : 10 W/m²
  • bâtiment neuf, isolation de très bonne qualité : 40 W/m²
  • bâtiment neuf, isolation de bonne qualité : 50 W/m²
  • bâtiment présentant une isolation normale : 80 W/m²
  • bâtiment ancien sans isolation spéciale : 120 W/m²

Les études techniques et économiques montrent que la pompe à chaleur bivalente financièrement optimale doit être dimensionnée à 70 – 80 % des besoins d’énergie calorifique maximaux.

La PAC fournit la totalité des besoins calorifique jusqu’à la température d’équilibre (température de bivalence) en dessous de laquelle l’installation fonctionne en mode bivalent (la pompe à chaleur augmente la température de retour du chauffage et le second générateur de chaleur assure le complément). Cette température d’équilibre peut être déterminée sur base des graphiques de performance des appareils fournis par les constructeurs.

Reprenons l’exemple d’un constructeur allemand :

Les besoins calorifiques sont de 9 kW par – 14 °C (remarque : en Belgique, on dimensionne généralement pour – 10 °) et la limite de chauffage est fixée à 15 °C. Le graphique de performance indique une puissance de 5 kW pour la pompe à chaleur à – 14 °C. Pour la PAC choisie, le point d’équilibre se trouve à – 4,5 °C et indique une puissance à installer de 6,1 kW.

La puissance du chauffage d’appoint se mesure par la différence entre la puissance calorifique à fournir et la puissance de la PAC à la température de dimensionnement. Ici, elle est de 9 – 5 = 4 kW.

En mode monovalent, la pompe à chaleur est le seul générateur de chaleur à couvrir les besoins du bâtiment. Il faudra donc, le cas échéant, prendre en compte les besoins en eau chaude sanitaire.

Pour les pompes à chaleur avec appoint, ce supplément ne sera pris en compte que si la somme de puissance de chauffage supplémentaire demandée par l’ECS dépasse de 20 % les besoins calorifiques calculés selon la norme. Dans le cas contraire, on comptera sur l’appoint pour fournir le surplus de puissance.


Dimensionnement de la pompe chaleur Eau/Eau

Comme pour la pompe à chaleur Air/Eau, les fournisseurs proposent des graphiques des performances en fonction de la température de la source froide. Il suffit, une fois la température de la source froide évaluée (par exemple une nappe phréatique à 10 °C), de choisir l’installation qui, pour cette température, peut fournir la puissance calorifique demandée par l’utilisateur.

Le débit d’eau nécessaire est fonction de la puissance pompée dans l’évaporateur. Un débit suffisant assurera la constance de la température de la source froide et des performances de la PAC. Une approximation du débit minimal nécessaire peut-être de 150 l/h par kW absorbé pour un refroidissement de 4 à 5 °C dans l’évaporateur. Le débit précis sera déterminé par les formules suivantes :

Qf = V x cv x (tESF – tSSF)

La puissance frigorifique à l’évaporateur Qf est la puissance de chauffage de la pompe à chaleur QPAC moins l’énergie électrique motrice PPAC.

Qf = QPAC – PPAC

où,

  • QPAC = Puissance de chauffage [kW]
  • Qf = Puissance frigorifique [kW]
  • V = Débit volumique [m³/h]
  • tESF = Température d’entrée de la source froide [K]
  • tSSF = Température de sortie de la source froide [K]
  • c= Capacité calorifique ou chaleur spécifique [kWh/m³.K]
  • PPAC = Puissance électrique absorbée [kW]

Exemple
Pour un débit d’eau de 2,5 m³/h et un refroidissement de 4 K, une puissance de 11,6 kW est absorbée à l’évaporateur (c’est-à-dire la puissance frigorifique).

Qf = 2,5 [m³/h] x 1,163 [kWh/m³.K] x 4 [K]

Pour les pompes à chaleur alimentées par des eaux de surface, on limite le refroidissement dans l’évaporateur à 2 °C. Il faudra donc s’assurer un débit double pour pomper la même quantité de chaleur. On peut donc prendre comme évaluation le chiffre de 300 l/h par kW.

Lorsque la vitesse d’écoulement est insuffisante pour assurer le débit demandé, il faudra augmenter la taille de l’échangeur de chaleur en compensation.

V = v x A

Où :

  • V = Débit volumique [m³/h]
  • v = vitesse d’écoulement [m/s]
  • A = surface d’échange [m²]

Le calcul du débit d’air dans un évaporateur de PAC Air/Air ou Air/Eau se fait exactement de la même façon.

Dimensionner le chauffage électrique

Dimensionner le chauffage électrique


Appareils de chauffage direct

Pour un appareil de chauffage direct, le dimensionnement est relativement simple : la puissance de chauffe P (kW) doit être au moins égale aux déperditions calorifiques Pn, déperditions normalisées calculées suivant la NBN B62-003.

