Choisir une PAC en fonction de la performance de l’enveloppe

Choisir une PAC en fonction de la performance de l'enveloppe


Stratégie de chauffage et de refroidissement

Lorsque la performance de l’enveloppe d’un bâtiment augmente, pour une même surface nette ou un même volume de bâtiment, la quantité d’énergie nécessaire au chauffage devient faible.

« On peut passer d’une valeur de 200 kWh/m².an à 15 kWh/m².an lorsqu’on tend vers un bâtiment passif ! ».

Source : PMP (Plateforme Maison Passive).

De même, la puissance à mettre à disposition pour assurer les besoins de chaleur du bâtiment se voit réduite de manière significative.

« Les puissances mises en jeu pour combattre les déperditions au travers des parois et par ventilation et pour assurer la relance en cas d’intermittence (ou ralenti nocturne), passent de l’ordre de 70 W/m³ à 20 W/m³ voire moins encore ! ».

Le renforcement de l’isolation et de l’étanchéité d’un bâtiment interagit donc sur la puissance du système de chauffage. À première vue, pour autant que les fabricants de systèmes de chauffage  puissent proposer des équipements de faible puissance, il n’y a pas de restriction quant au choix de tel ou tel type de système de chauffage par rapport à la puissance.

Cependant, si le concepteur n’y prend pas garde, l’isolation d’un bâtiment n’engendre pas seulement que des réductions des besoins de chauffage. Il risque de générer aussi une augmentation des besoins de rafraichissement. D’un point de vue énergétique, si c’est le cas, il est primordial de produire du froid gratuitement ou à peu près !

La manière de produire le plus écologiquement du froid dans notre bonne Belgique est de faire appel au « free cooling » par ventilation naturelle. Ce n’est pas toujours possible !

En effet :

  • Le confort, dans certains cas, ne peut pas être assuré en permanence. On image difficilement qu’une chambre d’isolé dans un hôpital, de surcroit occupée la nuit, puisse être ventilée naturellement.
  • Certains maîtres d’ouvrage ne voient pas d’un bon œil de laisser des fenêtres ouvertes la nuit par souci de sécurité (même grillagée).
  • Les coûts d’une automatisation des systèmes d’ouvertures risquent d’être importants.
  • La régulation des systèmes d’ouverture n’est pas toujours évidente.

Le choix du « géocooling » comme moyen de refroidissement naturel s’impose donc. Cela tombe bien puisqu’avec le même système, on pourra produire du chaud par « géothermie » et du froid par « géocooling ». En effet, par le choix d’une pompe à chaleur géothermique eau/eau, réversible ou pas suivant le besoin de froid, on peut envisager la stratégie suivante :

  • En hiver,  la chaleur sera « pompée » du sol par la pompe à chaleur en travaillant en mode « chaud », le sol se refroidissant par la même occasion.
  • En été, le froid accumulé en hiver sera extrait du même sol soit par la pompe à chaleur travaillant en mode froid, soit par 2 pompes de circulation permettant de travailler de manière satisfaisante au niveau énergétique (c’est la seule consommation des pompes qui permet de refroidir le bâtiment).

Cependant, le choix de la géothermie, comme source froide pour des bâtiments à forte isolation, est dépendant aussi de l’équilibre entre les besoins de chaud et de froid de l’immeuble.
Un bâtiment en demande de chaleur :

  • Qui nécessite peu de besoins de froid sous forme de « géocooling », ne permettra pas de recharger le sol en chaleur en été. Il s’en suivra, dans certains cas, d’un appauvrissement de la capacité du sol à fournir de la chaleur. Dans certaines études (simulation PileSim), on remarque qu’après 15 à 20 ans, la température du sol reste très basse. Dans ces conditions, l’énergie du sol sera plus difficilement exploitable. Si c’est possible, le refroidissement pourra être pris en charge par un système de « free-cooling » de nuit sur l’air par exemple.
  • Équilibré par la même demande en refroidissement permettrait de pérenniser la source froide.

En pratique, un équilibre 50/50 entre les besoins de chaud et de froid permettra de garantir une géothermie optimale à long terme.


Influence sur le choix du type de source froide et son dimensionnement

Pour une même emprise au sol, un bâtiment tertiaire dont l’enveloppe est performante est moins gourmand en besoin de chauffage qu’un bâtiment de type « passoire ». Par conséquent, il « pompera » moins d’énergie à la source froide.

Source froide : l’air ou aérothermie

L’air est en quantité « infinie » autour du bâtiment ; ce qui signifie que l’influence du niveau d’isolation du bâtiment sur le choix de l’air comme source froide reste faible. Bien que ! Si on pousse le raisonnement à l’absurde, une concentration de bâtiments peu isolés dont le choix de leur système de chauffage se porterait sur une PAC air/eau par exemple, contribuerait à créer un micro climat plus froid qu’il ne serait si les bâtiments étaient peu isolés.

Donc, la performance de l’enveloppe du bâtiment influence l’air comme source froide, mais il faut pousser le raisonnement très loin !

Pour un bâtiment bien isolé, la taille de l’évaporateur pourra être plus petite. Attention toutefois que les évaporateurs sont une source de nuisance sonore dont il faudra tenir compte.

Source froide : le sol ou géothermie

Le sol est une ressource limitée en quantité et en temps. Pour des bâtiments peu « déperditifs », la géothermie peut être intéressante dans le sens où, pour une même empreinte au sol du bâtiment, plus celui-ci est isolé :

  • Moins il sera gourmand en puissance disponible et plus petite sera l’installation de géothermie.
  • Plus grande sera la disponibilité d’énergie dans le sol.

Influence de la performance du bâtiment sur la source froide géothermique.

L’augmentation de la performance de l’enveloppe d’un bâtiment permet de mieux exploiter un même volume de sol, c’est vrai ! Mais il est nécessaire de tenir compte comme décrit ci-avant de l’équilibre entre les besoins de chaleur et les besoins de refroidissement.

Une fois n’est pas coutume, c’est la source froide qui risque de conditionner le niveau d’isolation de l’enveloppe du bâtiment !

En effet :

  • Une enveloppe de bâtiment très performante entraine un déséquilibre entre les besoins Chaud/froid en faveur du besoin de froid : la source froide risque de se réchauffer au cours des années. Il s’ensuit une interrogation au niveau de l’écologique, de l’autorisation d’exploiter le sol, …
  • Une enveloppe de bâtiment peu performante inverse la tendance : la source froide se refroidit.

Il n’est donc pas dit, avec une technologie comme la géothermie, que le renforcement à outrance de la performance de l’enveloppe du bâtiment soit l’idéal. Comme tout est une question de compromis, dans ce cas particulier, on ne visera pas nécessairement le passif voire mieux. Mais c’est du cas par cas !

Un bureau d’étude spécialisé permettra, par simulation thermique dynamique, de trouver le réel équilibre pour optimiser l’exploitation de la géothermie. On en tiendra compte dès l’avant projet du bâtiment.

Source froide : l’eau ou hydrothermie

Tout comme le sol, l’eau comme source froide (hydrothermie) est une ressource limitée qui dépend, entre autres, du débit de renouvellement du volume d’eau pris comme source froide (plan d’eau, …). Le fait de rendre les bâtiments performants permettra de disposer d’une source froide de taille plus petite (le lac de Genval plutôt que l’Eau d’heure par exemple). Cependant, s’il existe un besoin de refroidissement du bâtiment, l’eau devra être en mesure d’absorber la chaleur extraite du bâtiment par le système de pompe à chaleur réversible. Ceci implique qu’en été :

  • le débit de renouvellement de la source froide soit suffisant ;
  • les réglementations en vigueur permettent un rejet de chaleur à température plus élevée que la température moyenne de la source froide.

Influence sur le choix du type de source chaude et son dimensionnement

Régime de température

Les émetteurs à eau

Pour une même volumétrie des locaux dans un bâtiment bien isolé, la puissance d’émission nécessaire sera plus faible. On pourra donc prévoir un régime de température plus faible, et par conséquent la performance énergétique de la PAC associée pourra être améliorée (de l’ordre de 3 % par °C de température de  gagné).

Exemple

On considère que la température de l’eau au niveau du condenseur se situe entre 35 et 45 °C pour – 8 °C extérieur dans le cas d’un bâtiment K45. Si on décide d’opter pour la conception d’un bâtiment plus performant (basse énergie ou passif), on pourrait avantageusement passer à des températures de condensation entre 25 et 30°C, soit un gain théorique de l’ordre de 30 % des consommations énergétiques.

Les émetteurs à air

Tout dépend du type d’émetteur :

  • En détente directe sur l’air hygiénique, les températures de condensation risque de devoir être aussi hautes que pour un bâtiment non isolé sachant que c’est de l’air externe que l’on réchauffe. Dans ce cas, le niveau de performance de l’enveloppe du bâtiment ne joue pas.
  • Pour des ventilo-convecteur à eau, cela revient au même que pour les radiateurs classiques : les températures de condensation seront sensiblement les mêmes (entre 25 et 30 °C par – 8 °C extérieur).

Inertie de l’émetteur

Dans un bâtiment dont l’enveloppe est performante, la faible inertie de l’émetteur est primordiale. En effet, en mi-saison, la surchauffe risque d’être dommageable si l’inertie de l’émetteur est importante. En effet, en cas de nuit froide, la dalle se chargera pour anticiper la journée qui suit. Malheureusement, le stockage de chaleur risque de ne servir à rien si les apports solaires pendant la journée sont élevés. La combinaison des apports solaires au travers des parois vitrées et des apports internes générés par la dalle de sol chauffante ne peuvent être évacués. Il s’ensuit une surchauffe importante des locaux.

Pour pallier à ce problème, on pense, par exemple, au plancher chauffant qui doit nécessairement être à faible inertie. L’émetteur dynamique à faible inertie, comme montré ci-dessous, permet de bien répondre aux besoins de réactivité d’un bâtiment performant. Tout dépendra naturellement du type de revêtement qui sera placé en finition au-dessus du plancher chauffant. Un matériau thermiquement isolant impliquera une augmentation de la température de l’eau de l’émetteur entrainant une dégradation de la performance de la pompe à chaleur. On rappelle qu’une augmentation de 1 °C de la température de condensation de la PAC entraine une dégradation de sa performance de l’ordre de 3 %.

Schéma principe du plancher chauffant.

Photo plancher chauffant.

Source Opal-système.


Influence sur le choix du type de compresseur

Les bâtiments qui présentent un niveau d’isolation important permettront le choix de pompe à chaleur de puissance raisonnable dans une gamme plus élargie. Au point que pour certains bâtiments tertiaires de petite taille, on pourrait même envisager d’étendre la gamme aux pompes à chaleur domestiques.

Quand on est en présence d’un bâtiment performant, le système de chauffage, quel qu’il soit, doit être très réactif à la relance et pouvoir moduler sur une plage de puissance large. On considère que la plage de variation de puissance des PAC (taux de charge) peut raisonnablement varier entre 30 et 100 %. L’idéal est donc de choisir des pompes à chaleur avec compresseur à vitesse variable (technologie INVERTER).

Choisir l’émetteur de chaleur [PAC]

Introduction

Pour pouvoir parler de l’émetteur de chaleur, il faut faire le choix de la source « chaude » : l’air, l’eau, ou le sol dans le cas où la pompe à chaleur est à condensation directe.

La redistribution de température doit se faire à la température la plus basse possible (maximum 50 °C) car la PAC sera plus efficace. On peut effectuer cette redistribution soit par un chauffage à air pulsé, un chauffage par le sol ou mural, ou un chauffage à ventilo-convecteurs.


L’air comme source chaude

On utilise cette source chaude en général dans les PAC air/air.

L’air est pulsé dans un échangeur de chaleur fluide/air et chauffé par le fluide frigorigène comprimé jusqu’à 30 ou 40 °C. Il est ensuite  envoyé vers les pièces du bâtiment. L’avantage de cette source chaude est de répondre rapidement à la température demandée de par la faible inertie de l’air. Cet avantage devient un inconvénient au point de vue financier dans la mesure où il ne peut y avoir d’accumulation de chaleur pendant la nuit et donc aucun bénéfice des tarifs de nuit pour l’électricité.

Quatre types d’installations existent dans le cas où l’air est choisi comme source chaude :

  1. Installation compacte intérieure. Dans ce cas, il y a une conduite d’amenée et de rejet d’air extérieur vers l’évaporateur qui se trouve à l’intérieur du bâtiment. La PAC est installée près d’un mur extérieur. La traversée des conduites dans le mur est isolée et protégée contre la pluie.
  2. Installation compacte extérieure. La PAC est reliée au réseau de distribution d’air par des conduites isolées. Cette solution est coûteuse à cause du transfert des sources chaude ou froide.
  3. Système mono-split : ce système, d’une grande souplesse d’installation, permet de chauffer une seule pièce du bâtiment. Une ou deux unités intérieures (dans la même pièce) sont reliées à une unité extérieure unique qui traite l’air. L’évaporateur se trouve ainsi à l’extérieur et le condenseur à l’intérieur du bâtiment, ce qui permet à l’évaporateur d’être bien alimenté en air extérieur. Le fluide frigorigène doit passer à travers la paroi du bâtiment dans des conduites calorifugées et l’air chaud est distribué via des gaines de différents diamètres en fonction des débits et des pressions demandés. La quantité de fluide frigorigène présente dans ce système est supérieure aux deux systèmes précédents.
  4. Système multi-split : plusieurs pièces peuvent être chauffées, à l’aide d’un ou deux ventilo-convecteurs dans chacune d’entre elles. Il y a donc plusieurs condenseurs, mais toujours un unique évaporateur extérieur.

Les ventilo-convecteurs sont des émetteurs de chaleur qui fonctionnent dans ce cas-ci à « condensation directe » : le fluide frigorigène cède directement l’énergie thermique à l’air.

Le système split

Dans ce type de système :

  • l’évaporateur est placé à l’extérieur
  • le condenseur est placé soit dans un local technique où il est relié à un réseau de distribution, soit directement dans le local à chauffer, par exemple dans un ventilo-convecteur.

Le transfert de chaleur entre l’intérieur et l’extérieur se fait par le fluide frigorigène qui traverse la peau du bâtiment dans des canalisations calorifugées.

Les systèmes split installés directement dans les locaux ont l’avantage de la souplesse d’installation : un simple réseau bitube est suffisant pour le transport du fluide frigorigène, on évite les intermédiaires puisque la PAC chauffe directement l’air du local, il ne faut pas d’accumulateur ni de régulation complexe d’un réseau hydraulique, … en contrepartie, ils présentent un plus grand risque de fuite de fluide frigorigène.

Lorsque l’on multiplie le nombre d’échangeurs de chaleur, on parle de système multi-split. Les différents échangeurs intérieurs, par exemple un par local, sont alors tous reliés à un (ou plusieurs) échangeurs de chaleur extérieur. Différentes « boucles » sont donc « juxtaposées » avec comme seule interconnexion la ou les unités extérieures.

Un condenseur commun et plusieurs unités intérieures = multi-split.

Exemple de système multi-split :

Un fournisseur propose une gamme standard d’installations multi-split complètes dont l’unité extérieure a une puissance frigorifique maximale allant de 1 à 11,5 kW et une puissance calorifique maximale de 0,9 à 17,2 kW, pour des débits d’air d’environ 2 100 m³/h.

La longueur maximale de tuyauterie autorisée va de 35 à 70 mètres au total selon l’unité extérieure choisie dans la gamme. Le branchement de plus de 4 unités intérieures par unité extérieure n’est pas possible.

Les unités intérieures peuvent être murales, en consoles, gainables ou en cassette 2 ou 4 voies. Leur puissance frigorifique varie entre 1 et 4,5 kW et leur puissance calorifique entre 1,1 et 6,4 kW.

Chaque unité intérieure accepte une longueur de tuyauterie de 25 m.

Le prix des groupes de condensation (unité extérieure) est entre 2 285 et 4 150 €, celui des unités intérieures de 585 à 2 235 € pièce.


L’eau comme source chaude

Dans ce cas, le fluide frigorigène comprimé donne sa chaleur à l’eau du circuit de chauffage par l’intermédiaire d’un échangeur de chaleur. La température de l’eau de condensation devant être la plus basse possible (entre 35 et 45 °C pour – 8 °C extérieurs), le chauffage par pompe à chaleur sera réalisé par un plancher chauffant à eau, par des ventilo-convecteurs à eau ou par des grands radiateurs à basse température.

Plancher chauffant à eau

Cette solution efficace procure un excellent confort thermique uniforme dans la pièce. La surface d’émission est suffisamment grande pour permettre une température faible : maximum 28 °C. Cette température permet d’éviter les problèmes de circulation dans les jambes. Cet émetteur de chaleur présente l’avantage (pour des constructions neuves) d’être complètement invisible et de dégager de la place aux murs par rapport aux radiateurs conventionnels.

Installation d’un plancher chauffant.

Le plancher chauffant est composé d’un réseau de tubes en polyéthylène enfouis dans du béton coulé, et montre une grande inertie thermique. Les réponses aux variations de température demandées sont donc lentes (de l’ordre de quelques heures). Le revêtement de sol doit présenter une résistance thermique faible, comme un carrelage ou un parquet (même si ce dernier a une résistance thermique plus élevée que le carrelage pour des épaisseurs égales). Pour obtenir une bonne transmission de la chaleur entre la couche de béton et l’ambiance, le parquet doit être de préférence collé. Dans tous les cas, il faut éviter les couches d’air car elles ont un effet isolant.

Le chauffage par plancher chauffant peut nécessiter un appoint. On peut également jouer sur la distance entre deux tubes pour avoir plus ou moins de puissance surfacique. Si on augmente la longueur de tube chauffant dans le sol, on peut diminuer la température de l’eau qui y circule pour un même confort thermique dans l’ambiance.

Murs chauffants

Les murs peuvent également être utilisés comme surface de chauffage. C’est parfois une meilleure solution dans le cas d’une rénovation.

Installation d’une cloison chauffante

Ventilo-convecteur à eau

Ce type de ventilo-convecteur est un échangeur qui transmet la chaleur de l’eau (chauffée dans le convecteur) à de l’air forcé à l’intérieur. C’est le même type d’appareil qu’un ventilo-convecteur à condensation directe, hormis le fait que le fluide chauffant est de l’eau et non un fluide frigorigène.

Cette solution permet la production de froid quand c’est nécessaire en été.

Radiateur basse température

Ces radiateurs, incompatibles avec des systèmes de chauffage autres que la PAC, contiennent de l’eau dont la température est de 40-50 °C. Cette température est nettement inférieure à celle des radiateurs conventionnels (70 – 90 °C), mais est néanmoins suffisante pour chauffer un local, car les radiateurs basse température sont de grandes dimensions. Ils peuvent être construits en fonte, en fonte d’aluminium ou en acier. Bien évidemment, cette solution n’est pas compatible avec l’installation d’une pompe à chaleur réversible (rafraîchissement et climatisation en été).


Le sol comme source chaude

Dans ce cas, le fluide frigorigène circule dans un réseau de tuyaux en cuivre dans le sol, c’est la solution « à condensation directe ». Il n’y a pas d’échangeur intermédiaire et les tubes constituent eux-mêmes le condenseur de la PAC.

La quantité de fluide frigorigène utilisée est importante, ce qui impose le respect de règles dans la vérification, la récupération des fuites, etc. La mise en place des tubes doit être réalisée par des personnes qualifiées pour éviter tout risque de fuite et afin de garantir l’efficacité de l’installation.

Choisir les éléments principaux de la pompe à chaleur

Choisir les éléments principaux de la pompe à chaleur


Choix du fluide frigorigène

Les fluides frigorigènes envisageables aujourd’hui pour les nouvelles installations de pompes à chaleur sont nombreux et font partie soit des hydrofluorocarbones (HFC), soit des fluides frigorigènes naturels. Plus question aujourd’hui de concevoir une installation chargée au R12 (CFC) ni au R22 (HCFC), ces réfrigérants destructeurs de la couche d’ozone participant fortement au réchauffement climatique.

Les fluides frigorigènes peuvent être choisis suivant différents critères :

Critères
thermodynamiques
Critères
de sécurité
Critères
techniques
Critères
économiques
Critères
environnementaux
Pression d’évaporation. Toxicité. Action sur les composants de l’installation. Prix. Action sur la couche d’ozone.
Température critique. Inflammabilité. Comportement avec l’huile Disponibilité. Action sur l’effet de serre.
Taux de compression. Caractère explosif. Comportement avec l’eau. Possibilité de récupération et de recyclage.
Efficacité des échanges thermiques. Aptitudes aux détections des fuites.
Température de refoulement. Stabilité.
Production frigorifique. Volumétrique spécifique.

Les fluides frigorigènes peuvent être soit des mélanges de fluides dans des proportions précises, soit des fluides purs. Les comportements diffèrent dans l’un ou l’autre cas. Les fluides purs s’évaporent à température constante alors que les mélanges (sauf mélanges azéotropiques) s’évaporent à des températures variables.

Les HFC

Les plus répandus sont le R134a, le R407C, le R410A et le R404A.

Les HFC présentent un Global Warming Potential (contribution à l’effet de serre) sur 100 ans relativement élevé. Pour cette raison, la réglementation  impose de vérifier l’étanchéité des installations de HFC afin d’éviter les fuites dans l’atmosphère.

La détection et la récupération des fuites doivent se faire avec un outillage adapté et les frigoristes doivent être certifiés.

