Valoriser la fraîcheur de l’environnement [Esquisse du projet]

Valoriser la fraîcheur de l'environnement


Valoriser la fraicheur de l’air extérieur

Le potentiel lié à la fraicheur extérieure

L’isolation des bâtiments élargit la période de refroidissement en mi-saison et en été. Ce besoin peut être pour une bonne part résolu en valorisant l’air extérieur lorsqu’il est plus frais que la consigne intérieure.

En moyenne, la température extérieure à Uccle est 98 % du temps inférieur à 24°C et ne dépasse 27° que 40 heures par an. En outre, en été, dans notre pays, la température nocturne minimale est inférieure de plus de 8°C à la température maximum diurne, et cette température extérieure nocturne est toujours inférieure aux plages de confort. Il existe donc un pouvoir rafraîchissant naturel important de l’air extérieur, sans traitement et donc sans coût énergétique autre que son transport.

Les profils de températures moyennes à Uccle montrent que la température extérieure est généralement inférieure à la température de confort.

Ce pouvoir rafraîchissant est cependant limité par deux facteurs : la faible capacité frigorifique de l’air extérieur et la quantité d’air pouvant être valorisée, qui est limitée par l’encombrement des gaines de ventilation, la taille des ouvertures en façade, le risque de générer un courant air.

Ainsi, imaginons un local à 26°C avec une charge thermique (élevée) de 60 W/m² (ordinateur, éclairage, occupants, ensoleillement, …) ou 20 W/m³ (si la hauteur sous plafond est de 3 m). La température de l’air extérieur est de 20°C. Calculons le débit nécessaire pour évacuer la chaleur d’un m³ du local :

débit = 20 [W/m³] / (0,34 [W/(m³/h).K] x 6 [K]) = 9,8 [renouv./h]

où,

  • 0,34 W/m³.K est le pouvoir calorifique de l’air et 6 K est la différence de température entre l’intérieur et l’extérieur

Il faudrait donc un taux de renouvellement horaire de 9,8 : chaque heure, l’air du local serait renouvelé 10 fois ! en dehors de la difficulté technique, cela génère un climat peu confortable…

En pratique, la fraîcheur de l’air extérieur peut être valorisée de trois façons : par une ventilation intensive naturelle (free cooling naturel), par l’intégration d’air frais dans le système de conditionnement d’air (free cooling mécanique), et par le refroidissement direct des boucles d’eau froide (free chilling).

Données

En savoir plus sur le climat belge ?

L’exploitation de l’air extérieur par ventilation naturelle (free cooling naturel)

La  ventilation intensive estivale (ou free cooling naturel), vise le refroidissement passif du bâtiment par l’ouverture de sa façade. L’objectif est soit de compenser en journée les charges internes et solaires, soit de « décharger » et refroidir pendant la nuit la masse du bâtiment, afin que cette masse puisse limiter la montée en température le lendemain.

La ventilation intensive est efficace en journée si l’air extérieur n’excède pas la température intérieure, mais n’est pas non plus trop froid, pour éviter la sensation de courant d’air, ce qui limite son usage en mi-saison. De plus, il restera toujours les 40 heures, soit de 5 à 10 journées de travail par an, où la ventilation ne ferait qu’empirer les choses puisque la température extérieure est supérieure à la température intérieure. Le refroidissement par ventilation de jour peut donc être une solution en mi-saison, mais a ses limites en été.

Le refroidissement par ventilation de nuit par contre conserve son efficacité toute l’année, sauf canicule extrême. Malgré tout, pour qu’un free cooling permette de se passer de climatisation en journée, il faut assurer durant la nuit, un taux de renouvellement d’air nettement plus important que le taux de ventilation hygiénique : au minimum 4 [vol/h] par rapport à 1 [vol/h].

Au-delà de l’économie d’énergie qui en résulte, c’est une certaine qualité de vie qui est recherchée : absence de système sophistiqué de climatisation, … et plaisir de pouvoir ouvrir sa fenêtre et d’entrer plus en contact avec l’environnement extérieur.

Techniques 

En savoir plus sur la ventilation intensive d’été ?