On prévoit un léger surdimensionnement pour pouvoir atteindre plus rapidement la température de confort lors de la mise en température : P = 1,1 à 1,5 Pn, à moduler d’après le type de local. Par exemple : living 10 %, chambre à coucher 20 %, salle de bains 50 %.

Ce surdimensionnement n’entraîne que peu de conséquences énergétiques si la régulation de l’appareil est suffisamment précise et rapide.


Appareils de chauffage à accumulation

Un dimensionnement en puissance et en capacité de stockage.

Le dimensionnement présente un double aspect :

  • d’une part, il faut déterminer la puissance électrique des résistances Pe,
  • d’autre part, il faut choisir un noyau accumulateur capable d’accumuler et de restituer l’énergie calorifique Q nécessaire au cours de 24 heures.

Cette fois, le surdimensionnement de l’appareil peut porter à conséquence puisqu’une charge de nuit excessive entraînera des pertes par les parois supplémentaires. Sauf si une régulation précise limite cette charge. Le surdimensionnement entraîne alors seulement un investissement inutile.

Les besoins énergétiques Q [kWh] sont déterminés à partir des déperditions calorifiques du local, diminuées des gains thermiques gratuits provenant des apports énergétiques internes ou externes (éclairage, machines, soleil, … ). Pour un local du type « séjour », on démontrera plus loin que Q = 20 x Pn, [kWh].

La puissance électrique théorique des résistances PE [kW] doit être suffisante pour produire l’énergie requise Q en tenant compte du nombre d’heures de charge disponibles de nuit comme de jour : Q = PEx t (t = durée totale de charge).

La taille du noyau doit être adaptée à la quantité de chaleur à accumuler par cycle de 24 h et à la demande de chaleur (puissance calorifique à délivrer en fonction du schéma horaire de charge et de décharge de l’appareil).
En pratique, le dimensionnement des accumulateurs se fera de préférence suivant la méthode décrite dans la norme CEI, Publication 531, appendice B. Cette méthode est basée directement sur les mesures de performance d’accumulateurs décrites dans la même norme et effectuées au calorimètre.

Nous en reprenons ci-dessous la logique, car elle est suivie par les installateurs électriciens.

A. Informations préliminaires, comme données de base des calculs

  1. L’utilisateur donne un profil quotidien de la demande de chaleur.
  2. Les déperditions nettes résultantes Pr sont calculées comme égales à la Puissance normalisée Pn (suivant la NBN B62-003) diminuée des gains thermiques gratuits Pg.
  3. Le programme Journalier de charge est donné par le distributeur d’électricité.
  4. Le constructeur des appareils donne les caractéristiques de réponse de ses appareils (P)

B. Méthode de calcul

1. Profil journalier de la température du local concerné

Exemple pour le secteur de l’hébergement :

Diagramme de la température journalière.

2. Calcul de la demande de chaleur journalière

Les déperditions nettes résultantes Pr sont calculées comme égales à la Puissance normalisée Pn (suivant la NBN B62-003) diminuée des gains thermiques gratuits Pg

Exemple : Pn = 1 000 W, Pr = Pn – Pg

Demande de chaleur journalière.

A tout instant, la puissance de restitution P de l’appareil doit au moins être égale à Pr. Dans l’exemple, le cas le plus défavorable a été examiné, c-à-d. en supposant des gains thermiques Pg = 0 pendant la journée (d’où une puissance de chauffe P = 1 kW). Pendant la nuit, le facteur d’abaissement de Pr est de 0,56, dû aux diminutions des déperditions par abaissement de la température, fermeture des rideaux, stores, etc. ainsi que par diminution du taux de ventilation.

Du graphique de demande de chaleur, résulte la quantité totale journalière Q requise pour chauffer le local :

Q = Qjour + Qnuit = 15 [h] x Pn + 9 [h] x 0,56 x Pn

Q = 15 [h] x 1 [kW] + 9 [h] x 0,56 [kW]

Q = 20 kWh ou Q = 20 [h] x Pn

On parlera d’une durée nominale de chauffe tn égale à 20 heures.