Les fluides frigorigènes naturels

Les quatre fluides frigorigènes HFC ont été largement utilisés dans les installations de PAC neuves. Cependant, vu leur impact sur l’effet de serre, la réglementation  prévoit leur abandon progressif en faveur des fluides montrant un potentiel de participation au réchauffement climatique sur 100 ans plus faible voire des fluides frigorigènes « naturels ».


Choix de l’évaporateur de la PAC

Le fluide frigorigène capte la chaleur de l’environnement (eau, air ou eau glycolée) dans l’évaporateur de la pompe à chaleur. Il y passe de l’état liquide à l’état gazeux à basse température en emmagasinant de l’énergie. L’évaporateur est donc un échangeur de chaleur, au même titre que le condenseur et la température d’évaporation doit être la plus élevée possible pour augmenter les performances de la pompe à chaleur.

Les évaporateurs sont classés suivant leur type et leur source froide. Ainsi, on aura d’un côté, des évaporateurs à air ou à eau en fonction de la source froide choisie, et d’un autre côté on aura soit des évaporateurs secs, soit noyés.

Sec vs Noyé

  1. La différence entre ces deux technologies réside premièrement dans l’état de la vapeur qui sort de l’échangeur :
    Dans le cas des évaporateurs de type sec, également appelés « à surchauffe » ou « à détente sèche », le fluide frigorigène vaporisé sera complètement sec à l’admission au compresseur. Ceci est dû à la succession de deux phases : l’ébullition du liquide frigorigène puis la surchauffe des vapeurs obtenues (la température du gaz frigorigène sortant de l’évaporateur est donc légèrement supérieure à la température d’évaporation proprement-dite).
    La surchauffe est par contre pratiquement nulle dans le cas des évaporateurs de type noyé. Cela présente un inconvénient : la nécessité de prévoir une bouteille anti-coups de liquide avant le compresseur pour le protéger. Le mélange liquide-vapeur sortant de l’évaporateur est à la même température que le liquide entrant (en négligeant les pertes de charge).
  2. La configuration de l’évaporateur est également différente dans les deux cas :
    Dans les évaporateurs noyés, les surfaces d’échange (les plus grandes possibles) doivent être en contact permanent avec du fluide frigorigène liquide. Les tubes qui contiennent le fluide caloporteur (qui est souvent de l’eau glycolée) sont dès lors noyés dans le fluide frigorigène liquide qui se vaporise.
    C’est l’inverse dans le cas des évaporateurs secs. Les coefficients d’échange obtenus pour les évaporateurs noyés sont très élevés et ne varient pas beaucoup par rapport à ceux des évaporateurs à détente sèche.
    (En effet, de façon générale, l’échange de chaleur sera élevé si :- la surface d’échange augmente ;
    – la vitesse de passage des fluides est faible ;
    – la différence de température entre les fluides est grande ;
    – le débit de la source de chaleur est important par rapport au fluide frigorigène.).

Les évaporateurs de pompes à chaleur sont en général du type sec à cause des inconvénients que présentent les évaporateurs noyés (besoin d’une bouteille anti-coups de liquide, piégeage de l’huile de lubrification, etc.).

À air vs à eau

Pour les sources de chaleur liquides, les évaporateurs présentent une des 5 configurations suivantes :
Type noyé

  • L’échangeur à serpentin noyé (puissances supérieures à 30 kW).
  • L’échangeur multitubulaire noyé (puissances supérieures à 30 kW), qui est en général utilisé avec un compresseur à pistons ou à vis. Il faut faire attention au risque de gel de l’eau à l’intérieur des tubes. Autre inconvénient : ces évaporateurs peuvent accumuler de l’huile non désirée, dans le cas où ils sont utilisés avec un compresseur volumétrique lubrifié.

À surchauffe :

  • Les évaporateurs multitubulaires à surchauffe (puissances supérieures à 30 kW) sont très utilisés avec les compresseurs à pistons ou à vis. Les risques de gel sont amoindris par rapport à l’échangeur multitubulaire noyé et il n’y a pas de problème de retour d’huile.
  • L’échangeur à plaques brasées : Ces échangeurs ont tendance à se généraliser dans l’application des pompes à chaleur eau glycolée/eau. Ils sont performants (car les coefficients d’échange thermique sont élevés), robustes, compacts et étanches. Il faut toutefois faire attention à ce qu’il n’y ait pas d’encrassement. Attention également au risque de gel (il faut dès lors prévoir de l’antigel en suffisance).
  • Les évaporateurs coaxiaux sont très utilisés pour des puissances frigorifiques allant jusqu’à 100 kW. Ils présentent des difficultés d’entretien et nécessitent de l’eau très propre non entartrante.

Les types d’évaporateurs à air sont au nombre de 3 :

  • Les évaporateurs à ailettes à convection naturelle ;
  • Les évaporateurs à tube lisse à convection naturelle.
Ces deux premiers types d’évaporateurs à air ne sont utilisés que pour des faibles puissances. De plus, les coefficients d’échanges thermiques sont faibles, car la ventilation est naturelle. On les retrouve donc très peu pour les pompes à chaleur.
  • Les évaporateurs à ailettes à convection forcée : c’est le type d’évaporateur à air qui est le plus utilisé. Ils sont munis d’un ou plusieurs ventilateurs pour assurer la circulation de l’air à travers les surfaces d’échange. Le problème de ces échangeurs réside dans la formation de givre ou de condensation lorsque la température des parois extérieures de l’évaporateur est inférieure à la température de rosée de l’air.

Techniques

Pour plus de détails concernant certains types d’évaporateurs de pompes à chaleur, cliquer ici !

Choix du compresseur

Il existe deux types de compresseurs qui peuvent être utilisés dans les pompes à chaleur : les compresseurs volumétriques et les compresseurs centrifuges (ou turbocompresseurs). Dans le premier cas, une réduction du volume à l’intérieur de la chambre de compression permet d’y augmenter la pression. En général les compresseurs sont de ce type. Dans le second cas, la compression résulte de la force centrifuge obtenue par entraînement dynamique au moyen d’une roue à aubes. On utilise ces compresseurs pour des applications précises, ou pour de grandes puissances.

Les compresseurs volumétriques à pistons

Les compresseurs volumétriques à pistons sont les plus répandus pour les circuits frigorifiques et ils sont alternatifs pour la plupart. Ils sont de plusieurs types, suivant qu’ils sont ouverts, semi-ouverts ou fermés (hermétiques) au niveau de l’association entre le moteur et le compresseur.

compresseurs volumétriques à pistonscompresseurs volumétriques à pistons

Hermétique, semi-hermétique et ouvert.

Hermétique

Dans ce cas le moteur électrique et le compresseur sont logés dans une même enveloppe soudée. L’ensemble n’est pas démontable. On utilise beaucoup ce type de compresseur pour de faibles puissances, jusqu’à 30 kW environ.

Avantages

  • Le faible coût de l’ensemble.
  • L’encombrement réduit.
  • La bonne étanchéité.
  • Le peu de bruit par rapport aux autres compresseurs volumétriques à pistons.
  • La rapidité de la recharge en fluide frigorigène, car bonne tolérance aux coups de liquide.
  • Pas de problème de mise en ligne du compresseur et du moteur, car pas d’accouplement.
  • Le refroidissement effectué par le fluide frigorigène lui-même, car le moteur est dans le circuit du fluide frigorigène.
  • La bonne récupération au condenseur de la chaleur dissipée par le moteur, de par la configuration fermée.

Inconvénients

  • Le compresseur est inaccessible. Si un problème survient, il faut changer le compresseur, car il n’est en général par réparable.
  • Les performances sont médiocres, car l’accent est en général mis sur de bonnes puissances frigorifiques à un prix réduit, au détriment de la consommation du compresseur.
  • Les hautes températures de refoulement peuvent présenter un danger à certains régimes de fonctionnement (surchauffe).
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.
  • La puissance ne peut pas être réglée, sauf par variation de fréquence du courant d’alimentation.

Semi-hermétique

Le compresseur est entraîné directement par le moteur électrique, qui est accolé au compresseur. Ces compresseurs sont utilisés pour des puissances se situant entre 0,4 et 100 kW (on peut aussi monter jusqu’à 400 kW en recourant à plusieurs compresseurs). Ces puissances sont plus élevées que pour les compresseurs hermétiques, car il n’y a plus de limitation d’entretien.

Avantages

  • L’accessibilité à tous les organes mécaniques et électriques.
  • Pas de problème de mise en ligne du compresseur et du moteur, car pas d’accouplement.
  • L’encombrement réduit.
  • Pas besoin d’élément d’étanchéité entre le moteur et le compresseur, donc pas de risque de fuites de fluide frigorigène.
  • La récupération partielle au condenseur de la chaleur dissipée par le moteur.
  • La bonne qualité de fabrication, d’où une bonne performance.

Inconvénients

  • Moins résistant aux coups de liquide.
  • Le coût plus élevé.
  • Pas de récupération totale de la chaleur dissipée par le moteur.
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.

Ouvert

Ici le moteur et le compresseur sont totalement séparés ; le moteur est donc accouplé au compresseur en bout d’arbre à l’aide d’un manchon, ou alors par des poulies et des courroies. La gamme de puissances est similaire à celle des compresseurs semi-hermétique.

Avantages

  • L’entretien aisé, car le compresseur est démontable.
  • Peut être entraîné par des moteurs de différents types (moteurs électriques à courant alternatif, continu, à vitesse fixe ou variable, moteurs à combustion interne, turbine à gaz,…).
  • La très bonne qualité de fabrication.
  • La possibilité de choisir la vitesse de rotation la mieux adaptée.
  • Pas de pollution du circuit frigorifique en cas de court-circuit dans le moteur.

Inconvénients

  • Le coût élevé.
  • La mise en ligne moteur-compresseur difficile.
  • La faible résistance aux coups de liquide.
  • Aucune récupération de la chaleur dissipée par le moteur.
  • Il faut une garniture d’étanchéité entre le moteur et le compresseur, d’où le risque de fuites de fluide frigorigène.

Le compresseur volumétrique hermétique spiro-orbital Scroll

Le compresseur Scroll comprime les vapeurs en continu en faisant tourner une partie mobile autour d’un élément fixe en forme de spirale. Ce type de compresseur est de plus en plus utilisé dans les circuits frigorifiques. Sa gamme de puissances va de 2 à 60 kW seulement, mais on peut très bien mettre plusieurs compresseurs en parallèle.

Avantages

  • La robustesse et fiabilité.
  • La légèreté.
  • La faible consommation.
  • Le prix réduit.
  • Le haut rendement volumétrique par rapport à l’espace mort.
  • L’encombrement réduit.
  • Le faible niveau sonore.
  • L’excellente tolérance aux coups de liquide.
  • La récupération quasi totale au condenseur de la chaleur dissipée par le moteur.
  • La séparation totale des gaz d’aspiration et de refoulement, réduisant leur échange thermique mutuel.
  • Il y a moins de pièces en mouvement que dans le cas du compresseur à pistons, et donc moins de frottements internes. De plus, il n’y a pas de clapets d’aspiration et de refoulement. Pour ces raisons le rendement est supérieur à celui des compresseurs à pistons, de même que le COP.

Inconvénients

  • L’inaccessibilité des organes du compresseur. On doit changer l’ensemble en cas de problème.
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.

Les compresseurs volumétriques à vis

Les compresseurs de ce type sont soumis à deux classifications : les compresseurs à vis mono-rotor ou bi-rotor d’une part, et les compresseurs à vis hermétiques ou ouverts d’autre part.

  1. Le compresseur à vis mono-rotor : une vis hélicoïdale unique tourne à grande vitesse.
  2. Le compresseur à vis bi-rotor : le compresseur est composé de deux vis (une femelle et une mâle) à dentures hélicoïdales. L’insertion progressive des cannelures de la vis mâle dans celles de la vis femelle (par simple rotation) provoque la compression des vapeurs de fluide frigorigène.

Les compresseurs à vis de tous types sont utilisés dans le domaine des pompes à chaleur de fortes puissances : de 100 à 5 000 kW de puissance calorifique au condenseur. De ce fait, ils sont utilisés dans les pompes à chaleur eau/eau.

Avantages

  • Pas de soupapes et peu de pièces en mouvement, excellent rendement (indiqué et volumétrique).
  • L’absence de vibrations et peu de bruit.
  • Le taux de compression élevés.
  • Le flux de gaz pratiquement continu.
  • L’absence de parties sujettes à usure.
  • Le réglage facile.
  • La relative insensibilité aux coups de liquide.
  • Quasiment pas d’entretien nécessaire.
  • La régulation de puissance possible de 10 à 100 %.
  • Les rotors à profils asymétriques, ce qui est préférable au point de vue énergétique.
  • Le compresseur peu volumineux.

Inconvénients

  • Le coût relativement élevé.
  • Consomme plus d’énergie que les autres types de compresseurs.
  • Le moteur plus rapide donc groupe moto-compresseur assez bruyant.
  • La nécessité d’usiner avec une grande précision.
  • Uniquement utilisable pour de fortes puissances.
  • La nécessité d’adapter le taux de compression interne au taux de compression externe, sinon pertes.

En outre, les compresseurs à vis ouverts montrent l’avantage de pouvoir être entraînés par toutes sortes de moteurs, et l’inconvénient de ne pas récupérer au condenseur la chaleur dissipée par le moteur. Ils sont plus courants que les moteurs à vis semi-hermétiques.

Le compresseur volumétrique rotatif

Dans ce type de compresseur, un stator cylindrique renferme un rotor excentré par rapport à l’axe du stator. Un volume en forme de croissant est piégé. Du fluide frigorigène est introduit (aspiration) et la rotation du rotor comprime cet espace jusqu’à atteindre la pression souhaitée (refoulement).

Deux technologies existent :

  • Le compresseur rotatif à piston roulant : il est constitué d’un stator à l’intérieur duquel est disposé un rotor excentré (piston) qui comprime les vapeurs en se déplaçant. Une palette est montée sur le stator et assure l’étanchéité entre les chambres d’aspiration et de refoulement.
  • Le compresseur rotatif à palettes : la compression des vapeurs est obtenue par le déplacement des palettes qui sont logées dans des rainures dans le rotor, et qui appuient contre le stator grâce à la force centrifuge. Le rotor est monté de façon excentrique à l’intérieur du stator de manière à créer des volumes de plus en plus réduits pour les vapeurs.

Compresseur à piston roulant et compresseur à palettes.

Ces compresseurs sont utilisés pour des puissances calorifiques jusqu’à 10 kW et bénéficient d’une grande souplesse de fonctionnement. De plus, ils sont peu bruyants.

Le compresseur centrifuge

Ces compresseurs, appelés aussi turbocompresseurs, ne sont utilisés que dans le cas des très fortes puissances : de 1 000 kW à 50 000 kW de puissance calorifique au condenseur. Ils sont donc envisageables dans les grands centres industriels et commerciaux. Ils appartiennent aux pompes à chaleur de type eau/eau et peuvent être de type ouvert ou fermé.

Avantages

  • L’encombrement réduit.
  • Pas d’huile dans le circuit frigorifique et pas de problème d’huile piégée dans l’évaporateur, car les deux circuits (fluide frigorigène et huile) sont bien séparés.
  • Les puissances très élevées et réglables de 20 à 100 %
  • Peut être entraîné par des moteurs de différents types, dans le cas des compresseurs ouverts.
  • L’excellente qualité de fabrication.
  • Le coût plus faible que les compresseurs à vis.

Inconvénients

  • Le taux de compression faibles : ce compresseur se rencontre souvent donc en multi-étagé.
  • Moins de souplesse d’adaptation aux régimes de marche et aux fluides frigorigènes.
  • Utilisables pour les très fortes puissances uniquement.
  • Pas de récupération au condenseur de la chaleur dissipée par le moteur.
  • Plus délicat que les compresseurs à pistons à faible charge à cause du phénomène de pompage qui survient pour des faibles débits et qui peut endommager le compresseur (pompage : le débit oscille entre un débit nul et le débit maximal d’où écoulement pulsatoire).

PAC électrique ou au gaz ?

Les pompes à chaleur fonctionnent pour la majorité à l’électricité. Mais il est également possible de faire fonctionner la pompe à chaleur à l’aide d’un moteur à gaz, la PAC prélevant la chaleur sur l’air extérieur ou sur de l’air extrait d’un bâtiment. Le moteur thermique est alimenté en gaz naturel (méthane), ou en LPG (propane + butane) et ces PAC au gaz sont chargées avec les HFC (par exemple du R410A).

Les pompes à chaleur à gaz présentent les avantages suivants :

  • Leurs performances sont bonnes et leur rendement est indépendant des fluctuations de la température extérieure, car elles récupèrent la chaleur dissipée par le moteur et celle contenue dans les gaz d’échappement.
  • Grâce à cette récupération de chaleur, le dégivrage n’est plus nécessaire et la montée en régime est rapide. La PAC fonctionne en continu.
  • Contrairement à leurs homologues électriques sur l’air extérieur, elles fonctionnent bien en monovalence, c’est-à-dire qu’aucun appoint n’est nécessaire (ni de chaudière).
  • Leur coût énergétique est inférieur d’environ 30 % par rapport aux PAC électriques. Elles consomment peu d’électricité (90 % en moins).
  • Elles sont utilisables dans n’importe quel type de bâtiment, aussi bien dans les maisons particulières que dans des installations industrielles.
  • Elles peuvent être équipées d’un kit hydraulique pour produire de l’eau chaude ou de l’eau froide.
  • Les coûts d’entretien sont faibles.
  • Il est possible de réutiliser les installations existantes de PAC électriques en ne remplaçant que la PAC elle-même.
  • Les unités peuvent être connectées en série ; ce type de PAC est donc applicable à de grandes installations.
  • Elles sont compatibles avec les systèmes classiques de chauffage basse température : chauffage par le sol ou par le plafond, ou ventilo-convecteurs.

Ces PAC sont par contre plus chères que les PAC électriques. Peu de constructeurs exploitent cette solution pour l’alimentation d’une PAC.

Performances de la PAC à gaz

Il n’est pas possible de comparer directement le COP d’une PAC à gaz et celui d’une PAC électrique. En effet, dans le premier cas, l’énergie est primaire, dans le deuxième elle ne l’est pas.

Considérons que l’électricité est produite à partir de centrales dont le rendement moyen en Belgique est de 38 %. Pour produire 3 kWh thermiques, la pompe à chaleur aura donc utilisé 2,6 kWh primaires. Le « COP » sur énergie primaire est alors égal à 3 / 2,6 = 1,15.

Le PER (Primary Energy Ratio) de la PAC à gaz se situe quant à lui entre 1,2 et 1,6. Ce « COP » n’est pas beaucoup plus élevé que celui de la PAC électrique, mais contrairement à cette dernière, les performances sont conservées en cas de grand froid.


Choix du condenseur

On distingue les condenseurs à air et à eau.

Dans le premier cas, on utilise en général un condenseur à air à tubes à ailettes, un ventilateur centrifuge pour brasser l’air et un filtre. Les coefficients d’échange des condenseurs à air vont de 20 à 30 [W/m².K].

Dans le cas des condenseurs à eau, il existe :

  • Les condenseurs à serpentins : ils ne sont utilisés que pour des faibles puissances calorifiques au condenseur. Ils présentent l’inconvénient de montrer des difficultés d’entretien et de devoir utiliser une eau très propre et non entartrante.
  • Les condenseurs à tubes coaxiaux : utilisés pour des puissances calorifiques allant jusqu’à 100 kW. De même que le précédent, il nécessite une eau propre, car les entretiens ne sont pas évidents.
  • Les condenseurs à plaques brasées : leur coefficient d’échange thermique est élevé et donc ils se généralisent pour les pompes à chaleur air/eau et eau/eau. Ils sont performants, compacts, les pertes de charge sur l’eau sont en général assez faibles et la petite taille des canaux réduit la quantité de fluide frigorigène. Par contre, ce dernier atout présente l’inconvénient de favoriser l’encrassement des tuyaux. De nouveau, l’eau doit être très propre ou filtrée avant d’entrer dans le condenseur.
  • Les condenseurs multitubulaires : ils sont utilisés lorsque les puissances calorifiques sont importantes.

Les coefficients d’échange des condenseurs à eau vont de 700 à 1 100 [W/m².K].