L’intégration  de l’air frais dans le système de conditionnement d’air (free cooling mécanique)

La climatisation est parfois nécessaire (charges thermiques élevées, consignes intérieures strictes de température et d’humidité, …).

On sera alors attentif au fait que le système installé n’exclue pas le refroidissement naturel : dès que la température extérieure descend, elle doit pouvoir supplanter la climatisation mécanique. Idéalement, celle-ci ne devrait plus servir que dans les périodes de canicule.

Tout particulièrement, dans les locaux refroidis toute l’année (locaux intérieurs, locaux enterrés, …) et dans les locaux à forte occupation de personnes (salles de conférence, locaux de réunion, …), il est dommage de faire fonctionner la climatisation en hiver et en mi-saison. On privilégiera les systèmes « tout air » à débit variable.

Durant les nuits d’été, le bâtiment peut facilement être refroidi par le balayage de l’air extérieur (l’installation fonctionne alors en « tout air neuf »). Et en mi-saison, l’air extérieur assure seul le refroidissement par mélange avec l’air recyclé.

Bien sûr, la consommation du ventilateur ne doit pas dépasser celle de la machine frigorifique ! La perte de charge du réseau de ventilation (pulsion, extraction et recyclage) doit rester faible. Il faut prévoir la place pour de larges conduits.

Concevoir

En savoir plus sur le choix du mode de gestion du débit d’air neuf ?

L’utilisation de l’air frais comme source froide d’une installation de refroidissement (free chilling)

Aussi curieux que cela puisse paraître, de nombreuses machines frigorifiques fonctionnent en hiver. Pour assurer le refroidissement de la salle informatique, pour refroidir le cœur du bâtiment surchauffé par les équipements, …

La première réaction est d’imaginer de scinder la production de froid : une petite machine couvre les besoins permanents de la salle informatique, par exemple. Et la grosse machine est mise à l’arrêt en hiver, tout en pouvant jouer le rôle de groupe de sécurité en cas de défaillance de la première.

La deuxième réaction est d’analyser si le circuit d’eau glacée ne pourrait pas être refroidi directement par l’air extérieur, en by-passant la machine frigorifique. Si le fonctionnement est continu tout l’hiver, cela en vaut sûrement la peine (c’est le cas pour un groupe qui refroidirait des locaux de consultations situés en sous-sol d’un hôpital, par exemple).

Lorsque la température extérieure descend sous les 8 à 10°C, on peut fabriquer de l’eau glacée sans utiliser le groupe frigorifique. L’eau peut-être directement refroidie par l’air extérieur. La machine frigorifique est alors  mise à l’arrêt.

L’économie d’énergie est évidente ! La rentabilité du projet est d’autant plus élevée que les besoins de refroidissement sont importants en hiver et que l’installation s’y prête.

Toutes sortes de configurations sont possibles en intercalant dans la boucle d’eau glacée soit un aérorefroidisseur (en parallèle ou en série avec le groupe frigorifique) soit une tour de refroidissement (ouverte ou fermée) ou encore un échangeur à plaque couplé avec une tour de refroidissement.

Aérorefroidisseur monté en série avec un évaporateur

Concevoir

En savoir plus sur la mise  en place d’un free-chilling ?

Valoriser la fraicheur du sol

Le sol présente un potentiel important pour rafraichir les bâtiments. Sa température est, en été, moins élevée et surtout plus stable que celle de l’air extérieur. Une masse de sable, d’argile ou de roche présente en outre une capacité calorifique importante.

La température moyenne mensuelle est amortie et déphasée par rapport aux températures extérieures. Le sol présente donc un potentiel de rafraichissement particulièrement intéressant au printemps et en été, lorsque la température extérieure est plus élevée.

Les propriétés thermiques du sol dépendent des propriétés de ses constituants et de leurs proportions. Quelques ordres de grandeur :

nature des constituants Conductivité thermique (W/m°c) Capacité calorifique volumique Cp(Wh/m3°c) Diffusivité thermique (m2/h
constituants minéraux 2,92 534 0,0054
constituants organiques 0,25 697 0,00036
eau 0,59 1 163 0,00050
air 0,025 0,34 0,0756

Frédéric Chabert « Habitat enterré » (1980).