Remarques

  • La valeur de 0,56 est arbitraire, elle arrondit simplement les calculs et d’obtenir un stockage égal à 20 h de fonctionnement à la puissance nominale (c.-à-d. la puissance par – 10°C extérieurs).
  • Le même raisonnement, appliqué au secteur tertiaire (bureaux) génère un stockage égal à 18 heures de puissance nominale (TN = 18 h).
  • Le choix d’annuler les gains gratuits de la journée va surdimensionner l’appareil.
  • Pour un local présentant des déperditions calorifiques de 1 000 W par une température extérieure de – 10°C et une température intérieure de 20°C, tout en tenant compte de 5 K de chaleur gratuite (base des calculs de consommation par la méthode des degrés-jours 15/15), Q se calcule comme suit :

Q = 24 [h] x 1 [kW] x ((20 – 5) – (- 10) / (20 – (10))

Q = 20 kWh

3. Diagramme journalier de charge ou de mise à disposition de l’alimentation des accumulateurs

Supposons les indices suivants :

  • 1 = tarif de nuit
  • 2 = tarif jour hors-pointes
  • 0 = pas de charge autorisée

Appelons :

  • durée totale nuit = t1
  • durée totale jour hors-pointes = t2

> Exemple 1 : 9 heures de charges (accumulation classique).

Accumulation classique.

> Exemple 2 : 8 h + 1 h de charges (accumulation classique avec relance).

Accumulation classique avec relance.

> Exemple 3 : 7 h + 9 h de charges (accumulation hors-pointes).

Accumulation hors-pointes.

4. Calcul de la puissance électrique théorique des résistances PE

PE = Q / (t1 + t2)

Pour l’exemple 1 : Pe1 = 20 kWh / 9 h = 2,22 kW
Pour l’exemple 2 : Pe2 = 20 kWh / 9 h = 2,22 kW
Pour l’exemple 3 : Pe3 = 20 kWh / 16 h = 1,25 kW

5. Détermination du facteur accumulateur fs

Pour comprendre ce que signifie ce facteur accumulateur, partons d’un cas imaginaire : le noyau se charge totalement, puis se décharge pendant 20 heures (hébergement) ou 18 heures (bureaux). La capacité d’accumulation devrait être égale à Q.

En réalité, la charge se fait en parallèle avec la décharge : à peine l’accumulateur monte en température, que déjà il se décharge partiellement par ses parois. En pratique, il ne devra donc stocker qu’une fraction de Q. Cette fraction est appelée FS.

Notre appareil imaginaire avait un FS = 1 et un appareil direct aura un FS = 0, puisqu’il se décharge aussi vite qu’il se charge.

Les facteurs accumulateurs standard en Belgique sont déterminés par les distributeurs d’énergie électrique :

  • exclusif nuit (9 h de charge) –> FS = 0,75
  • exclusif nuit + relance diurne (8 h + 1 h de charge) –> FS = 0,67
  • trihoraire (7 h + 9 h de charge hors pointe) –> FS = 0,35

6. Sélection de l’appareil dans le catalogue des fournisseurs

Le constructeur donne la réponse de ses appareils, pour un facteur accumulateur et un type de noyau donnés.

Exemple 1 : Accumulation classique 9 h (FS = 0,75)

Type de Noyau Résistance Pr [kW] Puissance normalisée couverte Pn,
si TN = 18 h
Puissance normalisée couverte Pn,
si TN = 20 h

A

2 1,0 0,9

B

3 1,5 1,35

C

4 2,0 1,8

Exemple 2 : Accumulation hors-pointes 7 h + 9 h (FS = 0,35)

Type de Noyau Résistance Pr [kW] Puissance normalisée couverte Pn,
si TN = 18 h
Puissance normalisée couverte Pn,
si TN = 20 h

A

1,3 1,15 1,05
1,6 1,30 1,20

B

1,8 1,60 1,44
2,4 2,10 2,07

C

2,7 2,40 2,16
3,2 2,75 2,45

Application : supposons que le local à chauffer présente des déperditions Pn (parois + ventilation) calculée à 1,15 kW. Il s’agit d’une occupation permanente (hébergement) donc TN = 20 h.

En raccordement exclusif nuit, l’appareil choisi sera un noyau de type B, équipé d’une puissance électrique réelle de 3 kW.

En raccordement hors-pointes, l’appareil choisi sera un noyau de type A, équipé d’une puissance électrique réelle de 1,6 kW.


Accumulation dans le sol

Le chauffage par accumulation électrique de nuit dans le sol nous paraît tellement inadapté dans la construction d’aujourd’hui qu’il ne nous paraît pas utile d’en décrire ici le dimensionnement.

Nous renvoyons cependant le lecteur intéressé à l’ouvrage cité ci-dessous, qui décrit très précisément la méthode de dimensionnement.
(Source : d’après « Le code de bonne pratique pour la réalisation des installations de chauffage électrique » – Communauté de l’Electricité – CEG).

Dimensionner une chaudière et ses auxiliaires

Dimensionner une chaudière et ses auxiliaires


Dimensionnement des chaudières à condensation

Le principe

La puissance de la production de chaleur est déterminée en fonction des besoins de chaleur du bâtiment. Sur base du besoin de chaleur, l’objectif du dimensionnement de la ou des chaudières est de lui/leur permettre de travailler à charge partielle un maximum de temps pendant la période de chauffe. En effet, le fonctionnement à charge partielle permet aux chaudières à gaz ou au fuel de produire de la chaleur avec un meilleur rendement de combustion.