Choix de l’organe de détente

Détendeur Thermostatique. C’est le détendeur le plus utilisé dans les pompes à chaleur. Il fonctionne de façon automatique et règle le débit du fluide frigorigène de manière à ce que la surchauffe des gaz qui sortent de l’évaporateur soit constante. Son inconvénient est de ne pas présenter un temps de réponse instantané, mais ce détendeur est très fiable, il permet d’adapter l’alimentation de l’évaporateur en fluide frigorigène, et de plus, certains détendeurs thermostatiques peuvent fonctionner dans les deux sens, évitant ainsi un second détendeur et des clapets dans les pompes à chaleur réversibles.
Capillaire de détente Il est utilisé dans les petits matériels de série. Son inconvénient réside dans le fait qu’il ne permet aucun réglage de la détente, mais cet inconvénient est aussi un avantage, car le capillaire de détente ne permet pas de déréglage de la détente dans le temps. Le capillaire peut se boucher facilement, il faut donc veiller à la parfaite déshydratation du circuit. Il faut également éviter l’utilisation d’une bouteille accumulatrice de liquide, car pendant l’arrêt du compresseur, l’évaporateur se remplirait alors exagérément (en effet le capillaire n’interrompt pas la communication entre condenseur et évaporateur, même pendant l’arrêt du compresseur). La charge en fluide frigorigène doit donc rester limitée. D’un autre côté, l’équilibre des pressions qui s’établit pendant l’arrêt du compresseur permet à ce dernier de redémarrer plus facilement. Autre avantage : le temps de réponse de la détente est instantané.
Détendeur électronique Il en existe de deux sortes : le détendeur moteur pas-à-pas et le détendeur à impulsion. C’est un détendeur très précis et fiable, de par la régulation numérique. L’injection du fluide frigorigène, la régulation de la température de la source froide et le dégivrage sont donc optimalisés et la surchauffe est maîtrisée. Le rendement de la pompe à chaleur reste ainsi optimal à tous les régimes. De plus, le système s’adapte à tous les fluides frigorigènes. Son inconvénient réside toutefois dans son coût élevé.
Orifice calibré Il s’appelle aussi « accurator » et s’utilise pour les pompes à chaleur réversibles. C’est un détendeur très fiable et son temps de réponse est instantané. Par contre, on ne peut pas adapter l’alimentation en fluide frigorigène en fonction de la charge thermique à l’évaporateur. De plus, ce détendeur n’est pas protégé par un filtre en amont, il faut donc faire attention lors d’interventions sur le circuit.
Régleur manuel Il est uniquement utilisé comme organe de secours d’un autre détendeur. Il fonctionne comme un capillaire, mais le réglage peut être modifié par la suite. Son temps de réponse est instantané, mais comme pour l’orifice calibré, on ne peut pas adapter l’alimentation en fluide frigorigène en fonction de la charge thermique à l’évaporateur. Lors de l’arrêt du compresseur, il est nécessaire de prévoir une vanne magnétique pour éviter le remplissage en liquide de l’évaporateur.
Détendeur à flotteur haute pression Il est souvent utilisé dans les groupes centrifuges. Ce détendeur règle le débit de liquide vers l’évaporateur en fonction du débit des vapeurs condensées, qui sont à haute pression. Son problème réside dans le fait qu’il faut mesurer très précisément la charge en fluide frigorigène pour éviter un retour de liquide vers l’aspiration du compresseur en cas d’excès de charge, et une alimentation insuffisante de l’évaporateur en cas de défaut de charge.
Détendeur à flotteur basse pression Il est très utilisé en combinaison aux évaporateurs noyés et également pour les pompes à chaleur de forte puissance. Ce détendeur règle le débit de liquide vers l’évaporateur en fonction de son niveau de liquide, qui est à basse pression. Le fluide frigorigène a un niveau constant, quelle que soit la charge thermique de l’évaporateur.
Contrôleur de niveau magnétique C’est une variante du détendeur à flotteur basse pression. Le flotteur porte ici un aimant permanent ou une masselotte en fer doux et actionne magnétiquement les contacts de commande de la vanne solénoïde placée sur l’arrivée de liquide dans l’évaporateur.
Contrôleur de niveau à bulbe chauffé Ici un bulbe est chauffé électriquement, et sa chaleur agit sur l’injection de liquide vers l’évaporateur.

Choisir le mode de fonctionnement d’une pac

 

Choix du mode de fonctionnement

Avant de se lancer dans le choix d’une pompe à chaleur, il faut déterminer son mode de fonctionnement : la PAC sera-t-elle utilisée seule (fonctionnement monovalent) ou conjointement avec une chaudière (fonctionnement bivalent) ou avec un appoint électrique ?

Monovalent

Dans ce cas, la PAC fonctionne seule et couvre tous les besoins en chauffage. Cette solution n’est évidemment envisageable que si la source de chaleur est suffisante pour la demande en chauffage du bâtiment. En pratique on choisira cette solution uniquement pour de nouvelles constructions bien isolées munies d’un système de chauffage basse température.

En fonctionnement monovalent, la PAC est dimensionnée pour couvrir la totalité des besoins de chaleur. Elle est donc trop puissante pendant une bonne partie de la saison de chauffe, tandis qu’elle n’est correctement dimensionnée que pour une température extérieure donnée.

Malgré cela, au vu des frais d’investissement plus élevés en installation bivalente (2 systèmes de chauffage pour le même bâtiment), on préférera en général les PAC monovalentes lorsque c’est possible, ou bien la solution « avec résistance d’appoint » (voir ci-dessous). En effet, la nécessité d’investir dans une chaudière traditionnelle en plus de la PAC n’est pas compensée par la diminution du coût de la PAC, diminution proportionnelle à la puissance moindre installée.

Avec résistance d’appoint électrique

Une installation avec appoint électrique constitue un compromis entre les fonctionnements monovalent et bivalent. Elle nécessite un faible investissement, mais contribue à la surcharge du réseau. Elle est aussi moins rationnelle au niveau écologique à cause de l’importante consommation de l’appoint électrique qui provoque un abaissement du COP annuel. Un enclenchement manuel est d’ailleurs conseillé pour éviter une durée de fonctionnement trop importante. Les appoints électriques permettent de préserver le confort lors des dégivrages ou des périodes de gel, lorsque la PAC (qui a été dimensionnée au plus juste pour limiter l’investissement) éprouve des difficultés.

Diagramme puissance/température :
La performance d’une pompe à chaleur est représentée, dans les catalogues des fabricants, par un diagramme température/puissance. Combien de puissance aura-t-on besoin pour l’appoint électrique ?

Schéma sur le diagramme puissance/température.

La figure montre les courbes de performance d’une pompe à chaleur air/eau pour 3 températures de condensation différentes.

La droite grise, qui représente les besoins calorifiques, est déterminée à partir de la température de dimensionnement (-10 °C) et de la température de limite de chauffage (15 °C).
Pour la température de limite de chauffage, les besoins calorifiques sont nuls. Mais à combien s’élèvent-t-ils pour la température de dimensionnement ? Cela dépend du type de bâtiment, de son isolation, de son orientation, etc. Ici ils sont de 7,8 kW.

Le point d’équilibre est déterminé par l’intersection entre la droite représentant les besoins calorifiques et la courbe de fonctionnement de la pompe à chaleur (donnée dans les catalogues des fabricants). En règle générale, le point d’équilibre se situe entre 0 °C et -5 °C.

La puissance de la pompe à chaleur est déterminée pour couvrir 100 % des besoins au point d’équilibre. Dans l’exemple, la puissance à prévoir est de 6,2 kW.

La puissance de l’appoint est déterminée par la différence entre les besoins calorifiques à la température de dimensionnement (-10 °C) et la puissance fournie par la PAC à cette température. Dans l’exemple, la puissance de l’appoint est de 7,8 – 5,6 = 2,2 kW.

Dans le secteur tertiaire, les apports internes compensent les pertes de puissance dues aux dégivrages, d’autant plus facilement que les dimensionnements de PAC réversibles sont souvent basés sur des puissances en froid, ce qui surdimensionne la puissance de chauffe. Les résistances d’appoint ne s’y justifient donc pas.

Bivalent

Lorsque la puissance à fournir est trop importante par rapport à une source froide limitée ou lorsque la température d’entrée dans le réseau de distribution doit être supérieure à 50 °C, les systèmes bivalents sont inévitables pour assurer le confort de l’occupant. C’est souvent le choix qui est fait en rénovation, lorsque les réseaux d’émissions ne sont pas modernisés et ne peuvent fonctionner qu’à haute température.

Le fonctionnement bivalent alternatif a l’avantage de la simplicité de compréhension et de régulation. La PAC est mise en marche lorsque la chaudière est à l’arrêt et inversement.

Schéma sur le fonctionnement bivalent alternatif.

Le fonctionnement parallèle par contre profite mieux de la pompe à chaleur puisqu’elle fonctionne toute la saison de chauffe. Ce deuxième mode permet donc une plus grande économie en frais de fonctionnement (même si, en période de grand froid, le COP de la PAC chute beaucoup) et un meilleur bilan écologique (avec un point de bivalence à 50 % de la puissance de chauffage, la PAC utilisée en bivalent-parallèle assure tout de même 80 % du besoin de chaleur).

Schéma sur le fonctionnement parallèle.


Avec ou sans accumulateur tampon ? De chaleur

Toute installation compte au moins un accumulateur tampon qui permet d’augmenter la quantité d’eau présente dans le circuit, ceci afin d’éviter l’enclenchement trop fréquent des producteurs de chaleur (courts cycles).

On reproche parfois à l’accumulateur tampon pour les petites installations d’être trop coûteux, trop volumineux, d’entraîner des pertes de chaleur. Mais rares sont les cas où son installation n’est pas justifiée. On ne peut y renoncer que si les conditions suivantes sont remplies :

  • puissance à peu près constante de la source de chaleur (max 5 K de variation de température);
  • volume d’eau de chauffage supérieur à 15 litres/kW;
  • grande capacité d’accumulation du système de distribution de chaleur (par exemple inertie de chauffage par le sol);
  • pas ou peu de vannes thermostatiques;
  • installation bien équilibrée.

Un accumulateur de chaleur est lui plus volumineux qu’un accumulateur tampon. Il sert couvrir les heures d’interruption de fourniture électrique. Il peut aussi compenser des variations temporaires de la source froide et permettre une plus grande utilisation du courant bas tarif. De plus, un accumulateur de chaleur permet de combiner plus facilement différents producteurs de chaleur, comme par exemple des capteurs solaires.


Choix de la régulation

Adaptation de la puissance

Pour de petites pompes à chaleur, la régulation de puissance a lieu par mise en ou hors service. Pour les plus grandes puissances, obtenues par combinaison de plusieurs unités de petites pompes à chaleur, la régulation a lieu par enclenchement-déclenchement de chaque unité. Si la puissance est obtenue par un compresseur à plusieurs cylindres, l’adaptation à la puissance demandée est effectuée par branchement et débranchement des différents cylindres. La combinaison de plusieurs modules est également une bonne solution, par exemple pour un quartier de villas, si on ne sait pas au départ combien de maisons seront raccordées au système de chauffage par pompe à chaleur.

De nouveaux concepts de régulation font usage de la possibilité de faire varier la vitesse de rotation du compresseur. De cette façon, il est possible d’adapter en tout temps la puissance au besoin momentané. De tels systèmes sont actuellement disponibles, également dans le domaine des fortes puissances. On ne saurait trop les recommander pour conserver une performance correcte tout au long de la saison.

Pour les installations travaillant par enclenchement-déclenchement, il faut éviter des démarrages trop fréquents, afin que le réseau électrique public ne soit pas surchargé et que la PAC ne subisse pas de dommages. Rappelons que ceci est réalisé au moyen d’un accumulateur technique (accumulateur tampon), auquel on ne peut renoncer que dans des cas exceptionnels.

Paramètres de régulation

Les régulateurs commandent la pompe à chaleur en fonction de la courbe de chauffe, après avoir obtenu les données du thermostat d’ambiance et la température de retour. Le thermostat est éventuellement doté de consignes « température de confort » et « température de nuit » réglables. Différentes commandes de fonctionnement sont possibles et s’organisent avec un ordre de priorité précis. Le dégivrage a toujours la priorité et s’effectue automatiquement si les sondes extérieures en indiquent le besoin. Viennent ensuite les alimentations de chauffage et d’ECS. La préparation de l’ECS peut être par exemple considérée comme un mode « été » alors qu’en hiver l’essentiel de la puissance de la pompe servirait au chauffage du bâtiment. Les équipements tels les piscines sont toujours derniers en priorité, à moins bien sûr que la pompe à chaleur ne leur soit spécifiquement destinée (piscines publiques,.)

La régulation de la température de sortie du condenseur est essentiellement liée au mode de chargement de l’accumulateur (étagé ou par stratification).

Adaptation des paramètres en fonctionnement

De nombreuses recherches menées en Suisse durant les premières années de fonctionnement ont montré que beaucoup d’installations ne travaillent pas du tout comme le concepteur du projet le souhaite, cette remarque est également valable pour des installations conventionnelles. Un contrôle des résultats pendant les premières années d’utilisation est donc conseillé pour s’assurer d’un bon fonctionnement de l’installation.

Stabilité du réglage

Les systèmes que l’on trouve pour la technique du bâtiment sont en général assez lents, ce qui permet une régulation stable et fiable. Certains circuits comprennent toutefois des parties où la vitesse de régulation est critique. C’est le cas de la température de départ du condenseur. Pour assurer une régulation rapide, diverses recommandations sont utiles : placer la vanne de régulation le plus près possible de la PAC pour réduire le temps mort, choisir une vanne de régulation à fermeture rapide, optimiser les paramètres de régulation de la vanne, utiliser des thermomètres de régulation à faible inertie.


Choix du chargement

Il existe deux méthodes de chargement de l’accumulateur de chaleur associé à la pompe à chaleur : le chargement étagé et à stratification.

Le chargement étagé est meilleur marché (pas de régulation de la charge) et entraîne un coefficient de performance annuel plutôt meilleur que le chargement par stratification puisque la PAC peut fonctionner avec une température de sortie du condenseur plus basse. Toutefois, ce système a différents désavantages :

Schéma sur le chargement étagé.   Schéma sur le chargement étagé.

Illustration du principe de chargement par étage.

  • Consommation électrique supplémentaire de la pompe du condenseur pour augmenter le débit et diminuer la température de départ.
  • Variations de la température de départ du chauffage difficiles à évaluer.
  • Température finale de l’accumulateur imprécise.
  • N’utilise pas pleinement les capacités de l’accumulateur.
  • Manque de capacité au premier passage.

Cette dernière difficulté pourrait être évitée si la différence de température dans le condenseur est suffisamment importante. De cette façon pourtant, la charge étagée est un non-sens, car dans le meilleur des cas, il ne se produirait qu’environ deux passages étagés à la limite du chauffage. Une charge étagée ne peut être recommandée que dans les situations suivantes :

  • Petite installation (surtout à cause de l’avantage du prix).
  • Un seul groupe de chauffage.
  • Pour accumulateur technique seulement.

À l’opposé, le chargement par stratification, malgré son COP plus faible et son coût plus élevé, permet :

  • Une maîtrise exacte de la température de l’accumulateur.
  • Une température constante de départ garantie.
  • Une puissance de la pompe du condenseur plus faible.
  • Une utilisation maximale de la capacité de l’accumulateur.

Schéma du chargement par stratification.   Schéma du chargement par stratification.

Illustration du chargement par accumulation.

Type de chargement de l’accumulateur

Le chargement étagé de l’accumulateur et, dans certains cas, le chargement par stratification en fonction des conditions météorologiques produisent un meilleur coefficient de performance annuel qu’un chargement par stratification avec consigne constante, car on peut sortir du condenseur avec des températures plus basses. Ce système ne fonctionne toutefois que si l’installation est réglée sur une petite différence de température dans le condenseur. En règle générale cela implique de doubler le débit, ce qui multiplie par 4 la perte de pression sur le condenseur. Ceci doit absolument être pris en considération.

L’influence sur le COP annuel est complexe, car il faut tenir compte non seulement de la température de sortie du condenseur, mais aussi de la consommation d’énergie auxiliaire et de la petite différence de température dans le condenseur lors du chargement étagé. La différence de COP entre une température de sortie du condenseur adaptée ou constante se situe à moins de 10 %.

Encore une fois, reprenons les installations décrites plus haut et supposons qu’au lieu de fonctionner 2 500 h à 47 °C, d’où ε = 3,4, on procède ainsi :

500 h à 45°C, d’où ε = 3,5

1 000 h à 42°C, d’où ε = 3,75

1 000 h à 39°C d’où ε = 4

Le coefficient de performance instantané moyen pondéré SPF s’améliore en passant de 3,4 à 3,8. Le coefficient de performance annuel (COPA) devrait suivre cette tendance et passer de 3 à 3,4. Mais en doublant le débit, la perte de pression dans le condenseur est quatre fois plus forte. Il en résulte pour la petite installation :

  • Ppompe condenseur = (100 kPa x 1,8 m³/h) – (25 kPa x 0,9 m³/h) / (3 600 x 0,10) = 0,438 kW
  • W = 2500 h x 0,438 kW = 1 095 kWh

COPApetit = 25 000 kWh / (25 000 / 3,4) + 1 095 kWh = 2,96

et pour la grande installation :

  • Ppompe condenseur = (100 kPa x 12 m³/h) – (25 kPa x 9 m³/h) / (3 600 x 0,25) = 1 750 kW
  • W = 2 500 h x 1 750 kW = 4 375 kW

COPAgrand = 250 000 kWh / (250 000 / 3,4) + 4 375 kWh = 3,21


Choix de la technique de dégivrage

Modes de dégivrage

On utilise deux modes de dégivrage :

  1. Le système « by-pass » de dégivrage par gaz chaud, par lequel une partie des gaz échauffés à la sortie du compresseur est dirigée vers l’évaporateur. Ce système exige une différence de pression minimale assurée par le compresseur.
  2. L’ inversion de la direction du circuit par une vanne à quatre voies. L’évaporateur devient alors condenseur et le givre est rapidement éliminé au prix d’un plus grand besoin de chaleur momentané.

Illustration du principe de dégivrage par inversion.

Lors du montage de l’évaporateur, il est indispensable de s’assurer que le fonctionnement du dégivrage n’est pas perturbé par un apport d’air froid dû à la circulation naturelle de l’air.

Le dégivrage des pompes Air/Air et Air/Eau

Les pertes provoquées par le dégivrage de l’évaporateur sont difficiles à évaluer avec précision, car elles sont variables en fonction de la programmation des paramètres de dégivrage. L’énergie dépensée pour la fonte du givre (EFG) est généralement fournie par la pompe à chaleur qui, pour l’occasion, fonctionne en sens inverse. Elle vaut environ l’énergie utile de fonte du givre EFGu (énergie pour élever la température du givre à 0 °C + chaleur latente de fusion du givre + énergie pour élever la température de l’eau de 0 °C à 10 °C pour éviter un regel immédiat) divisée par un rendement de 50 %. Cette énergie sera prélevée dans le bâtiment et devra en suite lui être restituée lorsque la pompe se remettra en mode chauffage. Pour des machines bien réglées avec des détections du givre optimales, la perte de COP peut valoir jusqu’à 10 % par temps froid.

Il n’est pas rare de voir des pompes à chaleur dont le système de détection du givre est mal réglé et la durée de dégivrage trop longue. Il s’en suit des consommations d’énergie excessives qui peuvent conduire à des COP inférieurs à 1.

Le graphique ci-contre, issu d’une fiche technique de constructeur, illustre l’influence du dégivrage sur la puissance calorifique et le COP d’une pompe à chaleur Air/Eau. On voit clairement la perte de COP survenant entre 3 et 10 °C. L’air extérieur est chargé d’eau et le fluide frigorigène est à une température inférieure à zéro degré. La glace qui se forme « colle » à l’évaporateur.

Par contre, lorsqu’il fait très froid, l’air extérieur est plus sec et le givre apparaît alors davantage sous forme de cristaux qui n’adhèrent plus sur la paroi de l’évaporateur.

Choix de la technique de dégivrage

Sur le plan énergétique, le dégivrage par inversion du cycle est plus avantageux que le chauffage par injection de gaz chauds. Mais quelle que soit la méthode choisie, c’est surtout la durée du dégivrage qui sera le facteur important pour l’évolution du COP. Le critère d’enclenchement et de déclenchement doit être choisi avec soin.

Le choix du paramètre qui décrit la couche de givre dans l’évaporateur peut être multiple. En utilisation industrielle, il faut choisir un paramètre robuste et assez sensible. Plusieurs choix pour le lancement du dégivrage peuvent être faits :

  • Perte de charge dans l’évaporateur : la mesure de cette grandeur peut provoquer des dérives lorsqu’il y a risque de « bouchonnement » par des impuretés (feuilles, animaux,.) ou par des variations de pression causées par les vents externes.
  • Température de surface des ailettes : la différence entre la température de surface des ailettes et la température de l’air indique bien si une couche de givre (= isolation thermique) s’est formée. Comme le développement de givre n’est pas uniforme sur la surface de l’évaporateur, il faut bien vérifier l’emplacement du capteur de température.
  • Pincement dans l’évaporateur : la couche de givre provoque un blocage du transfert de chaleur qui se traduit par une diminution de l’efficacité de l’échangeur. Par conséquent, il y a une augmentation de l’écart de température minimal entre la température d’évaporation du frigorigène et la température de l’air en sortie d’évaporateur, écart appelé « pincement ». Pour détecter ce pincement, il faudra en général une prise de température de l’air sortant ainsi que le calcul de la température de saturation correspondante à la pression de vaporisation.

De même pour le paramètre d’arrêt, définissant la durée de dégivrage, plusieurs mesures peuvent être considérées :

  • La température du réfrigérant à la sortie de l’évaporateur : pendant le dégivrage de la batterie par inversion de cycle, un film d’eau ruisselle sur l’échangeur en refroidissant le fluide frigorigène. Une fois le dégivrage achevé, une grande partie de l’évaporateur est libérée et le transfert de chaleur diminue, ce qui provoque une réaugmentation de la température de sortie du fluide frigorigène.
  • Température de la surface des ailettes : cette mesure indique directement si l’échangeur est libéré de la couche de givre. Il est cependant difficile de bien placer la sonde pour avoir une bonne représentativité globale de l’échangeur.
  • Optimisation globale par microprocesseur : en combinaison avec les critères étalonnés en usine, le calcul du bilan énergétique par cycle de chauffage permet d’optimiser les grandeurs limites imposées sur site et en cours de fonctionnement.

Ces critères, ainsi que le critère plus « archaïque » qu’est l’horloge, devront être étalonnés soigneusement et vérifiés.

Une fois le cycle de dégivrage achevé, l’enclenchement du ventilateur à plein régime sans mettre en route le compresseur permet de sécher l’évaporateur. À défaut, les gouttelettes restantes seront rapidement gelées.