La conductivité thermique des sols varie de 1 à 5 selon qu’il est sec ou saturé. La capacité thermique moyenne des sols varie elle de 1 à 3.
L’exploitation de la fraicheur du sol se fait en y organisant un échange de chaleur par le passage contrôlé d’air ou d’eau. Lorsqu’il s’agit d’un échangeur air-sol, on parle de puits canadiens ou provençaux. Lorsqu’il s’agit d’un échangeur eau-sol, on parle de geocooling, une appellation qui, strictement, devrait également recouvrir les puits canadiens.

Parmi les diverses solutions d’échangeur eau-sol, notons l’exploitation du sol sous la dalle de fondation (attention à la puissance qui peut rester alors faible…),

ou dans les pieux de fondation :

Des échangeurs de type forage vertical, indépendants de la structure du bâtiment, sont également possibles.

Une autre possibilité est d’utiliser l’eau des nappes phréatiques souterraine au moyen, en la pompant pour la conduire vers un échangeur de chaleur eau-eau, mais cette technique peut générer des problèmes de nature hydraulique dans le sol (déséquilibres des nappes phréatiques, pollutions).

Un des grands intérêts des techniques de geocooling est que le niveau de température concerné (de 5 à 15°C) est intéressant tant :

  • Pour le refroidissement direct : un échange de chaleur, par l’intermédiaire de boucles d’eau, entre le bâtiment est le sol), en vue d’alimenter un système de refroidissement par dalle ou par plafond froid.
  • Pour le refroidissement indirect : valoriser le sol comme source froide de la machine frigorifique, quel que soit le système de distribution et d’émission dans le bâtiment.
  • Que pour le chauffage par pompes à chaleur. En pratique, on n’envisagera pas de valorisation thermique du sol uniquement pour le refroidissement estival. L’investissement en pompages ou forage ne se fera que si le sol peut être valorisé au maximum de son potentiel, c’est-à-dire tant en refroidissement l’été qu’en chauffage l’hiver. Le géocooling est donc intimement lié à la géothermie.

Pour en savoir plus :

Concevoir

Choisir une production de froid « alternative » : geocooling

Concevoir

Choisir un système rayonnant sur boucle d’eau froide : plafond froid et dalle active.

Concevoir

Le choix de la source de chaleur du chauffage par pompe à chaleur.

Techniques

Le géocooling.

Valoriser la physique de l’air humide

Le contenu énergétique de l’air est lié à la fois à sa température et à son humidité. En effet, la présence de vapeur d’eau dans l’air représente une forme d’énergie latente, égale à la quantité d’énergie nécessaire pour vaporiser ou condenser cette eau. La somme de l’énergie sensible (liée à la température) et de l’énergie latente (liée à l’humidité) est appelée enthalpie. Cette quantité d’énergie est importante, puisque la chaleur de vaporisation d’un litre d’eau est de 2 257 kJ/kg (à la pression atmosphérique et à 100 °C). Soit 5,4 fois plus que pour chauffer le litre d’eau de 0 à 100 °C ! Elle est cependant limitée par la quantité maximale de vapeur que l’air peut contenir, qui dépend de sa température.

Le diagramme psychrométrique est l’outil indispensable pour visualiser et mesurer ces quantités d’énergie. L’enthalpie est représentée sur l’axe diagonal à gauche du diagramme. On constate que le niveau d’enthalpie est équivalent pour un air à 30 °C et 30 % d’humidité relative et pour un air à 17 °C et 100 % d’humidité relative. Autrement dit, si l’on arrive à créer des transferts entre l’énergie sensible et l’énergie latente d’une masse d’air, on devrait être en mesure de créer de l’air froid (et humide) au départ d’air chaud (et sec). Et cela sans grande consommation d’énergie, puisque l’enthalpie de l’air serait conservée.

Comment réaliser ce petit miracle ? Simplement en humidifiant l’air.
En pratique, deux types d’applications ont été développées pour valoriser ce principe physique.
Le premier dispositif se trouve dans l’architecture vernaculaire de nombreuses cultures, mais fut particulièrement développé par les Perses. Ils combinaient des tours à vent (« bagdir ») avec locaux servant de glacières (« yakh-chal ») souvent reliées à un canal souterrain (« qanat »). Par cet ensemble de dispositifs, ils étaient capables de conserver des aliments et rafraîchir des bâtiments dans un climat particulièrement chaud. Marco-Polo, lors de son premier voyage en orient, se serait vu offrir des glaces en plein été !