Concevoir

Pour plus de renseignements sur le dimensionnement des installations de chauffage.

Quelle puissance pour les chaudières ?

Avec les chaudières modernes dont le coefficient de perte à l’arrêt est extrêmement réduit (… 0,2 % … de la puissance chaudière), en adaptant la puissance du brûleur aux besoins réels, le rendement s’améliore. En effet, dans ce cas, la surface d’échange de la chaudière augmentant par rapport à la puissance de la flamme, la température de fumée à la sortie de la chaudière sera plus basse et le rendement de combustion plus élevé. Cette augmentation de rendement sera plus élevée que la légère augmentation des pertes à l’arrêt. Il faut cependant faire attention à ne pas abaisser exagérément la puissance du brûleur par rapport à la puissance de la chaudière sous peine de voir apparaître des condensations dans celle-ci. Il faut rester dans les limites préconisées par chaque constructeur. Il faut également tenir compte du surinvestissement éventuel pour la chaudière. La PEB demande de préciser quel est le rendement à un taux de charge de 30 % ; c’est la valeur à laquelle l’ensemble brûleur/chaudière donne en général son meilleur rendement. De ce point de vue, le choix d’une puissance de chaudière plus élevée que la puissance de dimensionnement ne permettra pas à celle-ci de travailler à charge partielle pendant un maximum de temps.

En effet, comme le montre le schéma ci-dessous, le rendement de combustion s’améliore à charge partielle. Les brûleurs gaz à pré-mélange avec contrôle de la combustion permettent d’améliorer le rendement de 4 à 5 % entre la charge nominale (100 %) et la limite basse de charge partielle (10 %). La plupart des constructeurs ne vont pas plus bas que les 10 %. Pour beaucoup de modèles de chaudière à air pulsé, l’optimum de rendement se situe autour des 30-40 % de taux de charge.

Rendement de combustion.

La monotone de chaleur donne des renseignements sur le taux de charge de la chaudière auquel on doit s’attendre sur une saison de chauffe, et ce pendant un nombre d’heures déterminé.

Exemple

Le besoin de chaleur d’un bâtiment tertiaire est représenté par la monotone de chaleur suivante. On constate que :

  • La puissance maximale correspondant au dimensionnement est de 600 kW, soit 100 % de taux de charge ;
  • La période pendant laquelle une chaudière au gaz avec brûleur à pré mélange travaillera entre 10 et 30 %, est de 5 000 – 2 300 = 2 700 heures/an, soit de l’ordre de 2 700 / 5 500  =  49 %. Cette valeur de 49 %, au niveau énergétique est très intéressante. En d’autres termes, pendant la moitié de la saison de chauffe, la chaudière fonctionnera à son meilleur rendement ;
  • En surdimensionnant de 110 % la puissance de la même chaudière, la période pendant laquelle le même brûleur travaillerait entre 10 et 30 % serait de 4 900 – 1 800 = 3 100 heures/an, soit 56 % de la période de chauffe. Un léger surdimensionnement dans ce cas-ci est bénéfique d’un point de vue énergétique. Attention toutefois que le fait d’augmenter la puissance de l’ensemble chaudière/brûleur implique aussi que pour les faibles besoins de chaleur, le « pompage » (marche/arrêt intempestif) du brûleur  sera plus important pour une production surdimensionnée.

Quelle combinaison de puissance ?

La norme NBN D30-001 (1991) propose la répartition de puissance suivante :

Puissance calculée
Qtot [kW]
Nombre
minimum
de chaudières
Puissance utile de la chaudière
Chaudière 1 Chaudière 2 Chaudière 3
< 200 1 1,1 x Qtot
200 kW < .. < 600 2 0,6 x Qtot 0,6 x Qtot
> 600 3 0,33 x Qtot 0,33 x Qtot 0,5 x Qtot
3 0,39 x Qtot 0,39 x Qtot 0,39 x Qtot

Il ne faut sûrement pas aller au-delà du surdimensionnement proposé ici. En effet, ce dernier peut déjà être important si on considère que le calcul de « Qtot » inclut déjà des marges de sécurité.