Choix de l’emplacement de la pompe à chaleur

De façon générale, l’unité principale d’une pompe à chaleur se trouve à l’intérieur du bâtiment à chauffer.

Une PAC à l’intérieur du bâtiment

D’un point de vue acoustique, si l’unité principale d’une pompe à chaleur se trouve à l’intérieur du bâtiment, elle doit être placée dans un local suffisamment éloigné des pièces calmes. On la pose sur des plots antivibratiles (dans le cas où la PAC est bruyante), eux-mêmes placés sur une plateforme stable en béton ou en fer. Les parois du local peuvent également être construites dans des matériaux spéciaux qui atténuent la réverbération des sons.

L’installation d’une PAC doit évidemment répondre aux spécifications du constructeur.

L’air …
Si la PAC véhicule de l’air dans des conduites, l’air doit avoir une vitesse de maximum 4 m/s (circuits principaux). Dans les conduits secondaires, l’air doit avoir une vitesse de maximum 3 m/s. Ces conduits doivent être construits dans des matériaux absorbants et les grilles de prise et de rejet d’air doivent être équipées de grillage antivolatiles.

L’eau …
Si la PAC est à eau, les conduites seront fixées aux parois avec des supports de façon à éviter la transmission des vibrations au bâtiment. Il faudra utiliser des flexibles pour toutes les liaisons à la PAC.

Une PAC à l’extérieur du bâtiment

Il n’existe pas de distance minimale entre une unité extérieure de PAC et le voisinage. Attention par contre à la gêne que peut occasionner une PAC bruyante et aux litiges qui peuvent en découler. Le meilleur choix d’une PAC extérieure est celui d’une très peu bruyante. Si c’est nécessaire, penser aux écrans acoustiques tels que des parois ou bien des arbres à feuilles permanentes.

Choisir la source de chaleur [PAC]

Évaporateur à air d'une PAC domestique

Évaporateur à air d’une PAC domestique.


Introduction sur les sources froides

Les pompes à chaleur sont désignées en fonction du fluide dans lequel baignent les échangeurs de la PAC : d’abord côté évaporateur, ensuite côté condenseur. Pour comprendre ce qu’est une pompe chaleur ainsi que son principe de fonctionnement, cliquez ici !

Le tableau donne les types de PAC qui existent en fonction des combinaisons fluides côté source froide/côté source chaude.

Désignation Évaporateur Condenseur
PAC air extérieur / air air extérieur air
PAC air extérieur / eau air extérieur eau
PAC air extrait / air air extrait air
PAC air extrait / eau air extrait eau
PAC eau / air eau souterraine ou de surface air
PAC eau / eau eau souterraine ou de surface eau
PAC eau glycolée / eau tuyaux d’eau glycolée dans le sol eau
PAC sol / eau ou « fluide /eau » évaporation directe dans sol eau
PAC sol / sol ou « fluide /fluide » évaporation directe dans sol condensation directe dans sol

Dans le cas du chauffage de locaux, la source froide sera la source – qui n’est pas toujours inépuisable ! – où l’on captera la chaleur. Elle provient souvent du milieu extérieur du bâtiment à chauffer et est donc soumise à des variations de température en fonction des conditions climatiques.

Les sources de chaleur utilisables sont les suivantes :

  • l’air extérieur qui est simplement l’air atmosphérique ;
  • l’air extrait qui résulte des rejets thermiques gazeux ou de l’air venant de l’intérieur d’un bâtiment ;
  • l’eau, qui est soit de l’eau de surface, comme un étang ou un cours d’eau, soit de l’eau de nappe phréatique en sous-sol ;
  • le sol (très profond, profond, ou de surface) qui amène deux technologies distinctes, d’où deux appellations différentes pour la même source froide :
    • eau glycolée : mélange eau-glycol qui circule dans le circuit fermé entre le sol et l’évaporateur. C’est soit, de la géothermie de surface, soit verticale de profondeur.
    • fluide ou sol : on a affaire à une pompe à chaleur à détente directe (soit seulement du côté évaporateur, ou bien des deux côtés – évaporateur et condenseur), ce qui signifie qu’il n’y a pas de fluide intermédiaire entre le sol et le fluide frigorigène comme dans le cas à eau glycolée. Le fluide frigorigène circule directement dans des conduites placées dans le sol (qui joue donc le rôle d’évaporateur). On peut également appeler plus simplement cette source de chaleur sol.

Lors de la mise en marche d’un projet de pompe à chaleur, la tâche la plus ardue consiste à aligner les propriétés des pompes à chaleur avec des données telles que le débit et la température de la source de chaleur. Il faut que la quantité de chaleur disponible puisse supporter un prélèvement continu. Un mauvais dimensionnement par rapport au potentiel thermique de la source de chaleur peut avoir des retombées sur la puissance de l’exploitation et son rendement thermique.

Pour pouvoir comparer les COP des pompes à chaleur…

Le COP d’une pompe à chaleur, c’est le rapport entre la chaleur fournie par le condenseur et l’électricité consommée pour la produire (auxiliaires compris). Plus le COP est élevé, plus la pompe à chaleur est performante. Il est influencé par les températures des sources, leur différence et leur stabilité.

Afin de pouvoir comparer les coefficients de performance de différentes pompes à chaleur d’un même type, il faut bien évidemment que leurs températures à l’évaporateur soient identiques, et de même au condenseur. Dans les fiches techniques, on trouvera donc souvent une des dénominations abrégées suivantes selon le type de pompe à chaleur :

  • PAC air/eau : A2/W35 (« W » = water !). La source froide est de l’air à 2 °C (T°C à l’entrée de l’évaporateur) et la source chaude est une eau à 35°C (T°C à la sortie du condenseur).
  • PAC eau/eau : W10/W35. La source froide est de l’eau à 10 °C et la source chaude est de l’eau à 35 °C.
  • PAC eau glycolée/eau : B0/W35 ou S0/W35 (« B » =  eau glycolée – brine en anglais – et « S » = « sol » pour les références de produits en français). La source froide est le sol dans lequel circule de l’eau glycolée à 0 °C et la source chaude est de l’eau à 35 °C.
  • PAC sol/eau : S0/W35.

Classement des sources en fonction de leur efficacité

D’une manière générale, il faut utiliser en priorité les sources froides dont la température est la plus constante et élevée. Le coefficient de performance théorique des sources d’une pompe à chaleur dépend en effet de la différence entre la température de la source froide et la température de la source chaude :

ε ths = T2 / (T2 – T1)

où,

  • T1 est la température absolue (température en °C + 273,15°C) de la source froide et T2 la température absolue de la source « chaude ».

Pour obtenir un coefficient de performance acceptable, il faut donc que la différence T2-T1 soit faible. Autrement dit, la température de la source froide doit être la plus élevée possible (et, si possible, le niveau de température de la source chaude doit être bas).

Le classement des sources froides en fonction de ces deux critères (température élevée et constante), de la source la plus efficace à la moins efficace, se dresse comme suit :

  • les rejets thermiques (air vicié et eaux usées),
  • l’eau des nappes phréatiques,
  • l’eau de surface,
  • le sous-sol,
  • le sous-sol proche de la surface,
  • l’air extérieur.

Les rejets thermiques

Dans la plupart des cas, les rejets thermiques d’un bâtiment et son besoin de chaleur ne concordent pas. Une analyse exacte s’avère donc indispensable. Il s’agit de savoir si le problème peut être résolu par adjonction d’un accumulateur de chaleur (côté froid et/ou côté chaud). Une exploitation rationnelle de l’accumulateur permet une utilisation optimale lorsque les besoins thermiques sont moyens; elle permet également de limiter les pointes de puissance (avantage financier).

Il est aussi impératif de connaître la réglementation locale en terme de rejet.
Les eaux usées

  • pour des raisons de pollution, elles ne sont souvent qu’indirectement utilisables (attention au choix du matériel, prévoir un système automatique de nettoyage),
  • les quantités offertes sont souvent trop insignifiantes pour permettre une utilisation rentable,
  • l’utilisation du réseau public des eaux usées est soumise à autorisation.

L’air vicié est une source de chaleur très souvent employée dans les installations d’utilisation de rejets thermiques, et ceci, sans pompe à chaleur. Pour une utilisation indirecte avec pompe à chaleur, l’air pollué se révèle intéressant, surtout pour le chauffage de l’eau. Il peut cependant être corrosif (agriculture, industrie).


L’eau souterraine des nappes phréatiques

Pompes à chaleur "eau/eau", eau souterraine des nappes phréatiques.

Source : ef4.

L’eau des nappes phréatiques représente une source de chaleur intéressante, utilisée dans les pompes à chaleur « eau/eau ». L’eau de la nappe est remontée à la surface à l’aide de pompes de circulation et échange son énergie avec le fluide frigorigène à l’intérieur de l’évaporateur.

Quelle nappe ?

Certaines cartes des nappes phréatiques en Wallonie sont disponibles sur ouverture d'une nouvelle fenêtre ! le site de la Région Wallonne.

L’appellation « nappe phréatique » désigne toutes les eaux se trouvant dans le sous-sol. On entend donc par ce terme la partie saturée du sol, c’est-à-dire celle où les interstices entre les grains solides sont entièrement remplis d’eau, ce qui permet à celle-ci de s’écouler.

L’hydrogéologie distingue 2 types de nappes : les nappes aquifères à porosité d’interstices et les nappes aquifères fracturées.

Dans les nappes aquifères à porosité d’interstices, qui sont les nappes les plus fréquentes et les plus exploitées, l’eau circule dans les porosités de la roche constituée par des graviers, sables ou alluvions. Dans les nappes aquifères fracturées, la roche est imperméable et l’eau circule dans les fractures ou fissures de roches telles que le granit, le calcaire, la craie.

Minéraux des nappes aquifères à porosité d'interstices.

Le risque de réaliser des forages infructueux est plus élevé dans les nappes aquifères fissurées ou fracturées, et il dépend essentiellement de la connaissance locale de la fracturation. Dans les nappes aquifères à porosité d’interstices, le débit de la nappe est proportionnel à la perméabilité de la roche (taille des grains), à la pente et à la section de la nappe aquifère à cet endroit.

Un système de captage dans une nappe aquifère comprend deux parties :

  • La partie supérieure, la chambre de pompage, est un tubage en acier qui traverse les couches de sol où il n’y a pas de captage. Une cimentation permet d’éviter le mélange entre une éventuelle nappe supérieure polluée et la nappe de pompage. Elle évite également l’éboulement du trou. S’y trouvent les pompes à vitesse variable chargées d’évacuer et de ramener de l’eau à partir de ou vers la nappe concernée.
  • La partie inférieure, la chambre de captage, contient un massif de gravier filtrant (pour éviter l’encrassement par les matières fines), une crépine (tube en acier inoxydable inséré dans le fond du forage, comportant des ouvertures calibrées selon la granulométrie du sable), un tube de décantation et un capot qui ferme le puits.

Système de captage dans une nappe aquifère.

  1. Niveau de l’eau dans le puits.
  2. Tubage acier.
  3. Pompes à vitesse variable.
  4. Crépine.
  5. Massif filtrant.
  6. Tube de décantation et capot.

Quelle température ?

La température de l’eau phréatique (sans infiltration des eaux de surface) varie autour de la valeur de la température moyenne de l’air extérieur, si la PAC a une puissance de moins de 30 kW et si on considère les eaux souterraines en dessous de 10 mètres de profondeur. La température moyenne annuelle de l’air extérieur étant égale à 8,5 °C, la température phréatique vaudra une valeur entre 8,5 et 10 °C. Mais contrairement à l’air extérieur, l’eau souterraine a cette température approximative toute l’année.

Plus la profondeur est importante, moins la température de l’air exerce une influence sur la température de la nappe phréatique. L’écart saisonnier entre les valeurs maximales et minimales diminue avec la profondeur. La différence de température entre la température de départ et de retour est comprise entre 3 et 4 K pour les petits systèmes, ou plus pour les systèmes plus grands.

D’où provient l’énergie contenue dans le sol ?

Cette chaleur souterraine est due en majeure partie au rayonnement solaire. L’énergie géothermique provenant des profondeurs au sous-sol est à ce niveau de profondeur insignifiante. Les infiltrations des eaux de surface peuvent avoir une influence déterminante sur la température de la nappe phréatique, de même que des puits industriels.

Qualité physico-chimique de l’eau

Dans la plupart des cas, l’eau de nappe n’est pas agressive. Il est cependant vivement conseillé de pratiquer une analyse pour protéger le système de chauffage. Si le fabricant de la PAC (avec l’eau comme source froide) n’a pas indiqué de données pour la qualité de l’eau extraite, les valeurs suivantes doivent être respectées :

Composant et unité de mesure Valeur
Matériau organique (possibilité de sédimentation) aucune
pH 6,5 à 9
Conductivité thermique (µS/cm) 50 à 1 000
Chlorure (mg/l) < 300
Fer et manganèse (mg/l) < 1
Sulfate (mg/l) 0 à 150
Teneur en O2 (mg/l) < 2
Chlore (mg/l) 0 à 5
Nitrate (mg/l) 0 à 100

 Source : Norme prEN 15450:2007.

Une pollution mécanique (sable) ne peut se produire que si l’installation de filtration de l’eau n’est pas effectuée dans les règles de l’art. Il faut aussi se méfier du colmatage provoqué par une eau trop calcaire ou riche en boues fines. Le puits doit être garanti par l’entreprise spécialisée. En pratique les valeurs indicatives pour le diamètre de la foreuse sont :
  • 150 mm pour 50 à 150 l/min
  • 300 mm pour 150 à 300 l/min
  • 800 mm pour 600 à 1 200 l/min

Quel débit ?

Si aucune autre donnée n’est disponible, on considérera qu’il est nécessaire d’avoir un débit d’eau de 0,25 m3/h par kilowatt de puissance.

Rejet de l’eau

L’eau prélevée, après absorption de la chaleur, est parfois remise dans un cours d’eau de surface. Si, par contre, le réservoir d’eau souterraine est de faible capacité, ou si l’eau prélevée ne peut être remise en surface à cause de sa composition chimique, cette eau doit être réinjectée au moyen d’un second forage (forage de réinjection) dans la couche de prélèvement. Ce second forage doit être en aval et suffisamment éloigné du premier pour ne pas créer d’interférence thermique.

Il est néanmoins très rare de faire appel à cette deuxième solution (réinjection de l’eau dans la nappe) en Wallonie car le rejet est considéré comme étant beaucoup trop dangereux pour le milieu récepteur. Si un élément polluant infectait les nappes phréatiques, il serait quasiment impossible de l’en faire sortir. La Région wallonne refuse donc presque systématiquement le rejet d’eau en nappe.

Avantages et inconvénients

Les eaux de la nappe phréatique représentent une source de chaleur idéale pour les raisons suivantes :
  • niveau de température idéal,
  • température relativement constante,
  • importance des gisements,
  • propreté,
  • peu de place au sol.

Les inconvénients de ce type de captage sont toutefois nombreux :

  • permis environnemental requis,
  • connaissances géohydrauliques approfondies requises,
  • eau de qualité n’est pas disponible partout à une profondeur adéquate,
  • analyse de l’eau de nappe requise,
  • coûts d’installation élevés (travaux de terrassement, construction d’un, deux ou plusieurs puits, analyse de l’eau, pompe à eau dans le puits),
  • énergie nécessaire pour pomper l’eau hors du puits,
  • système ouvert,
  • nécessité de garantir une séparation parfaite entre l’eau d’origine souterraine et le fluide réfrigérant, si l’eau est réinjectée dans la nappe phréatique via un puits de recharge,
  • recharge de la nappe rarement implémentable.

De plus, avant d’installer une pompe à chaleur sur nappe phréatique, l’utilisateur doit obtenir les informations relatives à la puissance du puits de captage et d’absorption.

En résumé

  • Une étude du sol préalable au forage est conseillée. On doit être certain que la température de l’eau ne sera jamais inférieure à 8 °C.
  • À proximité d’un cours d’eau ou d’un lac, tenir compte d’une possible infiltration.
  • Le captage et la restitution de l’eau doivent respecter les principes hydrologiques.
  • Une analyse de l’eau est vivement recommandée, de façon à vérifier que l’eau n’est pas agressive, polluée ou qu’elle ne transporte pas d’alluvions.
  • Des autorisations officielles sont nécessaires (elles ne sont accordées que si l’eau n’est pas utilisée ultérieurement comme eau potable).
  • Le débit d’eau doit être suffisant et compatible avec les besoins du bâtiment à chauffer.

L’eau de surface

Pompes à chaleur, eau de surface.

Source : ef4.

Si l’on choisit ce type de source froide (qui doit bien évidemment se trouver à proximité du bâtiment à chauffer), il faut s’assurer que le débit d’eau disponible le sera toujours en quantité suffisante à l’avenir (donc attention aux débits variables des rivières et fleuves). Il faut également vérifier la qualité de l’eau et s’assurer que le prélèvement de chaleur n’a pas un impact néfaste sur le milieu.

L’investissement est raisonnable en comparaison aux pompes à chaleur géothermiques. Lors de la mise en œuvre d’une pompe à chaleur à captage de chaleur sur l’eau, il est recommandé de collaborer avec des installateurs qui ont une formation technique particulière, car la mise en œuvre est complexe. Il faudra entre autres calculer le débit d’eau nécessaire.

Une eau de surface mobile (rivière,…) ne gèlera jamais à cause de son mouvement. L’évaporateur doit être protégé des éboulis. S’il s’agit d’eau stagnante, cette solution n’est utilisable que sous certaines réserves, le principal inconvénient étant la diminution du coefficient de convection vu l’absence d’écoulement de l’eau. L’eau peut geler dans ce deuxième cas et ainsi diminuer les performances de la pompe à chaleur.

Deux choix de capteurs se présentent dans le cas de captage de chaleur sur source d’eau :

Capteurs statiques

L’évaporateur est alors complètement immergé dans le réservoir d’eau que représente la rivière, l’étang, … (ou dans un bac dans cette source d’eau). Une très grande quantité d’eau passe par l’échangeur et le Delta T° de refroidissement est proportionnellement très petit.

La température de l’eau de la source est plus constante qu’en surface ; le risque de gel s’en retrouve donc amoindri. Ceci constitue donc un gros avantage pour ce type de capteur. L’inconvénient principal réside dans l’encrassage de l’échangeur noyé par des plastiques, branchages,… De plus, avec un échangeur noyé, les procédures d’autorisation et l’entretien peuvent être coûteux et la réalisation est plutôt difficile.

Capteurs dynamiques

L’eau de la source froide est récoltée dans un puits filtrant puis pompée vers l’évaporateur.

La température varie beaucoup plus que pour le premier cas et peut être assez basse en hiver (2 à 4 °C), ce qui risque d’entraîner le gel de l’évaporateur et sa casse. L’évaporateur doit alors avoir une protection antigel. Par contre, ce système présente l’avantage de prélever de l’eau pratiquement propre grâce au puits filtrant. Il faut néanmoins souvent nettoyer le filtre en question.

Utilisation directe ou indirecte ?

Les importantes variations de température des eaux de surface ne permettent généralement pas une exploitation monovalente avec utilisation directe. On trouve donc davantage de cas d’utilisation indirecte : la source de chaleur transmet son énergie à un échangeur de chaleur lui-même relié à la PAC par un circuit intermédiaire. Ce dernier contient une solution antigel pour permettre à la température d’évaporation de descendre en dessous de 0 °C. Un circuit intermédiaire entraîne toutefois des températures plus basses et donc des coefficients de puissance moins élevés.

Paramètres de dimensionnement

Si l’on opte pour la solution de l’échangeur noyé, il est recommandé de tenir compte d’un écart de 5 à 6 °C entre la température de l’eau de la source et la température d’entrée du fluide caloporteur dans l’évaporateur. Pour dimensionner la surface de l’échangeur de chaleur, il est courant d’admettre un coefficient k de transmission thermique de 200 à 300 W/m²K (vitesse de courant supérieure à 0,5 m/s). Il est vivement conseillé de prévoir une marge de sécurité d’environ 25 % en cas d’encrassement de l’échangeur. D’autre part, l’écart entre les tubes de l’évaporateur doit être au minimum de 4 cm.

S’il s’agit d’eau stagnante, cette solution n’est utilisable que sous certaines réserves, le principal inconvénient étant la diminution du coefficient de convection vu l’absence d’écoulement de l’eau.


La géothermie très profonde

Géothermie très profonde.

Des forages profonds permettent de récupérer la chaleur géothermique (due à des activités volcaniques) à des températures plus élevées (plus de 150 °C). Selon leur température les eaux puisées à ces profondeurs peuvent être utilisées directement ou élevées par une pompe à chaleur au niveau voulu.

Pour garantir une solution économiquement rentable, le COP annuel ne doit pas se situer en dessous de 4.

L’utilisation géothermique de la chaleur appartient au domaine des technologies lourdes, et ne sera pas davantage développée ici. En effet, à moins d’être dans une région spécifique (la région de St Ghislain près de Mons en est une, grâce à la présence de failles dans la roche qui permettent à l’eau chaude de remonter et d’être accessible à une profondeur raisonnable), de telles températures ne s’atteignent qu’avec des forages dont la profondeur se mesure en kilomètres.

La géothermie profonde

Géothermie profonde.

Source : ef4.

Si la surface du terrain avoisinant le bâtiment à chauffer est insuffisante pour placer des capteurs géothermiques horizontaux (voir plus loin), on peut alors penser aux sondes thermiques verticales.