Plus récemment, l’idée de refroidir de l’air par humidification a été appliquée dans des groupes de traitement d’air. On parle alors de refroidissement adiabatique. Une différence majeure avec la solution imaginée par les Persans : ici c’est l’air extrait du bâtiment que l’on refroidit par humidification. Un échangeur de chaleur air-air permet ensuite de rafraîchir l’air neuf au contact de l’air extrait. Nos ambiances sont déjà suffisamment humides en été que pour éviter d’y pulser un air saturé !
Pour en savoir plus :

Théories

Les grandeurs hygrométriques.

Concevoir

Choisir une production de froid « alternative » : refroidissement adiabatique et climatisation solaire.


Valoriser le soleil

Paradoxalement, la chaleur du soleil peut être utilisée pour rafraichir un bâtiment… pour autant que l’on dispose de l’équipement adéquat.

Généralement, produire du froid implique l’usage d’une machine frigorifique. Celle-ci se compose de deux échangeurs de chaleur (condenseur et évaporateur), d’un détendeur et d’un compresseur électrique. Pas de place pour l’énergie solaire là-dedans, si ce n’est au travers de capteurs photovoltaïques.

Mais il existe un autre type de machine frigorifique, dit « à ab/adsorption« . Là, l’échange thermique est basé à la fois sur la vaporisation d’un réfrigérant (de l’eau) et sur la capacité de certaines substances à absorber la vapeur d’eau pour la restituer à un niveau de pression différent lorsqu’ils sont échauffés. Le cycle de cette matière absorbant joue le rôle du compresseur dans une machine frigorifique traditionnelle, tout en demandant une alimentation en chaleur plutôt qu’en électricité. Or, qui dit soleil dit chaleur ! La combinaison de capteurs solaires thermiques et d’une machine frigorifique à ab/adsorption constitue ce que l’on appelle une « climatisation solaire », une idée séduisante si les besoins de froid du bâtiment sont liés aux gains solaires.

Pour en savoir plus :

Concevoir

Choisir une production de froid « alternative » : refroidissement adiabatique et climatisation solaire.

Choisir la fenêtre comme capteur d’énergie solaire [Esquisse du projet]

L’architecture participe à la juste captation des apports solaires, plus recherchés pour leur lumière que pour leur chaleur dans un immeuble tertiaire.

L’immeuble tertiaire se distingue de l’immeuble domestique

Les besoins thermiques d’un immeuble tertiaire (bureaux, écoles, …) sont très différents de ceux d’un bâtiment domestique.

Bâtiment tertiaire Bâtiment domestique

En hiver

Des apports internes élevés sont apportés par les occupants, par l’éclairage et les appareils de bureautique. Les apports internes sont limités, exceptés dans la cuisine.
Le profil de demande de chaleur est essentiellement concentré sur la relance du matin, avant l’arrivée des occupants.

Lorsque le soleil arrive, le bâtiment est déjà chaud, particulièrement pour les locaux orientés à l’Ouest (soleil l’après-midi).

Dans une classe d’école par exemple, il n’est plus nécessaire de chauffer lorsque les élèves sont présents (nous parlons bien ici d’un nouveau bâtiment bien isolé).

Le profil de demande de chaleur est variable suivant l’occupation, mais il est marqué par une demande qui se prolonge en soirée, après le coucher du soleil.

Un des objectifs sera de stocker la chaleur solaire de la journée dans les parois, pour lisser la pointe de température en journée et libérer la chaleur en soirée.

En été

L’exigence de confort est importante afin d’améliorer la productivité des occupants. L’occupant accepte plus facilement un inconfort temporaire et attend la fraîcheur de la soirée.

Il peut facilement adapter sa tenue vestimentaire et son activité.

L’environnement extérieur ne permet pas toujours une ouverture des fenêtres (bruit, air pollué, …) Généralement, l’environnement permet plus facilement l’ouverture des fenêtres.