Dimensionnement des chaudières bois

Les chaudières au bois, pellets ou plaquettes, possèdent des spécificités par rapport aux chaudières gaz ou fioul si bien qu’elles sont dimensionnées différemment, du moins dans le domaine tertiaire.  Voici les éléments qui vont modifier le raisonnement :

  • Plage de modulation de puissance plus restreinte : Les chaudières au bois fournissent leur meilleur rendement près de la puissance nominale, c’est-à-dire proche de la puissance maximale. Quand on réduit la puissance, le rendement diminue légèrement. Néanmoins, comme toute chaudière, la plage de modulation des chaudières au bois sont limitées. Cette plage est plus restreinte que pour le gaz ou certains brûleurs au mazout. En dessous d’un certain seuil de puissance, le rendement de la chaudière et la qualité de la combustion deviennent nettement dégradés. Pour les chaudières de puissances élevées, on peut donner un ordre de grandeur pour la puissance minimale qui est de 25-30 % de la puissance nominale. En dessous de cette valeur de puissance minimale instantanée, il n’est pas souhaitable de faire fonctionner la chaudière au bois.
  • Besoin de cycles longs de production : Les chaudières au bois ont besoin de fonctionner sur base de cycles de production longs pour atteindre les meilleurs rendements et une qualité de combustion efficace, ce qui limite l’émission de gaz et particules nocifs. Pour un besoin de puissance thermique faible du bâtiment, c’est-à-dire à température extérieure modérée, la puissance minimale de la chaudière ne peut descendre à ce niveau (à cause des limites de modulation citées ci-dessus). On pourrait imaginer de travailler avec une puissance à la chaudière qui appartient à sa plage de modulation (par exemple, à puissance minimale) et arrêter/redémarrer la production de la chaudière de manière régulière pour atteindre le niveau de demande du bâtiment. En d’autres termes, puisqu’on n’est pas arrivé à réduire suffisamment la puissance instantanée de la chaudière pour rencontrer le niveau de besoin du bâtiment, on diminue son temps de fonctionnement. Par définition, cela raccourcit la durée de cycles de production ce qui n’est pas compatible avec de bons rendements et une faible émission de gaz nocifs. Cette notion de « cyclage », c’est-à-dire d’arrêter et redémarrer la combustion pour les faibles besoins, est aussi rencontrée pour le chaudières gaz et mazout possédant un niveau de modulation de puissance relativement faible. Pour les techniques gaz et mazout, idéalement, il faut aussi éviter ces cyclages. Néanmoins, la longueur des cycles de production est moins critique pour ces vecteurs énergétiques que pour le bois-énergie.
  • Le coût des chaudières au bois : Les chaudières au bois sont intrinsèquement plus chères que leurs homologues au gaz ou au mazout. Il n’y a rien d’alarmant à voir dans ce constat. En effet, avec le bois-énergie, on peut bénéficier d’un coût du combustible inférieur aux autres vecteurs énergétiques classiques. Du coup, le surinvestissement pour la chaudière au bois peut-être amorti. Après ce délai, on peut même engendrer des gains. Par contre, il peut être intéressant de ne pas choisir une chaudière au bois trop puissante pour limiter le coût et de réaliser les appoints de puissance par une chaudière traditionnelle, ces appoints étant relativement peu fréquents.

Dimensionnement de la puissance maximale des besoins

Comme il a été expliqué dans la section précédente, on part de la puissance maximale demandée au système de chauffage. Celle-ci est estimée en sommant les pertes par transmission, ventilation, infiltration avec une température externe égale à la température de base. Ensuite, on  complète éventuellement par une certaine marge de puissance afin d’assurer la relance (si on travaille en régime intermittent).

Dimensionnement de la chaudière bois : aspects techniques

Si on dimensionne la puissance nominale de la chaudière principale au bois sur la puissance maximale demandée au chauffage, elle ne pourra pas répondre à tous les appels de puissance du bâtiment. En effet, à température externe modérée, la modulation de la chaudière principale au bois ne pourra pas toujours descendre au niveau de puissance requis sans dégrader fortement son rendement voire la qualité de la combustion. Pour les faibles puissances, celles-ci devront être produites par une autre chaudière capable de travailler efficacement dans cette plage. Dans le diagramme ci-dessous, l’énergie produite par la chaudière principale au bois peut être comparée à l’énergie produite par l’appoint : il s’agit des aires sous la courbe.

 

Illustration sur la monotone de charge du taux de couverture d’une chaudière bois dimensionnée sur la puissance maximale.

Le fraction de la demande annuelle produite par la chaudière principale au bois s’appelle le taux de couverture. Pour optimiser la chaudière principale au bois, il faut maximiser ce taux de couverture. La manière de procéder consiste à ne pas dimensionner la puissance nominale de la chaudière sur la puissance maximale demandée au système de chauffage. Cela abaisse la puissance minimale qui peut être produite par la chaudière et on est donc à même de produire pour des températures extérieures plus modérées correspondant à des besoins relativement faibles. En fait, dans la monotone de charge, on sacrifie les pics de puissance qui n’ont lieu que pendant peu de temps pour intégrer les faibles puissances qui sont atteintes pendant une plus grande partie de l’année : le niveau de puissance que l’on retrouve pendant la majeure partie de la saison de chauffe s’appelle aussi charge de base. On peut se convaincre de l’intérêt de dimensionner à une puissance inférieure à la puissance maximale des déperditions avec la monotone de charge suivante où la production annuelle de la chaudière principale bois est supérieure au cas précédent  (c’est-à-dire quand la chaudière a une puissance nominale égale à la puissance maximale de besoin de chauffage).