L’avantage de ces sondes est de profiter, dès 10 mètres de profondeur, d’une source de chaleur à peu près constante sur l’année. La température du sol augmente de 1 °C tous les 33 mètres, soit 3 °C par 100 mètres. Cette ressource géothermique est dite de très basse température. Les forages de sondes géothermiques ont un diamètre de 16 à 18 cm et une profondeur de 30 à 150 mètres.

 Pompe à chaleur à eau glycolée - géothermie verticale.

 Pompe à chaleur à eau glycolée – géothermie verticale.

Il existe deux technologies pour récupérer la chaleur du sous-sol profond : soit des capteurs d’eau glycolée sont infiltrés dans le sol et l’énergie sera transmise au fluide frigorigène via un échangeur de chaleur, soit les capteurs sont dits « à détente directe ». Dans ce cas, il n’y a pas d’eau glycolée : le fluide frigorigène est en contact direct avec la chaleur du sol.

Comment calculer la profondeur du forage à effectuer ? Tout dépend de la « charge de chaleur » nécessaire dans le bâtiment, qui représente la quantité de chaleur nécessaire pour le chauffer de façon suffisante au cours de la saison de chauffe. La longueur de la sonde sera d’autant plus faible que le bâtiment à chauffer a des besoins calorifiques réduits.

Si le bâtiment est une nouvelle construction « standard » (besoins calorifiques = 45 W/m2 environ) et que la surface à chauffer est de 150 m2, on aura besoin de +- 7 kW de puissance de chauffage. Si le COP vaut 4, alors il faut extraire 5,25 kW du sol.

Pour obtenir la longueur approximative de la sonde, il suffit de diviser ce résultat par l’extraction thermique, qui vaut entre 50 et 55 W/m linéaire de sonde (c’est cette valeur moyenne que l’on choisit d’habitude pour l’extraction thermique).

La sonde devra ainsi avoir une longueur d’environ 100 mètres.

On doit donc compter approximativement 15 mètres de sonde par kW de chauffage.
Si la profondeur nécessaire du forage est trop grande, on peut la diminuer en plaçant 2 sondes d’une profondeur deux fois moins importante. Il faut veiller à ce qu’il y ait une distance de 5 à 6 mètres entre les différents forages, pour éviter de refroidir excessivement les zones autour des sondes.

En refroidissant, le sol crée une sorte d’entonnoir de froid qui dépend de la puissance spécifique des sondes (W/m). Des soutirages intensifs provoquent une baisse de la température de la sonde et l’entonnoir s’agrandit. Au plus, le soutirage de chaleur (par mètre de longueur de sonde) est faible, au plus grand sera le COP annuel. Durant les arrêts de fonctionnement, la zone de terrain entourant la sonde se régénère à nouveau. Ce phénomène est absolument nécessaire, car le faible flux thermique provenant du sous-sol ne suffit pas à maintenir les conditions de dimensionnement. La détermination correcte de la longueur des sondes est donc d’une grande importance pour éviter une surexploitation qui empêcherait une régénération de la source.

Rafraîchissement

Les sondes géothermiques peuvent non seulement être utiles au chauffage de bâtiments, mais aussi à leur rafraîchissement en saison estivale. Si un système de pompe à chaleur permet la commutation chauffage/rafraîchissement, il est appelé « réversible ». Le rafraîchissement est actif ou passif. Dans le cas du rafraîchissement actif, le compresseur de la pompe à chaleur est utilisé pour abaisser le niveau de température de l’ambiance intérieure et la commutation est réalisée à l’aide d’une vanne à 4 voies. Le compresseur n’est par contre pas utilisé dans le cas d’un rafraîchissement passif ; ici un niveau de température existant (de la nappe phréatique ou du sous-sol) est transmis au système de chauffage et la pompe à chaleur n’est pas activée. De cette façon, la consommation énergétique reste faible (mais il faut néanmoins toujours alimenter les pompes de circulation d’eau).

Avantages/inconvénients

La surface d’installation de ce type de captage d’énergie est réduite et la technologie est utilisable presque partout (il faut néanmoins procéder à une analyse de la composition du sol pour déterminer la faisabilité de l’ensemble). De plus, la chaleur récupérée à la source froide est disponible en quantité quasiment illimitée. Le niveau de température de la source froide est relativement élevé et les variations de température sont faibles. Pendant la saison hivernale, il y a tout de même une diminution du niveau de température. Pour finir, le système est fermé mais on doit bien faire attention à ce qu’il soit étanche au glycol.

Le principal inconvénient de ce type de captation d’énergie est le coût d’investissement élevé ainsi que la mise en œuvre qui est assez lourde.


La géothermie de surface

Géothermie de surface.

Source : ef4.

On peut envisager ce mode de captation de chaleur si on possède un terrain exempt de grosses plantations. Les calories contenues dans le sol juste en dessous de la surface sont récupérées via des serpentins horizontaux en polyéthylène qui contiennent soit un mélange d’eau et de glycol, soit le fluide frigorigène (système à détente directe – les tuyaux sont dans ce cas en cuivre et non en polyéthylène). Les pompes à chaleur utilisant cette source froide sont désignées sous les termes « eau glycolée » ou « sol ».

Les serpentins, qui jouent le rôle d’évaporateur du système, sont enfouis à une profondeur de 60 cm minimum pour éviter le gel. L’avantage d’un tel type de chauffage réside dans la relative stabilité de la température d’évaporation (ce qui augmente les performances). La température varie néanmoins plus ou moins fortement, à cause justement de la présence d’une pompe à chaleur…

Evolution de la t° du sol à 60 cm de profondeur.

Origine de la chaleur du sol ?

Il y a une diminution de la température du sol pendant l’automne, et une augmentation pendant le printemps. Cette évolution est directement liée au rayonnement solaire qui chauffe la partie du sol directement sous la surface (jusqu’à une profondeur d’environ 2 mètres). La chaleur géothermique ne représente que quelques pourcents à cet endroit.

Potentiel du sol

Le pouvoir calorifique du sous-sol dépend de la nature du sol et surtout de sa teneur en eau. En effet, l’eau possède une capacité calorifique élevée, i.e. sa température varie très lentement sous une action extérieure. La quantité de pluie infiltrée est donc un facteur essentiel dans l’extraction de chaleur du sol.

Potentiel du sol, minéraux.

Les pouvoirs calorifiques de divers sous-sol sont les suivants :
  • sol sablonneux sec : 10 à 15 W/m²
  • sol argileux sec : 20 à 25 W/m²
  • sol argileux humide : 25 à 30 W/m²
  • sol marécageux : 30 à 35 W/m²
Pour une température de sol minimale de 2 °C (une plus grande absorption de chaleur pourrait créer des cristaux de glace autour des serpentins et diminuer leur efficacité), l’extraction thermique par mètre courant « q » est environ de :
  • sol sablonneux sec : 10 W/m
  • sol argileux humide : 25 W/m
  • sol argileux saturé : 35 W/m
  • roche dure : 50 W/m
  • granit : 55-70 W/m
Pour limiter le refroidissement excessif du sol, un écartement minimal entre les tuyaux doit être respecté (une pose trop serrée pourrait provoquer le gel de l’eau autour des tuyaux et une fermeture hermétique) :
  • 1 m en cas de sol sec
  • 0,7 m en cas de sol humide
  • 0,5 m en cas de sol sablonneux ou caillouteux saturé

Dimensionnement

Les capteurs enterrés, malgré leur configuration simple qui ne nécessite pas d’auxiliaires, requièrent des surfaces de terrain de l’ordre de 1,5 fois la surface des locaux à chauffer. Pour beaucoup de bâtiments du secteur tertiaire, ce type de technologie demande donc de très grandes surfaces extérieures et engendre donc un coût de terrassement élevé.

Exemple d’installation

Les déperditions calorifiques d’une habitation domestique construite sur sol argileux s’élèvent à 12 kW.

On prévoit un chauffage par le sol avec une température d’entrée de 45 °C.

En choisissant une PAC dont la puissance de chauffe est de 13,3 kW pour une puissance électrique absorbée de 3,85 kW (valeur fournisseur), il faudra extraire du sol 13,3 – 3,85 = 9,45 kW. Il faudra donc 9 450 W/ 25 W/m = 378 m soit 4 serpentins de 100 m.

Lors du dimensionnement de l’installation, il convient de tenir compte de la configuration du site (il est donc recommandé d’établir un plan qui comporte les constructions, arbres, piscines, fosses septiques et réseaux souterrains en plus, bien évidemment, de la localisation des capteurs) et de la durée annuelle de fonctionnement.

Pour les gros projets, une compréhension des flux thermiques des sols près de la surface est nécessaire pour un calcul assez précis des échangeurs de chaleur du sol.  Avant le revêtement, il faudrait opérer une expertise/analyse du sol afin de déterminer la situation géologique de celui-ci à l’endroit de la construction. On tiendra compte des dates de l’analyse (été/hiver – pluies récentes – …) pour obtenir les paramètres thermiques de sol nécessaires pour le calcul et la simulation exacts de la configuration.

Les COP de ce type de pompe à chaleur sont intéressants (de l’ordre de 4). On pourrait néanmoins s’attendre à plus étant donné les avantages de ce système (pas d’auxiliaire, pas de dégivrage). De plus, il faut faire très attention à ce qu’il n’y ait pas de fuites de fluide frigorigène, car il possède un impact environnemental élevé.

En pratique, les échangeurs horizontaux ne sont intéressants que lorsqu’il faut entreprendre de grands travaux, qui permettent un placement économique des tuyaux dans le sous-sol ou à l’intérieur d’une couche de propreté.

Les serpentins peuvent aussi être intégrés en alternance, entre les fondations. Le placement sous le bâtiment permet d’éviter la sensibilité aux conditions météorologiques d’été (sécheresse) mais comporte le risque de gel des fondations en hiver…

Les applications en secteur tertiaire paraissent donc réduites pour cette technique…


L’air extérieur

Le choix de l’air extérieur comme source froide conduit à un choix entre deux technologies très différentes : le système dynamique et le système statique. Dans le premier cas, la PAC ventile mécaniquement l’air de l’environnement extérieur, qui se retrouve donc en mouvement pour améliorer l’échange de chaleur avec le fluide frigorigène au niveau de l’évaporateur. Dans le second cas, l’air reste « statique » et le transfert de chaleur avec le fluide frigorigène est réalisé grâce à la convection naturelle. De grandes surfaces d’échange (ailettes) seront alors nécessaires pour assurer l’efficacité.

Pompe à chaleur à air dynamique

La pompe à chaleur sur air dynamique peut être installée à l’extérieur ou à l’intérieur du bâtiment à chauffer. Dans le premier cas (système Split), le raccordement au système de chauffage est effectué via deux tubes isolés qui se trouvent dans le sol (un pour l’aller et l’autre pour le retour). Il y a également un câble électrique dans le sol et des fonctions antigel. Dans le second cas, la pompe à chaleur est reliée à l’air extérieur par des conduites d’air.

Ce type de pompe à chaleur permet de chauffer les locaux, mais aussi l’eau sanitaire. Un rafraîchissement actif est également possible.

 Pompe à chaleur à air dynamique.

Exemple de pompe à chaleur à air dynamique : présence d’un ventilateur.

Pompe à chaleur à air statique

Les PAC à air statique ne sont pas fort présentes sur le marché malgré leurs avantages en termes de bruit et de performances. De l’eau glycolée, ou le fluide frigorigène, passe dans les ailettes des capteurs statiques extérieurs. Le reste de la PAC, qui se trouve à l’intérieur du bâtiment, comprime alors le fluide frigorigène pour le faire monter en température.

Pompe à chaleur à air statique.

Exemple de pompe à chaleur à air statique.

Avantages/inconvénients

L’air extérieur comme source de chaleur présente les avantages suivants :

  • il est disponible quasiment partout en quantité illimitée,
  • il est facilement exploitable,
  • l’extraction de chaleur sur l’air extérieur ne nécessite pas l’octroi d’une autorisation, sauf peut-être un permis d’urbanisme,
  • cette source froide génère des coûts d’installation limités par rapport aux autres types de pompes à chaleur.

Il présente toutefois quelques inconvénients qui remettent en cause son utilisation en système monovalent :

  • évolution contraire de la température de la source de chaleur et de la température du système de chauffage,
  • les températures de la source froide sont très variables et peuvent être fort basses, ce qui abaisse le coefficient de performance ; la performance globale annuelle est faible.

Les PAC à air dynamique montrent les deux inconvénients suivants par rapport aux PAC à air statique :

  • à une température extérieure de 6 à 7 °C, l’eau issue de la condensation de l’air ambiant commence à geler et nécessite un dégivrage ;
  • problèmes de bruit dus à la grande quantité d’air déplacé. Il est indispensable de se renseigner sur les techniques de protection phonique, dans tous les cas, qu’il s’agisse d’une installation intérieure ou extérieure. L‘ordonnance sur la protection contre le bruit et les prescriptions locales doivent être soigneusement étudiées. Au besoin, un spécialiste en acoustique devra être consulté.

Performances des PAC sur air extérieur

En général, les COP des pompes à chaleur sur air extérieur sont donnés pour une température extérieure de 2 °C. La moyenne des températures extérieures sur la saison de chauffe (de début octobre à fin avril) pour la station d’Uccle est cependant d’environ 6 °C. Le seasonal performance factor (SPF), qui représente la moyenne théorique du coefficient de performance sur la saison de chauffe, sera donc plus élevé que le COP indiqué dans la fiche technique de la pompe à chaleur. Mais lorsque la température extérieure est effectivement très basse, le COP chute et la pompe à chaleur peut très bien ne plus être suffisante pour subvenir aux besoins de chaleur du bâtiment. Dans ce cas on l’utilise conjointement à un système d’appoint ou à une chaudière (voir les modes de fonctionnement).


PAC géothermique : rechargement de la source froide par l’énergie solaire

Les soutirages de chaleur fréquents provoqués par la présence d’une PAC géothermique mènent à une baisse relativement importante de la température du sous-sol. La chaleur n’y est en effet pas renouvelée suffisamment rapidement.

Pour résoudre ce problème, si la surface des capteurs n’est pas trop grande, on peut combiner la PAC avec un système de recharge : des absorbeurs solaires (avec ou sans vitre). Le collecteur solaire se refroidira d’abord dans la PAC pour éviter que l’environnement du serpentin ne se dessèche trop et perde de sa puissance d’échange.

Le rendement du panneau solaire s’améliore, lui, si la température de l’eau qui y circule diminue. Une PAC dont l’évaporateur est lié au circuit des collecteurs solaires permettra de travailler à plus basse température dans les collecteurs, ce qui double leur rendement (et divise donc par 2 la surface nécessaire et l’investissement) et allonge leur durée annuelle de fonctionnement. La PAC disposera, elle, d’une source froide à température plus élevée. Les deux appareils voient donc leur fonctionnement optimisé. Un chauffage d’appoint sera nécessaire en hiver, par température extérieure très basse et ensoleillement limité.

Reste le coût de l’ensemble qui semble difficile à amortir…


Comparaison des sources froides

Chaque source de chaleur possède ses avantages et inconvénients, c’est pourquoi seule une analyse minutieuse du projet peut préciser le type de source froide qu’il vaut mieux choisir.

La capacité thermique de l’eau plaide incontestablement en faveur d’une source liquide :

  • le gain de chaleur provenant de 1 m³ d’eau refroidie d’environ 5 K se monte à 5,8 kWh.
  • pour un gain de chaleur identique, il faudrait comparativement refroidir environ 3 500 m³ d’air de 5 K !

Mais le débit d’eau reste important. Imaginons un bâtiment de 5 000 m². On peut tabler sur un besoin de chaleur limité à 45 W/m² (par – 10°C extérieur) s’il est bien isolé. Ceci représente une puissance totale installée de 225 kW. La puissance à capter à l’évaporateur sera de 150 kW (si COP = 3).

Sur base d’un refroidissement de l’eau de 5 K, le débit d’eau nécessaire sera de

150 kW / 5,8 kWh/m³ = 26 m³/h !

Le tableau ci-dessus reprend les caractéristiques à prendre en compte lors de la conception d’une installation de pompe à chaleur :

Source Caractéristiques de la source Coût d’installation COP saisonnier moyen COP selon la norme EN14511 (suivi de la condition de mesure) Conditions d’installation Remarques
Rejets thermiques de procédés industriels ou de systèmes de climatisation

Faibles variations de température.

Possible variation de débit.

Bas.

Comparable à celui des PAC air/eau ou eau/eau selon les propriétés de la source froide.

Installation plus ou moins importante selon la configuration de la source.

Système courant pour la production d’eau chaude sanitaire.

Eau de nappe phréatique

Faibles variations de température (+6°C à +10°C).

Élevé.

3 à 4,5.

5 à 6

(W10/W35)

Besoin de suffisamment d’eau souterraine de qualité.

Restrictions légales locales.

Des puits existants peuvent réduire les coûts.

Coût d’entretien faible.

Dimensionnement très rigoureux.

Eau de surface Faibles variations de température.

Variable selon la proximité de l’eau.

3 à 4,5.

5 à 6

(W10/W35)

Proximité d’eau en quantité adéquate nécessaire.

Système de protection contre le gel.

L’évaporateur sera conçu en fonction de la qualité de l’eau.

 

Passage par un circuit d’eau intermédiaire dans le cas de capteurs dynamiques.

Encrassage possible.

Tuyaux d’eau glycolée dans le sol Faibles variations de température (plus fortes si usage de serpentins à faible profondeur).

Connaissance des propriétés thermiques du sol requise.

Moyen à élevé. 3 à 4.

4 à 5

(B0/W35)

Besoin de surface si échangeur de chaleur horizontal et d’une solution antigel. Échangeurs verticaux ou horizontaux.

Les conditions de sol et de surface influencent la conception.

Coûts d’entretien faibles.

Dimensionnement très rigoureux.

Air extérieur

Larges variations de température (0°C à + 15°C).

Bas.

2,5 à 3,5.

3 à 4

(A2/W35)

Système universel, source disponible en grande quantité.

Dégivrage et parfois chauffage auxiliaire nécessaires.

Système à évaporation directe : le fluide frigorigène passe dans le sol (tuyaux verticaux et horizontaux) Faibles variations de température.

3 à 4.

Pas de circuit intermédiaire du côté évaporateur.

Grandes quantités de fluide frigorigène nécessaire.

* Les valeurs des coefficients de performance dépendent des modèles de pompes à chaleur choisies. Les valeurs données ici sont des ordres de grandeur permettant la compréhension de l’influence de la source froide.

Les pompes à chaleur les plus répandues sont les pompes à chaleur air extérieur/eau, ensuite viennent les pompes à chaleur eau glycolée/eau qui tirent leur énergie du sol.

Réglementation et permis

Suivant le type de PAC, sa puissance et la quantité de fluide frigorigène présente dans le circuit, l’installation d’une pompe à chaleur requiert ou non l’octroi de permis d’environnement ou d’urbanisme. Bien souvent, la PAC devra uniquement être « déclarée ».

Les réglementations en vigueur sont susceptibles de changer régulièrement. À titre d’illustration, voici un tableau qui reprend ces réglementations pour l’année 2009 :

Condition (2009) Classe
Si puissance frigorifique nominale utile comprise entre 12 et 300 kW et charge en FF > 3 kg. 3 – déclaration.
Si puissance frigorifique nominale >= 300 kW. 2 – permis d’environnement.
Pompe à chaleur sur air
Si air statique. Peut-être permis d’urbanisme – vérifier avec la commune.
Si air dynamique. Peut-être permis d’urbanisme – vérifier avec la commune.
Pompe à chaleur sur eau souterraine
Opération de forage et opération de sondage ayant pour but l’exploitation future d’une prise d’eau,… (hormis les forages inhérents à des situations d’urgence ou accidentelles). 2 – permis unique.
Installation pour la ou les prise(s) d’eau et/ou le traitement des eaux souterraines non potabilisables et non destinées à la consommation humaine d’une capacité de prise d’eau et/ou de traitement inférieure ou égale à 10 m3/jour et à 3 000 m³/an. 3 – déclaration.
Installation pour la ou les prise(s) d’eau et/ou le traitement des eaux souterraines non potabilisables et non destinées à la consommation humaine d’une capacité de prise d’eau et/ou de traitement supérieure à 10 m³/jour et à 3 000 m³/an et inférieure ou égale à 10 000 000 m³/an. 2 – permis d’environnement ou permis unique.
Installation pour la ou les prise(s) d’eau et/ou le traitement des eaux souterraines non potabilisables et non destinées à la consommation humaine d’une capacité de prise d’eau et/ou de traitement de plus de 10 000 000 m³/an. 1 – permis d’environnement ou permis unique avec étude
d’incidences sur l’environnement obligatoire.
Installation pour la recharge ou les essais de recharge artificielle des eaux souterraines. 1 – permis unique avec étude d’incidences sur l’environnement obligatoire.
Déversement d’eaux usées industrielles telles que définies à l’article D.2, 42°, du Livre II du Code de l’Environnement, contenant le Code de l’Eau, dans les eaux de surface, les égouts publics ou les collecteurs d’eaux usées :
rejets supérieurs à 100 équivalent-habitant par jour ou comportant des substances dangereuses visées aux annexes Ire et VII du Livre II du Code de l’Environnement, contenant le Code de l’Eau.
2 – permis d’environnement ou permis unique.
PAC sur eaux de surface Autorisation du gestionnaire de l’eau de surface nécessaire. Peut-être permis d’urbanisme – voir avec la commune.
Déversement d’eaux usées industrielles telles que définies à l’article D.2, 42°, du Livre II du Code de l’Environnement, contenant le Code de l’Eau, dans les eaux de surface, les égouts publics ou les collecteurs d’eaux usées : rejets supérieurs à 100 équivalent-habitant par jour ou comportant des substances dangereuses visées aux annexes Ire et VII du Livre II du Code de l’Environnement, contenant le Code de l’Eau. 2 – permis d’environnement ou permis unique.
PAC à captation verticale dans le sol
Opération de forage et opération de sondage pour le stockage des déchets nucléaire ou pour un usage géothermique. 2 – permis unique.
PAC à captation horizontale dans le sol Non classé, mais peuvent l’être si quantité FF > 3kg.