Conclusions

En hiver, le profil de demande thermique d’un immeuble tertiaire est peu en coïncidence avec le profil de l’apport solaire, surtout pour les immeubles de bureaux dont les apports internes sont élevés.

Le profil de demande de chaleur est essentiellement concentré sur la relance du matin, avant l’arrivée des occupants.

En été, , et de plus en plus en mi-saison, la sensibilité du bâtiment et des occupants au risque de surchauffe est élevée.


Quelle place pour les apports solaires de chauffage ?

De ce qui est dit ci-dessus, et des conséquences de l’isolation des bâtiments sur le profil de demande, on déduit que les apports solaires sont peu recherchés pour leur appoint en chauffage dans un nouveau bâtiment bien isolé et avec des apports internes moyens ou élevés (immeubles de bureaux, par exemple).

Concrétisons par un exemple

Voici les résultats d’une simulation réalisée sur un immeuble de bureau-type.

Ramenons à 100 la demande en chaud et en froid de l’immeuble dans sa version de base (50 % de vitrage) et analysons l’impact d’une modification de la surface vitrée :

Pourcentage
de vitrages
Demande
de chauffage
Demande
de refroidissement
0 % 77 80
50 % 100 100
70 % 110 108

Il apparaît :

  • que l’augmentation globale de la surface vitrée augmente les déperditions en hiver,
  • que l’apport solaire ne compense pas ces déperditions,
  • que la demande de refroidissement est logiquement en hausse en été.

Avec les modes constructifs actuels, le bâtiment qui aurait le moins besoin de chauffage et refroidissement est celui que n’aurait pas d’ouvertures !

À noter que cette évolution est identique quelle que soit l’orientation du local :

Local Nord Local Sud
Pourcentage
de vitrages
Demande de chauffage Demande
de refroidissement
Demande de chauffage Demande
de refroidissement
0 % 84 73 71 84
50 % 103 79 90 120
70 % 116 81 103 134

La valeur 100 correspond à la demande moyenne des locaux, avec 50 % de vitrages.

A noter :

  • L’importance de la demande de refroidissement dans les locaux au Nord, demande essentiellement liée à la présence des apports internes.
  • Une simulation des locaux avec des apports internes faibles présente la même tendance à l’augmentation des consommations avec l’augmentation de la surface vitrée.
  • Le placement de vitrages réfléchissants au Sud génère une diminution de la demande de refroidissement nettement plus forte que l’augmentation de la consommation de chauffage.

Constats (essentiellement pour des immeubles de bureaux)

  • L’idéal thermique restera toujours le vitrage clair équipé d’un store extérieur mobile : la chaleur solaire est captée si nécessaire et le store est abaissé le reste du temps. Toutefois, la convivialité intérieure et l’apport lumineux lorsque les stores sont abaissés laissent à désirer…

 

  • Dans un bâtiment tertiaire vérifiant la réglementation thermique en matière d’isolation et disposant d’apports internes normaux (> 25 W/m²), il y a peu intérêt à capter l’énergie solaire pour diminuer les besoins de chauffage et beaucoup de risque de surchauffe et d’éblouissement.

 

  • Par réalisme, le critère thermique impose une limitation des espaces vitrés dans un bâtiment tertiaire, quelle que soit son orientation; ouvrir la façade « du sol au plafond », c’est créer un problème et devoir user d’artifices coûteux pour gérer l’excédent solaire. Et finalement, c’est nier toute architecture d’une façade, comme succession de pleins et de vides…

 

  • Le pourcentage de vitrage à choisir est essentiellement fonction des besoins d’éclairage naturel et de convivialité recherchée dans le bâtiment.

 

  • Idéalement, les surfaces vitrées seront choisies avec un faible coefficient de transmission thermique pour limiter les pertes en hiver et équipées d’une protection solaire en été. Toutefois, vu la difficulté d’une bonne gestion des protections solaires et le coût des protections automatisées, il est possible également de sélectionner des vitrages avec un faible facteur solaire (FS = 0,4 au maximum) et un bon rendu lumineux (FL = 0,7).

Conclusions : quel pourcentage d’ouverture de la façade ?

Si l’on ne prend en compte que le seul critère thermique, et si une protection solaire très efficace n’est pas prévue, une limitation des espaces vitrés s’impose dans un bâtiment tertiaire bien isolé, quelle que soit son orientation.