Illustration sur la monotone de charge du taux de couverture d’une chaudière bois dimensionnée à une puissance inférieure à la puissance maximale.

On peut réaliser le même raisonnement pour différents niveaux de puissance nominale de chaudière principale au bois. Typiquement, on obtient un taux de couverture optimal avec une puissance de chaudière principale bois inférieure à la puissance maximale de besoin de chauffage : une puissance nominale trop faible donne des taux de couverture trop faibles et, au-delà de l’optimum, une puissance nominale trop proche de la puissance maximale réduit le taux de couverture. En fait, cet optimum dépend de la forme de la monotone de charge et donc varie d’un bâtiment, d’une institution, à l’autre.

Exemple d’évolution du taux de couverture en fonction du rapport entre la puissance de la chaudière (PN) et la puissance maximale des déperditions (QT).

Il faudra réaliser un appoint de puissance pour couvrir les besoins de puissance du bâtiment supérieurs à la puissance nominale de la chaudière bois. Cela s’opère par une chaudière d’appoint. Si cette chaudière d’appoint travaille sur base d’un vecteur énergétique autre que le bois, on dira que l’on travaille en mode bivalent. Dans certains cas, la chaudière d’appoint pourrait elle-même fonctionner au bois-énergie. Dans ce cas, on dira plutôt que l’on travaille avec des chaudières en cascade si le conditionnement est le même pour les deux chaudières.

Dimensionnement de la chaudière bois : aspects économiques

Les chaudières bois sont caractérisées par des coûts d’achat supérieurs aux chaudières traditionnelles gaz ou mazout. Du coup, il peut être intéressant de ne pas dimensionner la chaudière bois sur la puissance maximale de chauffage comme les puissances élevées sont appelées très peu souvent. On calibre la chaudière bois sur la charge de base pour qu’elle fonctionne un maximum de temps et que le surinvestissement pour la chaudière bois puisse s’amortir plus rapidement. C’est une seconde raison qui justifie un fonctionnement en mode bivalent.

Dans le point précédent, nous avions annoncé que la chaudière d’appoint pouvait fonctionner au bois. Pourtant, sur base de considérations économiques, l’intérêt de placer une chaudière traditionnelle gaz ou mazout est plus évident étant donné qu’elle est amenée à fonctionner pour des courtes périodes de la saison de chauffe. Néanmoins, dans certains cas, une chaudière d’appoint fonctionnant au bois-énergie semble pouvoir se justifier économiquement.  Tout dépend de la consommation annuelle que devra assurer cette chaudière, du coût et de la disponibilité du combustible pour l’institution qui utilisera cette chaudière.

Sécurité d’approvisionnement de chaleur : chaudière de soutien

Dans les considérations précédentes, on pourrait penser que la chaudière d’appoint a une puissance relativement faible, c’est-à-dire juste le complément de puissance nécessaire pour assurer, avec la chaudière principale au bois, le besoin maximal de chauffage. En fait, dans certains cas, la puissance de la chaudière d’appoint est supérieure à la puissance de la chaudière bois. En effet, on veut, pour certaines applications, garantir l’alimentation en chaleur du bâtiment même si la chaudière bois ne peut plus fonctionner (pour cause de panne, entretien, manque de combustible dans le silo). Ce problème de sécurité d’approvisionnement se pose pour tous les vecteurs énergétiques (gaz et mazout compris). La chaudière d’appoint aura un rôle de soutien (« backup ») pour pouvoir maintenir la température du bâtiment à un niveau acceptable même si la chaudière principale au bois ne peut plus fonctionnement temporairement, niveau qui n’est pas nécessairement égal à la température de consigne : on peut dans certains cas juste maintenir la température à une valeur modérée inférieure à la consigne, le temps de remettre la chaudière principale au bois en fonctionnement.

À titre d’exemple, on peut citer le cas de la chaufferie de Libin qui alimente un réseau de chauffage urbain. La chaudière principale est une chaudière à plaquettes de 550kW qui est dimensionnée pour répondre à 95% du besoin annuel de chaleur. Par conséquent, la chaudière d’appoint ne doit répondre qu’à 5% du besoin annuel. Néanmoins, cette chaudière travaillant au mazout présente une puissance nominale de 600kW afin de pouvoir servir de soutien en cas de panne de la chaudière principale.