Source : Synthèse sur les réglementations et permis relatifs à l’installation
et à l’exploitation de pompes à chaleur en Région wallonne – Document EF4.

Choisir la pompe à chaleur

 

PAC avec compresseur à pistons, à gauche, et avec compresseur à vis, à droite.


Intérieur ou extérieur ?

Les pompes à chaleur Air/Air ont la particularité de pouvoir être installées

  • Soit de façon compacte à l’intérieur du bâtiment, avec une conduite d’amenée et de rejet d’air extérieur vers l’évaporateur.
  • Soit d’être scindées entre un condenseur intérieur et un évaporateur extérieur (système Split), directement en contact avec la source froide. Le fluide frigorigène reliant évaporateur et condenseur devra alors traverser la paroi du bâtiment dans des conduites calorifugées. La performance est améliorée puisque l’évaporateur est généralement mieux alimenté. Elles sont d’une grande souplesse d’installation mais imposent une quantité de fluide frigorigène plus importante.

Installation de pompes à chaleur Air/Air.

  • On peut également installer l’ensemble de la PAC à l’extérieur et la relier au réseau de distribution par des conduites aller et retour isolées. Ces installations imposent des mesures constructives coûteuses de transfert des sources chaudes ou froides.

Les systèmes extérieurs peuvent occasionner une gêne à cause de leur bruit. Ces installations ne seront tolérables que si elles se font sans gène pour le voisinage (installation sur des toits en ville,.). Elles devront être protégées de la corrosion et avoir un dégagement suffisant autour d’elle pour permettre un bon fonctionnement de l’évaporateur.


Utilisation directe ou indirecte ?

L’utilisation directe de la source froide (eau de surface, nappe phréatique, rejets gazeux,…) a le grand avantage d’améliorer l’échange avec la source de chaleur et donc d’offrir un meilleur coefficient de performance. Cependant il faudra éviter la pollution (fuites de fluide frigorigène), ainsi que l’encrassement, l’érosion et la corrosion dans l’évaporateur en prenant les mesures suivantes :

  • désensablage du puits effectué par un spécialiste,
  • pose d’un filtre dans la conduite de raccordement à la PAC,
  • surveillance des vitesses de courant maximales et minimales pour éviter l’érosion, les dépôts, le gel et les dégâts dus aux vibrations dans les conduites de l’évaporateur,
  • pour lutter contre l’air agressif (par exemple rejets thermiques industriels), il faut utiliser un évaporateur résistant à la corrosion et dont le nettoyage est aisé. Dans certains cas, un dispositif de filtrage de l’air vicié devra être ajouté.

À défaut, il est vivement conseillé de prévoir une utilisation indirecte avec circuit intermédiaire. De plus il faut penser que la température du circuit intermédiaire peut tomber à 0°C. Le bon choix d’un produit antigel est donc d’une importance capitale.

Remarque : la qualité des sources thermiques naturelles peut se détériorer avec le temps. Une seule et unique analyse de l’eau ne peut évidemment pas servir de garantie absolue à long terme.


Choix de l’émetteur de chaleur

La température de distribution de la chaleur (température dite de la « source chaude ») est aussi importante que la température de la « source froide », puisque la consommation est proportionnelle à l’écart entre ces 2 températures.

Les pompes à chaleur ne peuvent correctement fonctionner qu’à une température de chauffage maximum de 50°C. Il faut donc sélectionner un système de chauffage à basse température, qu’il soit à air ou à eau.

Distribution par eau

Chauffage par le sol.

Les systèmes à eau devraient être dimensionnés de telle manière que la température de départ nécessaire lors de températures extérieures de – 8°C se situe entre 35 et 45°C. Ceci est possible avec un chauffage par le sol, et également, pour des bâtiments très bien isolés, avec des radiateurs à grande surface rayonnante.

Pour des systèmes de distribution anciens (radiateurs conventionnels) qui exigent des températures de départ de plus de 50°C, il faut évaluer de cas en cas si le recours à la pompe à chaleur bivalente est utile et raisonnable. Normalement, un chauffage par pompe à chaleur sera possible pendant la plus grande partie de la période de chauffe. Pour les jours nécessitant une température de départ de plus de 50°C, un deuxième générateur de chaleur fonctionnant avec un autre agent énergétique sera nécessaire (fonctionnement bivalent). Une solution fréquente dans le logement est d’installer un chauffage par le sol au rez-de-chaussée et de le compléter par des chauffages d’appoints à l’étage, pour limiter le coût d’investissement.

Par simulation informatique, une étude de la KUL a comparé les performances théoriques de différentes installations domestiques de pompes à chaleur (bâtiment respectant le niveau d’isolation K55, besoin de chaleur théorique évalué à 15 459 kWh par saison de chauffe) :

  • PAC Air/Eau avec chauffage par le sol au rez-de-chaussée et chauffage électrique à l’étage [1];
  • PAC Sol/Eau avec radiateurs basse température dans toute l’habitation [2];
  • PAC Air/Eau avec radiateurs basse température dans toute l’habitation [3];
  • PAC Sol/Eau avec chauffage par le sol au rez-de-chaussée et un chauffage électrique dans la salle de bain uniquement [4];
  • PAC Sol/Eau avec chauffage par le sol au rez-de-chaussée et radiateurs basse température à l’étage [5].

Alternative

1 2 3 4 5

Énergie fournie totale Q [kWh]

18 965 19 474 20 678 17 744 20 028

Énergie consommée totale E [kWh]

9 825 5 482 5 967 5 242 5 400

Rendement global annuel (Q/E)

1.93 3.55 3.47 3.38 3.70

CO2 produit [kg/an]

3 363 1 801 2 071 1 791 1 706

CO2 produit [kg/kWh fourni]

0.18 0.09 0.10 0.10 0.09

On constate que l’installation avec le meilleur rendement annuel est celle qui combine la PAC Sol/Eau avec le chauffage par le sol et les radiateurs basse température. Autrement dit, c’est le système qui diminue autant que faire se peut la différence de température entre la source froide et la source chaude.

La quantité de CO2 produite montre l’impact négatif des chauffages d’appoints électriques qui provoquent un doublement des émissions.

Distribution par air

Les systèmes de distribution à air ont l’avantage de toujours être dans une fourchette de température idéale pour les PAC (15 – 30°C). De plus, le chauffage direct de l’ambiance évite l’usage d’un intermédiaire caloporteur et d’un échangeur de chaleur supplémentaire comme un radiateur. Cet intermédiaire en moins ne permet néanmoins pas d’améliorer le rendement de l’installation puisque les échangeurs de chaleur « fluide caloporteur/air » sont moins performant que ceux « fluide caloporteur/eau ». L’inconvénient est l’emprise spatiale importante des gaines de distribution. Ce problème peut être contourné par les installations avec préparation d’air directement dans le local (installations multi-split ou DRV ainsi que sur boucle d’eau). Les systèmes de distribution par air ne permettent pas non plus l’accumulation de chaleur durant les heures creuses ou la préparation d’ECS.


Monovalent, bivalent ou avec résistance d’appoint électrique ?

Monovalent

Vu les frais d’investissement plus élevés provoqués par les installations bivalentes, on préférera en général les PAC monovalentes. En effet, la nécessité d’investir dans une chaudière traditionnelle en plus de la PAC n’est pas compensée par la diminution du coût de la PAC, diminution proportionnelle à la puissance moindre installée.

Bivalent

Cependant, lorsque la puissance à fournir est trop importante par rapport à une source froide limitée ou lorsque la température d’entrée dans le réseau de distribution doit être supérieure à 50°C, les systèmes bivalents sont inévitables pour assurer le confort de l’occupant. C’est souvent le choix qui est fait en rénovation, lorsque les réseaux d’émissions ne sont pas modernisés et ne peuvent fonctionner qu’à haute température.

Le fonctionnement bivalent alternatif a l’avantage de la simplicité de compréhension et de régulation.

Fonctionnement bivalent alternatif chaudière et pompe à chaleur.

Le fonctionnement parallèle par contre profite mieux de la pompe à chaleur puisqu’elle fonctionne toute la saison de chauffe. Ce deuxième mode permet donc une plus grande économie en frais de fonctionnement (même si, en période de grand froid, le COP de la PAC chute beaucoup) et un meilleur bilan écologique (avec un point de bivalence à 50 % de la puissance de chauffage, la PAC utilisée en bivalent-parallèle assure tout de même 80 à 90 % du besoin de chaleur).

Fonctionnement parallèle chaudière et pompe à chaleur.

Avec appoint électrique

Une installation avec appoint électrique est perçue comme un compromis. Elle nécessite un faible investissement mais contribue à la surcharge du réseau. Elle est aussi moins rationnelle au niveau écologique à cause de l’importante consommation de l’appoint électrique qui provoque un abaissement du COP annuel. Un enclenchement manuel est d’ailleurs conseillé pour éviter une durée de fonctionnement trop importante. Les appoints électriques permettent de préserver le confort lors des dégivrages ou des périodes de gel, lorsque la PAC (qui a été dimensionnée au plus juste pour limiter l’investissement) éprouve des difficultés.

Dans le secteur tertiaire, les apports internes compensent les pertes de puissance dues aux dégivrages, d’autant plus facilement que les dimensionnements de PAC réversibles sont souvent basés sur des puissances en froid, ce qui surdimensionne la puissance de chauffe. Les résistances d’appoint ne s’y justifient donc pas.


Avec ou sans accumulateur tampon ?

Toute installation compte au moins un accumulateur tampon qui permet d’augmenter la quantité d’eau présente dans le circuit, ceci afin d’éviter l’enclenchement trop fréquent des producteurs de chaleur (courts cycles).
On reproche parfois à l’accumulateur tampon pour les petites installations d’être trop coûteux, trop volumineux, d’entraîner des pertes de chaleur. Mais rares sont les cas où son installation n’est pas justifiée. On ne peut y renoncer que si les conditions suivantes sont remplies :

  • puissance à peu près constante de la source de chaleur (max 5 K de variation de température);
  • volume d’eau de chauffage supérieur à 15 litres/kW;
  • grande capacité d’accumulation du système de distribution de chaleur (par exemple inertie de chauffage par le sol);
  • pas ou peu de vannes thermostatiques;
  • installation bien équilibrée.

Un accumulateur de chaleur est lui plus volumineux qu’un accumulateur tampon. Il sert couvrir les heures d’interruption de fourniture électrique. Il peut aussi compenser des variations temporaires de la source froide et permettre une plus grande utilisation du courant bas tarif. De plus, un accumulateur de chaleur permet de combiner plus facilement différents producteurs de chaleur, comme par exemple des capteurs solaires.


Quel fluide frigorigène ?

Suite à la protection de l’environnement, certains fluides ont été supprimés du marché et d’autres sont encore en sursis, dont le R22, qui reste le plus couramment utilisé sur le marché.
Le choix du fluide frigorigène résulte de l’analyse spécifique effectuée par le projeteur, notamment en fonction de la température de départ du chauffage. La définition des limites d’utilisation du fluide est l’affaire du fabricant.
Il existe aujourd’hui beaucoup d’incertitudes sur le choix du nouveau fluide idéal, mais il semble que si l’équipement vendu est encore au R22, il ne soit pas d’une technologie récente.

Concevoir

Pour plus d’informations sur le choix du fluide frigorigène, cliquez ici !

Quelle régulation ?

Adaptation de la puissance

Pour de petites pompes à chaleur, la régulation de puissance a lieu par mise en ou hors service. Pour les plus grandes puissances, obtenues par combinaison de plusieurs unités de petites pompes à chaleur, la régulation a lieu par enclenchement-déclenchement de chaque unité. Si la puissance est obtenue par un compresseur à plusieurs cylindres, l’adaptation à la puissance demandée est effectuée par branchement et débranchement des différents cylindres. La combinaison de plusieurs modules est également une bonne solution, par exemple pour un quartier de villas, si on ne sait pas au départ combien de maisons seront raccordées au système de chauffage par pompe à chaleur.

De nouveaux concepts de régulation font usage de la possibilité de faire varier la vitesse de rotation du compresseur. De cette façon, il est possible d’adapter en tout temps la puissance au besoin momentané. De tels systèmes sont actuellement disponibles, également dans le domaine des fortes puissances. On ne saurait trop les recommander pour conserver une performance correcte tout au long de la saison.

Pour les installations travaillant par enclenchement-déclenchement, il faut éviter des démarrages trop fréquents, afin que le réseau électrique public ne soit pas surchargé et que la PAC ne subisse pas de dommages. Rappelons que ceci est réalisé au moyen d’un accumulateur technique (accumulateur tampon), auquel on ne peut renoncer que dans des cas exceptionnels.

Paramètres de régulation

Les régulateurs commandent la pompe à chaleur en fonction de la courbe de chauffe, après avoir obtenu les données du thermostat d’ambiance et la température de retour. Le thermostat est éventuellement doté de consignes « température de confort » et « température de nuit » réglables. Différentes commandes de fonctionnement sont possibles et s’organisent avec un ordre de priorité précis. Le dégivrage a toujours la priorité et s’effectue automatiquement si les sondes extérieures en indiquent le besoin. Viennent ensuite les alimentations de chauffage et d’ECS. La préparation de l’ECS peut être par exemple considérée comme un mode « été » alors qu’en hiver l’essentiel de la puissance de la pompe servirait au chauffage du bâtiment. Les équipements tels les piscines sont toujours derniers en priorité, à moins bien sûr que la pompe à chaleur ne leur soit spécifiquement destinée (piscines publiques,.)

La régulation de la température de sortie du condenseur est essentiellement liée au mode de chargement de l’accumulateur (étagé ou par stratification).

Adaptation des paramètres en fonctionnement

De nombreuses recherches menées en Suisse durant les premières années de fonctionnement ont montré que beaucoup d’installation ne travaillent pas du tout comme le concepteur du projet le souhaite, cette remarque est également valable pour des installations conventionnelles. Un contrôle des résultats pendant les premières années d’utilisation est donc conseillé pour s’assurer d’un bon fonctionnement de l’installation.

Stabilité du réglage

Les systèmes que l’on trouve pour la technique du bâtiment sont en général assez lents, ce qui permet une régulation stable et fiable. Certains circuits comprennent toutefois des parties où la vitesse de régulation est critique. C’est le cas de la température de départ du condenseur. Pour assurer une régulation rapide, diverses recommandations sont utiles : placer la vanne de régulation le plus près possible de la PAC pour réduire le temps mort, choisir une vanne de régulation à fermeture rapide, optimiser les paramètres de régulation de la vanne, utiliser des thermomètres de régulation à faible inertie.


Choix du compresseur

Le compresseur d’une pompe à chaleur présente les mêmes caractéristiques que le compresseur d’une machine frigorifique puisqu’il s’agit de la même machine.

Techniques

Pour plus d’informations sur les technologies de compresseur, cliquez ici !

Concevoir

Pour plus d’informations sur le choix du compresseur, cliquez ici !

Choix d’échangeurs

Évaporateur

Dans l’évaporateur, la chaleur délivrée par la source froide de chaleur est transférée au fluide frigorigène. Pour les sources de chaleur liquides, on installera des échangeurs de chaleur multitubulaires, coaxiaux ou à plaques, pour les échangeurs de chaleur à air, on préférera, dans la plupart des cas, des tubes à ailettes. D’une manière générale, l’échange de chaleur croît avec l’augmentation de la surface d’échange, la diminution de la vitesse de passage des fluides, l’augmentation de la différence de température entre les fluides et l’augmentation du débit de la source de chaleur par rapport au fluide récepteur.

Il existe en gros deux modes d’évaporation : à détente sèche ou par immersion. La différence entre les deux systèmes provient essentiellement de la circulation du fluide frigorigène. Dans le cas de l’évaporation par immersion, le fluide caloporteur passe à l’intérieur de tubes noyés dans le fluide frigorigène; dans le cas de la détente sèche, c’est l’inverse. La plupart des évaporateurs fonctionnent selon le principe de la détente sèche. L’échangeur de chaleur multitubulaire peut aussi, dans certains cas, fonctionner par immersion.

Perte de pression dans l’évaporateur et le condenseur

Il arrive souvent que des PAC dont la puissance est identique accusent des pertes de pression différentes sur l’échangeur de chaleur et présentent des COPA différents. Il peut s’agir de produits provenant de plusieurs fabricants, mais aussi, selon le degré de puissance, une série de PAC appartenant au même fabricant peut présenter de sensibles différences.

Pour illustrer ceci, examinons ce qu’une augmentation de 40 kPa de la perte de pression dans l’évaporateur et le condenseur provoque sur le COP d’installations de chauffage par PAC. Supposons au départ des installations telles que celles décrites ci-dessous :

Petite installation

Grande installation

Mode de fonctionnement

Monovalent, chargé par stratification,
sortie du condenseur constante de 47°C

Puissance chauffage

10 kW 100 kW

Besoin annuel de chaleur

25 000 kWh 250 000 kWh

Heures de fonctionnement

2 500 h/an 2 500 h/an

Consommation annuelle de courant

8 333 kWh 83 333 kWh

Coefficient de performance annuel COPA

3 3

Débit dans l’évaporateur
(Δt° = 5 K)

1,2 m³/h 12 m³/h

Débit dans le condenseur
(Δt° = 10 K)

0,9 m³/h 9 m³/h

Perte de pression condenseur

25 kPa 25 kPa

Rendement de la pompe

0,10 0,25

Pour la petite installation, l’augmentation de la perte de pression donnerait :

  • Ppompe évaporateur = 40 kPa x 1,2 m³/h / (3 600 x 0,10) = 0,133 kW
  • Ppompe condenseur = 40 kPa x 0,9 m³/h / (3 600 x 0,10) = 0,100 kW
  • W = 2 500 h x (0,133 + 0,100) kW = 583 kWh

COPApetit = 25 000 kWh / (8 333 + 583) kWh = 2,8

Et pour la grande installation :

  • Ppompe évaporateur = 40 kPa x 12 m³/h / (3 600 x 0,25) = 0,533 kW
  • Ppompe condenseur = 40 kPa x 9 m³/h / (3 600 x 0,25) = 0,400 kW
  • W = 2 500 h x (0,533 + 0,400) kW = 2 333 kWh

COPAgrand = 250 000 kWh / (83 333 + 2 333) kWh = 2,92

Pertes de pression dans les sondes géothermiques

Dans le cas d’installations équipées de sondes géothermiques, les pertes de pression doivent être optimalisées avec soin pour différents diamètres de sondes, longueurs de sondes, nombre de sondes. Des différences de 100 kPa entre deux variantes ne sont pas rares.

Pour illustrer ceci, reprenons les installations présentées au point précédent et imaginons qu’elles soient équipées de sondes géothermiques accusant une augmentation des pertes de pression de 100 kPa.

Pour la petite installation, l’augmentation de la perte de pression donnerait :

  • Ppompe évaporateur = 100 kPa x 1,2 m³/h / (3 600 x 0,10) = 0,333 kW
  • W = 2 500 h x 0,333 kW = 833 kWh

COPApetit = 25 000 kWh / (8 333 + 833) kWh = 2,73

et pour la grande installation :

  • ppompe évaporateur = 100 kPa x 12 m³/h / (3 600 x 0,25) = 1,333 kW
  • W = 2 500 h x 1,333 kW = 3 333 kW

COPAgrand = 250 000 kWh / (83 333 + 3 333) kWh = 2,88


Chargement étagé ou par stratification ?

Il existe deux méthodes de chargement de l’accumulateur de chaleur associé à la pompe à chaleur.
Le chargement étagé est meilleur marché (pas de régulation de la charge) et entraîne un coefficient de performance annuel plutôt meilleur que le chargement par stratification puisque la PAC peut fonctionner avec une température de sortie du condenseur plus basse. Toutefois, ce système a différents désavantages :

  • Consommation électrique supplémentaire de la pompe du condenseur pour augmenter le débit et diminuer la température de départ.
  • Variations de la température de départ du chauffage difficiles à évaluer.
  • Température finale de l’accumulateur imprécise.
  • N’utilise pas pleinement les capacités de l’accumulateur.
  • Manque de capacité au premier passage.

Cette dernière difficulté pourrait être évitée si la différence de température dans le condenseur est suffisamment importante. De cette façon pourtant, la charge étagée est un non-sens, car dans le meilleur des cas, il ne se produirait qu’environ deux passages étagés à la limite du chauffage. Une charge étagée ne peut être recommandée que dans les situations suivantes :

  • Petite installation (surtout à cause de l’avantage du prix).
  • Un seul groupe de chauffage.
  • Pour accumulateur technique seulement.

À l’opposé, le chargement par stratification, malgré son COP plus faible et son coût plus élevés, permet :

  • Une maîtrise exacte de la température de l’accumulateur.
  • Une température constante de départ garantie.
  • Une puissance de la pompe du condenseur plus faible.
  • Une utilisation maximale de la capacité de l’accumulateur.