Le pourcentage de vitrage à choisir de prime abord pourra généralement être compris entre 30 et 45 % de la surface de façade, cette fourchette variera essentiellement fonction :

  • du rapport au contexte dans lequel le bâtiment s’inscrit,
  • du besoin d’éclairage naturel,
  • du souhait de contacts visuels avec l’extérieur,
  • de la recherche de repères visuels dans le bâtiment.

Voici deux couloirs du même bâtiment, avec les mêmes orientations.
Simplement, dans le premier cas, l’architecte a introduit une ouverture vers l’extérieur pour introduire de la lumière naturelle…
C’est ce qui fait la qualité de l’ambiance intérieure.

A la limite, on peut comprendre une compagnie d’assurance anglaise, qui, vu les apports internes très élevés, a décidé de s’ouvrir principalement au Nord, réservant au Sud l’emplacement de la cafétéria.

Vue des espaces vitrés côté nord.

Remarque importante.

Dans nos conclusions, le vitrage apparaît mal adapté comme capteur d’énergie solaire dans les bâtiments tertiaires. Par contre, et tout particulièrement lorsque le bâtiment présente des besoins d’air neuf élevés (laboratoires, salles de conférence, salles de réunion,…), il est utile d’étudier la valorisation de l’apport solaire pour le préchauffage de l’air neuf. Le principe est alors de placer la prise d’air neuf dans un espace qui par lui-même récupère la chaleur solaire ou la chaleur du bâtiment. On pense tout particulièrement ici à un système de type « double-peaux », mais l’atrium ou le puits canadien sont d’autres manières d’appliquer ce principe.


Une très grande sensibilité aux apports internes

Le résultat des simulations thermiques est très variable en fonction d’un paramètre : la charge interne.

Un bâtiment actuel est souvent à l’équilibre entre ses pertes thermiques et ses apports internes. S’il faut chauffer par période de gel, et refroidir en période de canicule, entre ces 2 extrêmes il existe une large plage où le bâtiment est proche de l’équilibre thermique : les résultats seront alors fonction des hypothèses choisies.

Exemple.

Reprenons l’analyse d’un immeuble de bureau-type.

Si 100 est la demande en chaud et en froid de l’immeuble dans sa version de base (50 % de vitrage-apports internes moyens), analysons l’impact d’une modification des apports internes :

Apports
internes
Demande
de chauffage
Demande
de refroidissement
– 50 % 146 52
moyens 100 100
+ 50 % 23 226

Exemple de diagramme énergétique établi pour cet immeuble de bureaux :

Face à une telle sensibilité, il apparaît

  • Qu’une analyse des besoins thermiques spécifique au bâtiment et à son utilisation (simulation dynamique) est indispensable pour une conception correcte du bâtiment et de ses équipements.
  • Que face à l’incertitude sur le fonctionnement réel du bâtiment (demain et après-demain), même si le refroidissement naturel du bâtiment est recommandé en priorité, l’adjonction éventuelle future d’un système mécanique de refroidissement doit être étudiée dès le début d’un projet d’immeuble de bureaux.

Exemple de situation dont les occupants se plaignent :

Une grande baie vitrée orientée au sud, une faible inertie (tapis et plafond acoustique)… … et la présence de nombreux PC génère de la surchauffe en été.


Une sensibilité aux masques solaires

Toutes les conclusions tirées ci-dessus sont en partie dépendantes de la présence d’un masque solaire éventuellement créé par les bâtiments voisins.

Par exemple, le bilan énergétique du dernier étage est sensiblement différent de celui du rez-de-chaussée.

On peut donc imaginer que le choix du vitrage puisse évoluer en fonction de l’étage.


L’influence de l’orientation de la façade

Lorsque l’apport solaire est recherché (bâtiment avec faibles apports internes), il est important de sélectionner une surface vitrée dont l’efficacité est maximale : capter un maximum d’énergie en hiver et un minimum en été.

Gains solaires par ciel serein en Belgique,
à travers un double vitrage.

(La lettre indique l’orientation et le nombre est l’inclinaison. Les orientations ouest et sud-ouest correspondent approximativement aux orientations est et sud-est.)