Nombre de chaudières

Dans les considérations précédentes, nous avons essentiellement analysé le cas d’une seule chaudière bois principale qui assure la majeure partie de la production annuelle de chaleur. Le besoin d’une chaudière d’appoint a été longuement discuté. Si la puissance demandée est suffisamment importante, on peut aussi réaliser la production principale de chaleur sur base de plusieurs chaudières au bois-énergie. Cela permet, d’une part, de balayer une plage plus large de puissances sans devoir faire face au problème de « cyclage » et, d’autre part, de répondre à la question de la sécurité d’approvisionnement en cas de panne.

Exemples d’une installation composée de deux chaudières à pellets fonctionnant en cascade.


Dimensionnement des circuits de distribution

Le débit que doit véhiculer un circuit de distribution dépend de la puissance à fournir et du régime de dimensionnement des corps de chauffe.

Exemple

L’aile nord d’un bâtiment demande une puissance de chauffage (calcul des déperditions) de 50 kW à fournir par des radiateurs dimensionnés pour fonctionner en régime 90°/70°.

Le débit d’eau chaude nécessaire pour obtenir cette puissance de chauffage est égal à :

Débit = Puissance / (capacité thermique de l’eau x ΔT°)

= 50 [kW] / (1,16 [kWh/m³.K] x (90 – 70)[K]) 

= 2,16 [m³/h]

La section des conduites se déduit de la relation :

section = débit / vitesse

Plus les conduites de distribution sont étroites, pour assurer ce débit, plus la vitesse de l’eau est élevée, avec pour conséquences :

  • l’augmentation du bruit,
  • l’augmentation des pertes de charge et de la consommation électrique du circulateur,
  • la difficulté de réglage de l’installation.

En contre-partie, le coût des conduites est moindre.

Deux techniques sont possibles pour dimensionner le diamètre des conduites :

  • se fixer une vitesse maximale constante (par exemple 0,5 m/s) dans tout le réseau,
  • ou se fixer une perte de charge constante pour chaque tronçon (par exemple, 120 Pa/m).

La première méthode donne généralement d’importants diamètres (investissement élevé, mais consommation des circulateurs moindres). La deuxième méthode peut donner des vitesses de circulation élevées et des problèmes acoustiques.

Dans son rapport n°1 de 1992, CSTC conseille de combiner les deux méthodes :

  • pour les diamètres réduits (DN10-20), limiter la vitesse de l’eau à 0,4 m/s pour des raisons acoustiques,
  • augmenter cette vitesse à 0,8 .. 1,2 m/s dans les grands diamètres (> DN50) si les conduites parcourent des locaux inoccupés, pour des raisons économiques,
  • ne pas dépasser une perte de charge de 120 Pa/m pour les tronçons intermédiaires pour limiter les pertes de charge.

Ce n’est évidemment pas au responsable technique à dimensionner les conduites. Il peut cependant s’interroger sur les grandeurs de référence maximale utilisées par le bureau d’études lors de la conception. Par exemple, si on dimensionne les conduites pour une perte de charge linéaire de 50 Pa/m au lieu de 120 Pa/m, la puissance absorbée par le circulateur diminuera de 30 .. 40 %. Le prix des conduites augmentera de 4 .. 8 %.


Dimensionnement des circulateurs

Le dimensionnement correct des circulateurs est un poste important qui va conditionner non seulement la consommation électrique de l’installation, mais aussi son confort.

Malheureusement, on ne calcule pas toujours précisément l’installation parce que cela prend du temps et que cela coûte plus cher que de mettre un circulateur trop gros.

On peut se faire une idée du dimensionnement correct des circulateurs en comparant la puissance électrique de ces derniers à la puissance des chaudières. Attention cependant, cette méthode ne peut convenir que pour vérifier le dimensionnement. Elle ne peut en aucun cas servir au dimensionnement d’un nouveau circulateur qui doit se faire en calculant les pertes de charge du réseau.

Simulation du rapport entre puissance électrique du circulateur Pe en [W] et la puissance des chaudières Pth [kW] en fonction du volume du bâtiment, pour plusieurs circulateurs présents sur le marché. Hypothèses de calcul : régime de température avec DT = 20 °C (ex : 90°/70 °C), pertes de charge linéiques de 0,01 [mCE/m] et pertes de charge de la chaudière et des organes de régulation de 1 [mCE/m] (valeurs réalistes et représentatives de la pratique). (Source : Cyssau, Mortier et Palenzuela, revue CVC, novembre 2000).