Type de chargement de l’accumulateur

Le chargement étagé de l’accumulateur et, dans certains cas, le chargement par stratification en fonction des conditions météorologiques produisent un meilleur coefficient de performance annuel qu’un chargement par stratification avec consigne constante, car on peut sortir du condenseur avec des températures plus basses. Ce système ne fonctionne toutefois que si l’installation est réglée sur une petite différence de température dans le condenseur. En règle générale cela implique de doubler le débit, ce qui multiplie par 4 la perte de pression sur le condenseur. Ceci doit absolument être pris en considération.

L’influence sur le COP annuel est complexe, car il faut tenir compte non seulement de la température de sortie du condenseur, mais aussi de la consommation d’énergie auxiliaire et de la petite différence de température dans le condenseur lors du chargement étagé. La différence de COP entre une température de sortie du condenseur adaptée ou constante se situe à moins de 10 %.

Encore une fois, reprenons les installations décrites plus haut et supposons qu’au lieu de fonctionner 2 500 h à 47°C, d’où ε = 3,4, on procède ainsi :

500 h à 45°C, d’où ε = 3,5

1 000 h à 42°C, d’où ε = 3,75

1 000 h à 39°C d’où ε = 4

Le coefficient de performance instantané moyen pondéré SPF s’améliore en passant de 3,4 à 3,8. Le coefficient de performance annuel (COPA) devrait suivre cette tendance et passer de 3 à 3,4. Mais en doublant le débit, la perte de pression dans le condenseur est quatre fois plus forte. Il en résulte pour la petite installation :

  • Ppompe condenseur = (100 kPa x 1,8 m³/h) – (25 kPa x 0,9 m³/h) / (3 600 x 0,10) = 0,438 kW
  • W = 2500 h x 0,438 kW = 1 095 kWh

COPApetit = 25 000 kWh / (25 000 / 3,4) + 1 095 kWh = 2,96

et pour la grande installation :

  • Ppompe condenseur = (100 kPa x 12 m³/h) – (25 kPa x 9 m³/h) / (3 600 x 0,25) = 1 750 kW
  • W = 2 500 h x 1 750 kW = 4 375 kW

COPAgrand = 250 000 kWh / (250 000 / 3,4) + 4 375 kWh = 3,21


Choix de la technique de dégivrage

On utilise deux modes de dégivrage :

  1. Le système « by-pass » de dégivrage par gaz chaud, par lequel une partie des gaz échauffés à la sortie du compresseur est dirigée vers l’évaporateur. Ce système exige une différence de pression minimale assurée par le compresseur.
  2. L’ inversion de la direction du circuit par une vanne à quatre voies. L’évaporateur devient alors condenseur et le givre est rapidement éliminé au prix d’un plus grand besoin de chaleur momentané.

Lors du montage de l’évaporateur, il est indispensable de s’assurer que le fonctionnement du dégivrage n’est pas perturbé par un apport d’air froid dû à la circulation naturelle de l’air.

Le dégivrage des pompes Air/Air et Air/Eau

Les pertes provoquées par le dégivrage de l’évaporateur sont difficiles à évaluer avec précision car elles sont variables en fonction de la programmation des paramètres de dégivrage. L’énergie dépensée pour la fonte du givre (EFG) est généralement fournie par la pompe à chaleur qui, pour l’occasion, fonctionne en sens inverse. Elle vaut environ l’énergie utile de fonte du givre EFGu (énergie pour élever la température du givre à 0°C + chaleur latente de fusion du givre + énergie pour élever la température de l’eau de 0°C à 10°C pour éviter un regel immédiat) divisée par un rendement de 50 %. Cette énergie sera prélevée dans le bâtiment et devra en suite lui être restituée lorsque la pompe se remettra en mode chauffage. Pour des machines bien réglées avec des détections du givre optimales, la perte de COP peut valoir jusqu’à 10 % par temps froid.

Il n’est pas rare de voir des pompes à chaleur dont le système de détection du givre est mal réglé et la durée de dégivrage trop longue. Il s’en suit des consommations d’énergie excessives qui peuvent conduire à des COP inférieurs à 1.

Le graphique ci-contre, issu d’une fiche technique de constructeur, illustre l’influence du dégivrage sur la puissance calorifique et le COP d’une pompe à chaleur Air/Eau. On voit clairement la perte de COP survenant entre 3 et 10°C. L’air extérieur est chargé d’eau et le fluide frigorigène est à une température inférieure à zéro degré. La glace qui se forme « colle » à l’évaporateur.

Par contre, lorsqu’il fait très froid, l’air extérieur est plus sec et le givre apparaît alors davantage sous forme de cristaux qui n’adhèrent plus sur la paroi de l’évaporateur.

Choix de la technique de dégivrage

Sur le plan énergétique, le dégivrage par inversion du cycle est plus avantageux que le chauffage par injection de gaz chauds. Mais quelle que soit la méthode choisie, c’est surtout la durée du dégivrage qui sera le facteur important pour l’évolution du COP. Le critère d’enclenchement et de déclenchement doit être choisi avec soin.

Le choix du paramètre qui décrit la couche de givre dans l’évaporateur peut être multiple. En utilisation industrielle, il faut choisir un paramètre robuste et assez sensible. Plusieurs choix pour le lancement du dégivrage peuvent être faits :

  • Perte de charge dans l’évaporateur : la mesure de cette grandeur peut provoquer des dérives lorsqu’il y a risque de bouchonnement par des impuretés (feuilles, animaux,.) ou par des variations de pression causées par les vents externes.
  • Température de surface des ailettes : la différence entre la température de surface des ailettes et la température de l’air indique bien si une couche de givre (= isolation thermique) s’est formée. Comme le développement de givre n’est pas uniforme sur la surface de l’évaporateur, il faut bien vérifier l’emplacement du capteur de température.
  • Pincement dans l’évaporateur : la couche de givre provoque un blocage du transfert de chaleur qui se traduit par une diminution de l’efficacité de l’échangeur. Par conséquent, il y a une augmentation de l’écart de température minimal entre la température d’évaporation du frigorigène et la température de l’air en sortie d’évaporateur, écart appelé « pincement ». Pour détecter ce pincement, il faudra en général une prise de température de l’air sortant ainsi que le calcul de la température de saturation correspondante à la pression de vaporisation.

De même pour le paramètre d’arrêt, définissant la durée de dégivrage, plusieurs mesures peuvent être considérées :

  • La température du réfrigérant à la sortie de l’évaporateur : pendant le dégivrage de la batterie par inversion de cycle, un film d’eau ruisselle sur l’échangeur en refroidissant le fluide frigorigène. Une fois le dégivrage achevé, une grande partie de l’évaporateur est libérée et le transfert de chaleur diminue, ce qui provoque une réaugmentation de la température de sortie du fluide frigorigène.
  • Température de la surface des ailettes : cette mesure indique directement si l’échangeur est libéré de la couche de givre. Il est cependant difficile de bien placer la sonde pour avoir une bonne représentativité globale de l’échangeur.
  • Optimisation globale par microprocesseur : en combinaison avec les critères étalonnés en usine, le calcul du bilan énergétique par cycle de chauffage permet d’optimiser les grandeurs limites imposées sur site et en cours de fonctionnement.

Ces critères, ainsi que le critère plus « archaïque » qu’est l’horloge, devront être étalonnés soigneusement et vérifiés.

Une fois le cycle de dégivrage achevé, l’enclenchement du ventilateur à plein régime sans mettre en route le compresseur permet de sécher l’évaporateur. À défaut, les gouttelettes restantes seront rapidement gelées.

Définir la rentabilité d’un projet « Pompe à chaleur »

Définir la rentabilité d'un projet "Pompe à chaleur"


Avis Important aux Lecteurs (mars 2024)

Cet article présente des informations basées sur les données et le contexte de 2007 concernant les pompes à chaleur (PAC). Bien que les principes fondamentaux et les concepts expliqués restent pertinents, il est important de noter que l’article restera inchangé et peut ne pas refléter les dernières avancées technologiques, les changements dans le marché de l’énergie, ou les évolutions des politiques d’incitation financière. En gardant cela à l’esprit, voici quelques conseils pour aider les lecteurs à mettre en perspective les informations fournies :

  1. Considérez l’Évolution des Technologies : Les technologies des PAC ont considérablement évolué depuis 2007, offrant de meilleures performances et une efficacité accrue. Les valeurs de COP mentionnées peuvent donc avoir été dépassées par les modèles plus récents.
  2. Tenez Compte des Changements dans le Mix Énergétique : La consommation en énergie primaire et les émissions de CO2 liées à l’utilisation des PAC peuvent avoir changé, notamment en raison d’une part accrue des énergies renouvelables dans le mix énergétique.
  3. Actualisez les Informations sur les Coûts : Les données sur les coûts d’investissement et d’utilisation des PAC, ainsi que les incitations financières disponibles, peuvent avoir évolué. Il est conseillé de consulter des sources actuelles pour des estimations de coûts et de rentabilité plus précises.
  4. Recherchez les Dernières Subventions et Incitations : Les programmes de subventions et les incitations fiscales pour l’installation de PAC sont susceptibles d’avoir changé. Il est important de se renseigner sur les aides financières les plus récentes pour maximiser la rentabilité de votre investissement.
  5. Évaluez l’Impact Environnemental Actuel : Les impacts environnementaux des PAC, notamment en termes d’émissions de CO2, doivent être évalués à l’aune du mix énergétique actuel et des avancées dans les technologies de production d’électricité.

Nous invitons les lecteurs à utiliser cet article comme une base de connaissances tout en recherchant des informations supplémentaires et à jour pour prendre des décisions éclairées concernant l’utilisation des pompes à chaleur dans le contexte énergétique et environnemental actuel.

Une efficacité dépendante de la performance de la pompe

Quelle efficacité en énergie primaire si la PAC fonctionne avec l’électricité du réseau belge ?

A en croire certains fabricants, la pompe à chaleur « crée » de l’énergie gratuite « récupère » l’énergie solaire gratuite et renouvelable…

En analysant le bilan énergétique, on constate en effet que pour 3 kWh thermiques fournis, environ 2 kWh thermiques peuvent provenir de l’air extérieur ou de l’eau d’une rivière, donc des sources d’énergie renouvelable. Néanmoins, pour fonctionner, elle utilise alors 1 kWh d’énergie électrique. Or la production électrique provenant du réseau a un rendement moyen de 35 % (qui provient la production et des pertes de transport et distribution de l’électricité). Il faut donc approximativement 3 kWh en centrale pour donner 1 kWh à la PAC, … qui fournira 3 kWh en chaleur. Sur base de cette analyse, on voit que le potentiel de réduction de consommation en énergie primaire par rapport à un chaudière traditionnelle au gaz ou mazout n’est pas si évident. Sur base de chiffres plus précis, il est effectivement possible de démontrer que les PAC permettent un réduction de la consommation en énergie primaire. Néanmoins, comme montré dans le raisonnement ci-dessus, il faut s’attendre à une réduction de dizaines de pour cent, mais pas une diminution drastique par un facteur 2 ou 3.

Remarque : Par rapport au chauffage à résistances électriques, le chauffage par pompe à chaleur est donc écologiquement beaucoup plus performant. Mais si le maître d’ouvrage envisage de remplacer ses accumulateurs, il va ouvrir la comparaison à l’ensemble des moyens de chauffage …

Les performances en termes d’énergie primaire dépendent essentiellement de deux facteurs, le coefficient de performance annuel (COPA) ainsi que le facteur de conversion en énergie primaire, que nous appellerons ici « f », de l’électricité disponible sur le réseau belge. Nous reprenons ci-dessous la valeur de COPA pour les différents types de PAC selon trois sources différentes. Dans les deux dernières colonnes, on reprend la valeur minimale et maximale de COPA que l’on considère dans les estimations de performance que nous allons réaliser dans cette page.

Type COPA (Source 2009 : EF4, facilitateur PAC de la Région wallonne) COPA (Source 2008 : Paul Cobut, Energy Saving Services) COPA (Source : rapport Ministerie van de Vlaamse Gemeenschap, ANRE) COPA minimum calcul COPA maximum calcul
Air-Air 2.8-3.5 2.7 2.5 3.5
Air-Eau 2.5-3.5 3.0-3.5 2.7 2.5 3.5
Eau-Eau 3-4.5 3.0-3.8 3.0 4.5
Eau glycolée-Eau 3-4 3.2-4.0 3.2-3.6 3.0 4.0
Sol-Eau 3-4 3.2-4.0 3.2-3.6 3.0 4.0
Sol-Sol 3-4 3.2-4.0 3.2-3.6 3.0 4.0
ECS 2.5-3.0 2.0 3.0

Synthèse des différentes valeurs de COPA diffusées par différentes sources : le facilitateur PAC de la Région wallonne, EF4, un spécialiste de la PAC en Belgique, Paul Cobut, un rapport du ministère du Ministère de la Communauté flamande sur l’installation des  PAC.

La quantité d’énergie primaire consommée par kWh d’énergie thermique utile est calculée pour les différents types de PAC : plus la valeur est faible et plus la technologie est intéressante au niveau de la consommation en énergie primaire. À titre comparatif, les chaudières au gaz et au mazout se situent approximativement autour de 1.2-1.3.

On considère un scénario conservatif avec les valeurs les plus basses de COPA et un scénario positif avec les valeurs maximales. Premièrement, on considère un facteur de conversion pour l’électricité de notre réseau de 3.1. Cela veut dire que pour obtenir 1 kWh électrique en distribution, il faut compter 3.1 kWh en énergie primaire. Cette valeur correspond au cas réel de notre réseau qui produit essentiellement son électricité sur base d’énergie nucléaire (approximativement 60 %). A titre indicatif, on peut considérer la valeur de facteur de conversion prescrite par la PEB qui correspond à la part non nucléaire du réseau.

Type COPA minimum calcul COPA maximum calcul Rapport Eprimaire/Eutile pour f = 3.1 et COPA minimum Rapport Eprimaire/Eutile pour f= 3.1 et COPA maximum Rapport Eprimaire/Eutile pour f =2.5 (PEB) et COPA minimum Rapport Eprimaire/Eutile pour f = 2.5 (PEB) et COPA maximum Rapport Eprimaire/Eutile par ANRE
Air-Air 2.5 3.5 1.25 0.88 1.0 0.71 0.9
Air-Eau 2.5 3.5 1.25 0.88 1.0 0.71 0.9
Eau-Eau 3.0 4.5 1.0 0.68 0.83 0.55 0.66-0.83
Eau glycolée-Eau 3.0 4.0 1.0 0.77 0.83 0.62 0.76
Sol-Eau 3.0 4.0 1.0 0.77 0.83 0.62 0.73
Sol-Sol 3.0 4.0 1.0 0.77 0.83 0.62 0.73
ECS 2.0 3.0 1.5 1.0 1.25 0.83

Rapport entre consommations en énergie primaire et énergie utile pour les différentes technologies de PAC suivant deux scénarios de COPA (conservatif et optimiste) et deux facteurs de conversion de l’électricité du réseau en énergie primaire.

Si on prend l’hypothèse la plus défavorable de COPA minimum avec un facteur de conversion de 3.1 (avec nucléaire), on voit que le rapport entre énergie primaire et énergie thermique utile délivrée est du même ordre de grandeur que pour les chaudières gaz ou mazout. Seule la production d’ECS donne des résultats moins intéressants. Par contre, dès que l’on travaille avec les meilleures performances de PAC (COPA max), les valeurs sont nettement plus intéressantes. Sur base de cette observation, nous proposons la conclusion suivante : avec les COPA attendu les plus faibles, les PAC sont aussi performantes que les chaudières en ce qui concerne l’énergie primaire, par contre, en travaillant sur base des meilleures performances, un gain substantiel est possible.

Cela met aussi clairement en évidence l’intérêt de travailler avec dans les meilleures conditions pour obtenir les meilleures performances : bon matériel, bonne conception, bonne régulation et bon maintien, entretien de l’installation. La qualité est un aspect très important. Il existe un label au niveau wallon pour l’installation des pompes à chaleur, le label PACQUAL : voir ouverture d'une nouvelle fenêtre ! le site internet de RBF (Renewable Buiseness Facilitateur) qui représente les intérêts d’entreprises wallonnes actives dans le renouvelable.

Logo du label PACQUAL (Source : ouverture d'une nouvelle fenêtre !  site internet RBF).

Quelle efficacité en émission de CO2 si la PAC fonctionne avec l’électricité du réseau belge ?

Comme pour l’analyse de la consommation en énergie primaire, le coefficient de performance annuel de la PAC, le COPA, est un paramètre de première importance.  Les valeurs introduites dans le tableau ci-dessus, valeurs typiques minimales et maximales, seront reprises pour l’évaluation des émissions de CO2. En ce qui concerne l’électricité du réseau, nous tenons compte de la production des centrales nucléaires. Cela donne une émission de 302 grammes d’équivalents-CO2 par kWh électrique consommé sur le réseau. À titre comparatif, nous avons placé dans le tableau les émissions caractéristiques de CO2 pour un chauffage direct par l’électricité et par une chaudière au gaz (dont on considère que le rendement saisonnier est de 90 %, le cycle complet du combustible avec 232 grammes d’équivalent-CO2 produits par kWh thermique final).

Type COPA minimum calcul COPA maximum calcul Emission de CO2 : COPA mininmum [gramme équivalent CO2/kWh] Emission de CO2 : COPA maximum [gramme équivalent CO2/kWh]
Air-Air 2.5 3.5 120 86.28
Air-Eau 2.5 3.5 120 86.28
Eau-Eau 3.0 4.5 100 67.11
Eau glycolée-Eau 3.0 4.0 100 75.5
Sol-Eau 3.0 4.0 100 75.5
Sol-Sol 3.0 4.0 100 75.5
ECS 2.0 3.0 151 100
Chauffage électrique direct 302 302
Chauffage au gaz naturel 257 257

Émission de CO2 pour les différentes technologies de PAC suivant les deux scénarios de performance COPA.

Le résultat est sans appel : quelque soit le niveau de performance, COPA, considéré, les PAC émettent nettement moins de CO2 que le chauffage traditionnel et, évidemment, que le chauffage électrique direct. C’est parfois un argument qui est avancé pour promouvoir l’installation des pompes à chaleur. Cet argument est correct, mais nous tenons néanmoins à donner une nuance. Le lecteur pourra ainsi se faire sa propre opinion.

Ces performances en émission de CO2 des PAC proviennent essentiellement de la structure de la production électrique en Belgique, essentiellement dominée par les centrales nucléaires. Sur base des analyses de bilan CO2 actuelles, le nucléaire émet très peu de CO2. Dans le débat, il faut savoir aussi que certains groupes remettent en question cette hypothèse de départ.  D’après ceux-ci, la production d’énergie par centrales nucléaires contiendrait beaucoup d’ « énergie grise » (pour la construction, démantèlement, gestion des déchets, …). Comme les centrales nucléaires émettent relativement peu de CO2 et que les PAC consomment de l’électricité, les émissions de CO2 sont donc relativement plus faibles, ce qui est tout bénéfice pour éviter le réchauffement climatique. Néanmoins, il ne faut pas perdre de vue que le nucléaire produit des déchets qui peuvent être potentiellement très dangereux pour l’environnement. La problématique des déchets nucléaires est un sujet bien connu. En conclusion, on a, quelques part déplacé le risque du réchauffement climatique (CO2) vers le danger des déchets nucléaires.

Quelle efficacité environnementale si la PAC fonctionne avec l’électricité produite de manière renouvelable ?

Les conclusions données précédemment considéraient que l’électricité consommée par la PAC provenait du réseau, réseau essentiellement dans son état actuel. Les conclusions sont tout à fait différentes si on considère que l’électricité qui alimente la PAC est produite sur base d’énergie renouvelable. Dans ce cas, les performances environnementales des PAC sont remarquables.

Quelle rentabilité financière ? Investissement et coût à l’utilisation

Une installation de chauffage basée sur une PAC est généralement plus chère à l’investissement qu’une installation équivalente basée sur des chaudières traditionnelles. On l’observe du moins clairement dans le secteur domestique. Par contre, pour le domaine du tertiaire, nous manquons d’information.

En ce qui concerne le coût d’utilisation, les frais liés à la consommation d’électricité, le coefficient de performance annuel, COPA est encore central.

Nous allons reprendre notre petite étude avec la plage de valeurs de COPA rencontrées en pratique. Le prix de l’électricité est pris à 192 c€/kWh en heures pleines et 105 c€/kWh en heures creuses. Le prix du gaz est fixé à 70 c€/kWh. Ces valeurs sont caractéristiques du secteur domestique en juin 2009 (Source : Apere, Renouvelle). Les calculs suivants sont bien sûr des instantanés dans la mesure où le prix de l’énergie est amené à évoluer dans le temps.

Type COPA minimum calcul COPA maximum calcul Coût : COPA minimum [c€/kWh] (elec de jour) Coût : COPA maximum [c€/kWh] (elec de jour)
Air-Air 2.5 3.5 76.8 54.8
Air-Eau 2.5 3.5 76.8 54.8
Eau-Eau 3.0 4.5 64 42.6
Eau glycolée-Eau 3.0 4.0 64 48
Sol-Eau 3.0 4.0 64 48
Sol-Sol 3.0 4.0 64 48
ECS 2.0 3.0 96 64
Chauffage électrique direct
(élec. de jour)
192 192
Chauffage électrique accumulation
(élec. de nuit)
105 105
Chauffage au gaz naturel 77.8 77.8

Coût du kWh thermique utile produit pour des PAC fonctionnant avec l’électricité de jour (heures pleines). Le prix de l’énergie est aligné sur le secteur domestique à la date de juin 2009.