  1. pour le circulateur avec rendement moyen,
  2. pour les circulateurs avec rendement élevé,
  3. pour les circulateurs avec rendement faible. Le rapport PE/Pth ne dépasse 2 que pour des circulateurs ayant un rendement faible

Les Suisses (programme d’impulsion RAVEL) considèrent qu’une installation équipée de radiateurs normalement dimensionnée doit vérifier la relation :

puissance électrique d’un circulateur PE en [W] =
puissance thermique du réseau qu’il alimente Pth [kW]

En tout cas si :

puissance électrique d’un circulateur PE en [W] =
2 x puissance thermique du réseau qu’il alimente Pth [kW]

Il est fort probable que le circulateur choisi soit surdimensionné ou que son rendement soit mauvais.

La puissance thermique de chaque réseau a dû être calculée par le bureau d’études, car elle est nécessaire pour établir le débit d’eau à fournir. On peut également la vérifier par une méthode approximative, circuit par circuit. Par extrapolation, on peut également dire que les circulateurs sont globalement bien dimensionnés si :

puissance électrique de tous les circulateurs PE en [W] =
puissance thermique des chaudières Pth [kW]

Comme pour les circulateurs de moins de 1 kW, les constructeurs ne fournissent pas la puissance électrique absorbée des circulateurs pour chaque point de fonctionnement, on se basera pour établir la puissance électrique du circulateur choisi sur la relation :

puissance électrique du circulateur [W] =
90 % de la puissance lue sur la plaque signalétique [W]


Dimensionnement des corps de chauffe

Comme mentionné dans « Le choix des corps de chauffe« , dimensionner les corps de chauffe pour un régime de température de 70°/50° au lieu du 90°/70° traditionnel augmente les performances des chaudières à condensation. Cependant, le surcoût de ce surdimensionnement ne sera pas vite rentabilisé. Si ce temps de retour est considéré comme excessif, un bon compromis est alors de choisir le régime 80°/60°.

Exemple.

Le coût global d’une installation de chauffage de 400 kW dans un nouveau bâtiment de 4 000m² est de l’ordre de 120 000 … 180 000 €.

Ce coût peut être comparé au surcoût lié au choix de radiateurs dimensionnés en régime 70°/50°, soit un supplément de puissance installée de 69 % : environ …10 000… €.

> Quel est le gain réalisable sur le rendement de la chaudière à condensation ?

Lorsque les radiateurs sont dimensionnés en régime 90°/70° (sans surdimensionnement), la température moyenne de retour des radiateurs sur l’ensemble de la saison de chauffe est de l’ordre de 43 °C (avec une régulation en température glissante). Avec des radiateurs dimensionnés en régime 70°/50°, cette même température sera d’environ 33 °C.

Pour une chaudière à condensation performante dans laquelle la température des fumées à la sortie est supérieure de 3 °C à la température de retour de l’eau, le graphe suivant montre qu’en diminuant la température moyenne de l’eau de retour de 10 °C, le rendement moyen de la chaudière à condensation augmente de 6 %.

Rendement utile d’une chaudière gaz en fonction de la température des fumées et de l’excès d’air (n = 1,3 équivaut à un excès d’air de 30 %). Pour un excès d’air de 20 %, une température de retour 43° C (équivalent à une température de fumée de 46 °C) équivaut à un rendement utile de 97 %, une température de retour de 33 °C (équivalent à une température de fumée de 36 °C), à un rendement utile de 103 %.

Sur une consommation de l’ordre de 50 000 m³ de gaz, cela équivaut à une économie de l’ordre de 3 000 m³ de gaz par an.

> Que conclure ?

Le surcoût d’installation des radiateurs est donc non négligeable… D’autant que l’économie faite par la chaudière est déjà comptabilisée dans la justification de son propre surcoût…

En fait, de toute façon un surdimensionnement des radiateurs de 27 % (régime 80/60) est de rigueur (pour assurer la relance), donc la température moyenne de l’eau de retour est de 39 °C. Par ailleurs, les apports internes vont créer un surdimensionnement de facto de l’installation. Donc, même si tout abaissement de température est bénéfique pour le CO2, il ne semble donc pas que ce soit sur ce poste qu’il faille mettre l’investissement prioritaire. Il sera beaucoup plus important de s’assurer que le circuit hydraulique provoque un réel retour d’eau froide vers la chaudière (pas de bypass de chaudière, ni de soupape différentielle, par exemple).

Le même principe peut être appliqué aux autres utilisateurs comme les batteries à eau chaude dans les groupes de traitement d’air, les ventilos-convecteurs ou encore la production d’eau chaude sanitaire.

Ces équipements travaillent généralement à plus haute température. Il est conseillé de les surdimensionner pour diminuer leur température de fonctionnement, par exemple en leur appliquant un régime de fonctionnement du type 70°/40° ou 90°/45° (batteries à eau chaude, échangeurs à plaque fonctionnant avec une température de sortie de 40°.45°). Cette pratique qui, pour les batteries, n’est pas encore rentrée dans les habitudes, conduit à un surinvestissement rentabilisé par l’exploitation.