Le Tableau ci-dessus considère que les PAC fonctionnent essentiellement sur l’électricité de jour, en heures pleines durant lesquelles les prix sont les plus élevés. C’est donc un cas assez défavorable. Comparé à un système conventionnel comme une chaudière au gaz, on voit que les PAC air-air et air-eau sont comparables au gaz avec les COPA faibles. Pour les autres approches, l’énergie fournie est légèrement moins chère que le gaz. Par contre, en considérant les meilleures performances, on obtient des prix sensiblement plus intéressants que le gaz. Cela met encore une fois en évidence l’importance d’installations de PAC qui fonctionnent de manière optimale, et donc, présentant les meilleurs COPA.

On voit donc l’équilibre qu’il faut atteindre pour réaliser une installation rentable basée sur une PAC. L’investissement sera généralement plus cher que pour une chaudière traditionnelle, mais le coût d’utilisation sera moindre. Ces gains durant la durée d’utilisation du matériel doivent contrebalancer ce surinvestissement.  Dans ce genre de calcul, on considère typiquement que la durée d’utilisation d’une pompe à chaleur ou une chaudière est de 20 ans. En d’autres termes, il faut récupérer les surinvestissements sur ces 20 années au maximum pour que le projet soit rentable.

Dans les calculs précédents, nous avons supposé que la PAC fonctionnait avec l’électricité de jour, en heures pleines. En fait,  il est possible de stocker en partie la chaleur fournie par la PAC durant la nuit (chauffage par le sol, par ex.) et donc d’avoir une partie substantielle du coût en électricité de nuit. Néanmoins, cette gestion détériore le rendement du système de chauffage (forte inertie, difficulté de régulation en période ensoleillée, air extérieur plus foid la nuit si PAC Air/eau, …). En conclusion, il est difficile d’établir un prix du kWh en travaillant de cette manière.

Pourquoi ne trouve-t-on pas plus de pompes à chaleur dans nos maisons ?…

Supposons une PAC air-air. Elle doit fonctionner avec du courant de jour. Pour le particulier, le prix du kWh électrique est 3 x plus élevé que le prix du kWh thermique (gaz, fuel, …). Avec un COPA inférieur à 3, la rentabilité financière n’existe plus pour la PAC… Malgré un rendement de près de 300 % sur l’énergie électrique fournie, c’est pratiquement aussi cher que de produire la chaleur par un système traditionnel au gaz ou au fuel…

Supposons une PAC air-eau, avec un système de chauffage par le sol. Cette fois, l’inertie du chauffage par le sol permet d’utiliser le courant de nuit dont le prix du kWh est de l’ordre de 2 fois celui du kWh thermique. Ainsi, la PAC se justifie beaucoup mieux. Seul inconvénient : la régulation du chauffage par le sol est difficile (quelle charge du sol durant la nuit ? Quel temps fera-t-il demain ? Si les occupants sont absents toute la journée, pourquoi chauffer ? Si le sol est déjà chaud, l’arrivée des rayons solaires va provoquer une surchauffe…) et le système reperd une part de sa rentabilité par les pertes de régulation …

Bien sûr, l’usage de la PAC est nettement plus logique que le chauffage électrique, direct ou à accumulation. Ces derniers systèmes devraient d’ailleurs être interdits, pour protéger le consommateur(dépendant du choix fait par des promoteurs immobiliers) et la société (bilan écologique désastreux).


Une performance dépendant de divers facteurs

Dans la section précédente, nous avons clairement mis en évidence l’importance de travailler avec les meilleurs COPA pour atteindre les meilleures rentabilités et performances environnementales (analysées ici en termes d’émission d’équivalent CO2 et de consommation en énergie primaire).

Ce coefficient de performance annuel, COPA, dépend de multiples facteurs faisant référence à tous les aspects d’un bâtiment. C’est pourquoi, pour assurer les meilleures performances, tous ces critères doivent être respectés au sein d’une approche globale. Suivant les présentations techniques de Paul Cobut (Energy Saving Services) de 2009, les différents paramètres influençant le COPA sont répertoriés de la manière suivante :

  • Les performances du matériel en tant que tel, de la PAC : Celles-ci sont traduites par le COP évalué en laboratoire dans des conditions d’essai reprises dans des normes. Il faut donc être vigilant par rapport à du matériel proposé par des fabricants ou installateurs dont les performances n’ont pas été certifiées.
  • La zone climatique : Si on travaille avec l’air extérieur comme source froide, les performances seront d’autant meilleures que la température extérieure sera élevée. Les performances annuelles de la PAC seront donc influencée par la zone climatique à laquelle on appartient.  On peut se rendre de compte de l’évolution des conditions météorologiques à l’échelle de notre territoire en analysant l’évolution des degrés-jours suivant les différentes localités.
  • Le type de chauffage : On a aussi bien développé l’influence du type de source chaude ainsi que leurs caractéristiques. De manière générale, on favorise les émetteurs basse température, que ce soit un chauffage par le sol ou par radiateurs basse température, pour atteindre la différence de température la plus faible entre la source chaude et froide et ainsi atteindre les meilleurs COP.
  • Le mode de vie : Sur base de ce constat, on peut aussi en déduire que le mode de vie, la façon dont les occupants gèrent la consigne de température dans le bâtiment a une influence : augmenter la température de consigne est équivalent à augmenter la température de la source chaude et donc synonyme de COP plus faible.

   

Affiches tirées de la partie Sensibilisation

.

  • Le mode de régulation : De même, l’influence du mode de régulation a été développée dans une autre page. Il s’agit d’une part, de la régulation de la PAC (mode « tout ou rien », avec « by-pass » ou « modulation de fréquence) mais aussi de la régulation de la PAC avec son appoint.
  • Fonction simple ou mixte : Le fait que la PAC doive produire la chaleur pour le chauffage des pièces et de l’ECS (fonctionnement mixte). La production d’ECS demande une température de la source chaude plus élevée (notamment pour la stratégie d’élimination du risque de légionnelles). Du coup, les performances seront plus faibles que pour le chauffage des locaux. Dans les raisonnements ci-dessus, un COPA distinct pour la production d’ECS a été considéré.

Une campagne de mesure sur site en Belgique

Généralement, les fiches techniques des fabricants de pompes à chaleur indiquent un COP instantanés mesuré en usine dans des conditions idéales. Les valeurs proposées sont donc peu instructives pour un calcul de rentabilité.
La Faculté Polytechnique de Mons procède à une campagne de mesure des performances de pompes à chaleur à usage domestique (chauffage d’habitation) dont les résultats partiels (après 5 mois d’études) sont les suivants :

PAC Air/ Air

Une première installation, d’une puissance de 13,4 kW + appoint électrique de 7,5 kW a donné un COP moyen mesuré sur 5 mois de 2,15 (2.63 si on considère uniquement la pompe à chaleur). Le COP annoncé par le fournisseur était de 3,53 dans des conditions de température intérieure de 20°C et extérieure de 7°C.
Une seconde installation, d’une puissance de 10.5 kW + appoint électrique de 2,5 kW a donné un COP moyen mesuré sur 5 mois de 1,41 (1,74 si on considère uniquement la pompe à chaleur). Le COP annoncé par le fournisseur était de 3,09 dans des conditions de température intérieure de 21°C et extérieure de 8°C.

PAC Air/ Eau

Une première installation, d’une puissance de 10,4 kW + convecteurs électriques d’appoint dans certaines pièces et résistance électrique d’appoint sur le circuit, a donné un COP moyen mesuré sur 5 mois de 2,08 (3 si on considère uniquement la pompe à chaleur). Le COP annoncé par le fournisseur était de 3,92 dans des conditions de température extérieure de 7°C et d’eau de chauffage de 35°C.
Une seconde installation, d’une puissance de 16,28 kW + convecteurs électriques d’appoint dans certaines pièces (700 W) et résistance électrique d’appoint sur le circuit (6 kW) a donné un COP moyen mesuré sur 5 mois de 2,8 (3,45 si on considère uniquement la pompe à chaleur). Le COP annoncé par le fournisseur était de 4,35 dans des conditions de température extérieure de 7°C et d’eau de chauffage de 35°C.

PAC Sol/Sol

Une première installation couvrant une partie de l’habitation (125 m²), d’une puissance de 10,1 kW + 3 appoints électriques dans les pièces chauffées par la PAC (total = 3,25 kW) et 5 appoints dans les pièces non chauffées (total = 4,25 kW), a donné un COP moyen mesuré sur 5 mois de 2,54. Le COP annoncé par le fournisseur était de 3,99 dans des conditions – 5°C/30°C (surchauffe de 10°C et sur refroidissement nul).
Une seconde installation couvrant une partie de l’habitation (75 m²), d’une puissance de 6.8 kW + 3 appoints électriques dans les pièces chauffées par la PAC (total = 3 000 W) et 4 appoints dans les pièces non chauffées (total = 4 250 W), a donné un COP moyen mesuré sur 5 mois de 2,91. Le COP annoncé par le fournisseur était de 4,45 dans des conditions – 5°C/30°C (surchauffe de 10°C et sur refroidissement nul).
De quoi remettre les pendules à l’heure…

Frais d’investissement

Le principal facteur influençant le coût d’investissement de la PAC est la puissance du compresseur. Plus elle sera élevée, plus la pompe à chaleur sera chère.

Pour les petites puissances, la relation théorique entre la puissance du compresseur Qc et le coût d’investissement (CI) est de l’allure suivante pour les PAC Air/Eau et Eau/Eau :

CI = 2 500. (QC) 0,4

Frais d’investissement pour les PACs Air-Eau et Eau-Eau (Source KUL).

À cela, il ne faut pas oublier d’ajouter le coût du réseau de distribution (chauffage par le sol, par exemple) et des différents appareils annexes (compteur électrique,…). Pour les PAC bivalentes, il faut aussi tenir compte du coût de la chaudière traditionnelle.

Les ordres de grandeur des coûts d’investissement pour des pompes à chaleur de 10 à 12 kW présentes sur le marché belge (puissances typiques pour un logement d’une surface habitable de 150 m² isolée au niveau d’isolation K55) sont repris ci-dessous. Ces coûts comprennent les équipements d’appoints. Il est probable que ces coûts vont diminuer dans les prochaines années.

Système COPs
(y compris pertes de distribution)
Coûts d’investissement
pour une puissance installée
de 10 à 12 kW [€]
Air/ Air 2.5 8 750 à 9 400
Air/ Eau 2.9 9 400 à 10 500
Sol/ Eau 3.3 11 250 à 13 750

Source : Institut de Conseils et d’Études en Développement Durable (ICEDD).

Néanmoins, l’utilisateur peut avoir intérêt à choisir des pompes de forte puissance. En effet, ramené au kW, les frais d’investissement décroissent avec la puissance. À titre d’exemple, voici l’évolution des frais d’investissement de pompes à chaleurs en Suisse en 1992 en fonction de la puissance nominale de chauffage (source Ravel). On voit ainsi que plus l’installation sera puissante, moins le kW thermique installé sera cher.

À noter qu’une pompe à chaleur n’a besoin ni de cheminée, ni de citerne, ce qui permet de réduire le coût du gros œuvre.

Dans les études de rentabilité des PAC, on considère typiquement que le durée d’utilisation de l’installation est de 20 ans. A titre d’exemple, les expériences d’installations aux États-Unis (on estime à environ 940 000 le nombre d’installations ces dernières années) indiquent des durées de vie moyennes de l’ordre de 17 ans.

Dans le cas particulier des pompes domestiques alimentées par nappe phréatique, il faut tenir compte du coût du forage (de 500 à 850 € par mètre) et de frais annexes : étude de faisabilité (850 à 2 500 €), analyse de l’eau (850 €). Ces valeurs sont uniquement des ordres de grandeur indicative.

Si la demande de puissance est plus importante, les frais d’investissement seront plus lourds :

Puissance nominale du chauffage [kW] Diamètre du puits [mm] Frais spécifiques [€/m]
< 70

71 à 140

141 à 550

150

300

800

200 à 250

300 à 400

350 à 500

Source : Ravel-Suisse. (Chiffres de 1995).

Le coût des installations géothermiques à forage vertical est aussi très important : entre 600 et 900 € par kW de chaleur récupérée, à savoir 55 à 65 € le mètre de profondeur et un besoin d’une quinzaine de mètres par kW.


Frais d’exploitation

Il est impossible d’évaluer simplement la consommation d’une PAC d’un bâtiment tertiaire, d’autant que celle-ci reprend souvent autant des consommations de chaud que de froid. Seule une simulation informatique peut atteindre cet objectif, avec un encodage lourd des caractéristiques du bâtiment et de ses critères d’exploitation.

Méthode proposée par Electrabel pour le domestique

Par contre, selon Electrabel, une estimation des consommations d’une pompe à chaleur domestique peut être calculée a priori selon la formule :

Où,

  • K1 est un facteur tenant compte du ralenti de nuit éventuel. En cas de ralenti, il vaut 0.85 si PAC air/air et 0,9 si PAC air/eau,
  • K2 est un facteur prenant en compte l’occupation ou la non-occupation de jour,

Régime d’occupation

K2
Occupation de jour
Non-occupation de jour PAC air/air
Non-occupation de jour PAC air/eau
1
0.90
0,95
  • K3 est un facteur prenant en considération l’impact d’un chauffage auxiliaire par convecteurs électriques,

Watts aux. /
PAC Watts + 7°C

K3 si air/air K3 si air/eau
0.15
0.20
0.25
0.30
0.35
1.15
1.19
1.23
1.25
1.30
1.17
1.21
1.26
1.30
1.35
  • K4 est un facteur de rendement de la pompe à chaleur relatif à sa température d’équilibre (= T° correspondant à la puissance de dimensionnement de la PAC) et à la température minimale extérieure. C’est la valeur inverse du COP annuel (COPA),
K4 si air/air
équilibre PAC équilibre PAC
T°min. ext. [°C] – 5 < T° éq. < – 2 – 3 < T° éq. < 0
> = – 10°C
< – 10°C
0.37
0.40
0.38
0.44
K4 si air/eau
équilibre PAC équilibre PAC
min. ext. [°C] – 5 < T° éq. < – 2 – 3 < T° éq. < 0
> = – 10°C
< – 10°C
0.34
0.37
0.35
0.41

Pour les pompes bivalentes parallèles, les choses sont plus compliquées. Les paramètres deviennent très nombreux et il est difficile de formuler des règles générales. Cependant, il est important de voir qu’il existe, en fonction de la situation et des équipements choisis, une puissance de dimensionnement qui minimise les coûts annuels.

Globalement, les PAC domestiques bivalentes sont plus économiques que les monovalentes, puisque la chaudière supplée à la PAC lorsque celle-ci présente son plus mauvais rendement. Mais l’investissement est plus important.


Temps de retour de l’investissement

Le temps de retour de l’investissement est calculé par sur base du surinvestissement par rapport aux systèmes de chauffage classiques et du bénéfice fait annuellement sur les frais de fonctionnement (aussi appelé ci-dessous frais d’exploitation). Il est bien sûr dépendant de l’efficience de la pompe installée, de son prix à l’achat, de sa puissance, du coût de l’énergie,…

Pompe à chaleur domestique : nos estimations en 2009

Sur base de nos estimations dans le domestique, hors subsides, primes et incitants fiscaux, les pompes à chaleur peuvent être intéressantes économiquement si on peut compter sur les meilleures performances annuelles COPA (dont les valeurs cibles réalistes sont reprises dans le tableau ci-dessus). Dans ce cas, on est en mesure d’amortir en un temps inférieur à la durée d’utilisation de la PAC (c’est-à-dire 20 ans) le surinvestissement par rapport à des chaudières classiques fioul ou gaz. De beaux gains sont possibles.

Cependant, il faut aussi être vigilant concernant les performances du bâtiment, de son enveloppe, à chauffer. Techniquement, le bâtiment doit être suffisamment bien isolé pour permettre de travailler avec des émetteurs basse température (BT) et donc atteindre les meilleurs rendements. D’un autre côté, il faut que le besoin net de chauffage du bâtiment soit suffisamment important pour pouvoir amortir le matériel (son surinvestissement) sur base de frais d’utilisation plus faibles que les chaudières classiques. Par exemple, hormis quelques modèles spécifiques, on rencontre rarement des PAC installées dans les maisons passives. Une des raisons est le surinvestissement pour une installation de PAC et les faibles consommations qui rendront l’amortissement plus délicat.

Pourquoi ne pas citer des chiffres sur les temps de retour ou d’autres indicateurs économiques ? Simplement parce que l’investissement est très variable suivant les circonstances : d’une part selon le projet, le type d’émetteurs que l’on choisit (chauffage par radiateurs BT ou par la sol), la production d’ECS combinée ou pas et, d’autre part, selon les installateurs et les marques. Il y a de grosses variations qui ne permettent pas de donner des chiffres précis, mais plutôt des tendances comme nous l’avons fait ci-dessus. Cette remarque nous permet, premièrement, d’encourager les candidats à comparer les prix tout en s’assurant de la qualité du matériel et de l’installation (cfr. label PACQUAL) et, deuxièmement, d’encourager les candidats à réaliser sur base des devis obtenus une étude de la rentabilité du projet. Les fourchettes de valeurs de performances données dans le tableau ci-dessus devraient donner une bonne estimation du temps de retour.

Finalement, il ne faut pas oublier d’intégrer les incitants fiscaux (primes, subsides ou réductions fiscales) qui rendent les investissements encore plus attrayants.

Pompe à chaleur domestique : autre point de vue, étude de la KUL de 1997

Les tableaux ci-dessus résument une évaluation par la KUL de 1997 des temps de retour d’investissement pour des puissances calorifiques de pompes à chaleur de 5, 10 et 15 kW avec distribution par chauffage par le sol, par rapport à des chauffages au fuel et au gaz avec le même mode de distribution. Ces valeurs concernent l’utilisation de la PAC comme chauffage domestique. Attention : le nombre et la variabilité des paramètres sont tels que ces résultats ne peuvent pas être généralisés. Ils constituent cependant un point de départ utile pour une discussion sur le temps de retour de la PAC.

Puissance
calorifique

Chaudière
classique

Temps de retour
PAC Air/Eau monovalente
[années]
SPF = 2 3 4 5 6

5 kW

Gasoil

X 523 30 19 16

Gaz

X 41 21 16 14

10 kW

Gasoil

X X 29 16 12

Gaz

X 75 20 14 11

15 kW

Gasoil

X X 26 13 10

Gaz

X 147 18 12 10

X = Frais d’exploitation de la pompe > Frais d’exploitation du chauffage traditionnel.

Source : KUL – 1997.

Puissance
calorifique

Chaudière classique

Temps de retour
PAC Air/Eau bivalente
[années]
SPF = 2 3 4 5 6

5 kW

Gasoil

X 281 14 9 7

Gaz

X 24 12 10 8

10 kW

Gasoil

X X 5 2 2

Gaz

X 52 8 5 4

15 kW

Gasoil

X X 3 2 2

Gaz

X X 7 5 4

X = Frais d’exploitation de la pompe > Frais d’exploitation du chauffage traditionnel.

Source : KUL – 1997.

On remarque que le temps de retour diminue avec la puissance de la pompe installée et son facteur de performance saisonnier SPF. Il est aussi plus court pour les PAC bivalentes que pour les monovalentes grâce à leur fonctionnement continu durant la période de chauffe.

Si on considère une durée de vie de 15 à 20 ans, la PAC monovalente ou bivalente ne sera rentabilisée que si son coefficient de performance saisonnier SFP est supérieur à 4 ou 3  respectivement. De tels résultats ne peuvent s’obtenir que si l’installation est performante et bien régulée.

Notons que les subsides accordés aux installations de PAC n’ont pas été pris en compte. Ils permettent pourtant de réduire significativement le temps de retour de l’investissement… De plus, certaines économies de gros œuvre permises par les PAC monovalentes (absence de cheminée) n’ont pas été retenues. Enfin, la probable évolution à la baisse des coûts d’investissement et l’évolution favorable des coûts de l’énergie électrique face aux combustibles fossiles vont aussi améliorer rapidement ces performances (les prix de l’énergie pris en compte datent de 1997. On constate d’ailleurs que les prix du fuel étaient très bas à l’époque. En 2002, le prix du fuel a rejoint celui du gaz, qui lui-même a fortement augmenté depuis 1997). Malgré qu’elle soit dépassée, nous avons volontairement gardé cette étude parce qu’elle montre l’importance d’une évaluation sur le long terme du prix de l’énergie.

Pompe à chaleur tertiaire

Les pompes à chaleur utilisées dans le tertiaire sont plus rentables du fait du coût plus élevé des éléments qu’elles remplacent, comme des systèmes de traitement d’air, de leur valorisation en chaud comme en froid, ou de leur utilisation directement destinée la récupération de chaleur. Il est cependant difficile de donner des évaluations du temps de retour tant le nombre de facteurs impliqués est grand et la diversité des solutions importante.

Il est possible de se faire une idée à partir de quelques études de cas extraites de la littérature :

Études de cas

Pour découvrir la rentabilité de quelques applications tertiaires de la PAC.

Subventions

Sous conditions, la Région wallonne accorde une prime sur le placement d’une pompe à chaleur.  En outre, dans le cas du remplacement d’une chaudière existante, on peut bénéficier de réductions fiscales. Pour tout renseignement utile, voir ouverture d'une nouvelle fenêtre ! le portail de la Région wallonne ou ouverture d'une nouvelle fenêtre ! le site du facilitateur pompe à chaleur de la Région wallonne EF4.