À première vue, la surface vitrée verticale orientée au sud (= S 90) paraît très intéressante, puisque plus d’apports en mi-saison qu’en été.

À l’opposé, on trouve la surface horizontale (coupole en toiture) dont la spécificité est de capter très peu d’énergie en hiver et de provoquer de la surchauffe en été.

Les surfaces à l’est et à l’ouest (= E 90) présentent également un bilan contraire à l’évolution des besoins du bâtiment.

Par contre, si la façade ne comporte pas de masques, un bâtiment de bureaux avec des apports internes moyens ou élevés sera en surchauffe très rapidement, dès l’arrivée du soleil.

Dans ce cas, l’apport solaire total étant plus important au Sud, c’est cette orientation qui sera la plus défavorable en matière de refroidissement annuel (malgré une légère diminution des consommations d’hiver).

C’est ce que montre notre exemple de

bureau-type :

Local Ouest Local Sud
Pourcentage
de vitrages
Demande de chauffage Demande
de refroidissement
Demande de chauffage Demande
de refroidissement
50 % 103 104 90 120

La valeur 100 correspond à la demande moyenne des locaux, avec 50 % de vitrages.

Exemple de protection architecturale très efficace sur une façade Sud… et qui participe à l’architecture de la façade !

Mais l’avantage de la façade au Sud est de profiter d’un soleil très haut sur l’horizon. Les auvents créés par l’architecture de la façade formeront une protection solaire efficace.

Au contraire, les protections architecturales ne sont pas efficaces à l’Est et à l’Ouest : le soleil est trop bas sur l’horizon pour être arrêté par le masque architectural.

Un éblouissement important en résulte.

Seuls des stores sont possibles, mais le coût et la maintenance en sont élevés.

Conclusions

Partons d’un bâtiment rectangulaire dont on se poserait la question : quelles orientations des façades des grands côtés du rectangle ?

 Sans protections solaires, le choix de l’orientation d’un bâtiment est à faible impact énergétique : la consommation totale (chaud + froid) plus importante au Sud est compensée par une consommation totale plus faible au Nord.

Il est préférable :

  • Soit de privilégier l’ouverture au nord pour favoriser l’éclairage naturel (et de limiter les espaces vitrés au sud et à l’ouest),

 

  • Soit de placer pour les orientations sud, est et ouest, des vitrages réfléchissant le rayonnement solaire toute l’année. Il existe des vitrages qui ne laissent passer que 40 % de l’énergie solaire thermique, tout en laissant passer 70 % de la lumière.

 Si des protections solaires sont prévues, les grands côtés Nord et Sud sont plus faciles à gérer : une protection architecturale fixe est très efficace au Sud et ne nécessite que peu d’entretien.

Par contre, les grands côtés est et ouest demanderaient des protections mobiles pour limiter les apports de chaleur et l’éblouissement des occupants. C’est plus coûteux, mais cela peut induire plus de vie dans le bâtiment, car la lumière est toujours présente dans les locaux.

En simplifiant, on pourrait dire que dans des locaux d’hébergement, on privilégierait les côtés est et ouest avec protections solaires, et que dans les immeubles de bureaux, on choisirait les façades nord et sud, avec avancées architecturales.


L’influence de l’inclinaison du vitrage

Ce diagramme montre évolution de l’énergie captée par une surface orientée au Sud en fonction de l’inclinaison.

Conclusions

On limitera les surfaces vitrées horizontales (coupole, toiture d’atrium, …) aux seuls besoins d’éclairage naturel des locaux situés au dessous.

Dans l’immeuble ci-contre, il paraît énergétiquement peu opportun de créer une telle surface de captation. Elle risque d’entraîner soit une surchauffe élevée, soit une consommation d’énergie frigorifique importante

concevoir

Pour plus d’informations sur le choix des vitrages.

Quelle protection contre les apports solaires d’été ?

Dans un bâtiment bien isolé et avec des apports internes élevés, la limitation des surchauffes devient une priorité du concepteur, dès le stade de l’esquisse.

La meilleure protection solaire… c’est une surface de vitrage limitée !

La façade est aujourd’hui libérée de la fonction de portance. Elle ne doit plus remplir qu’une fonction d’enveloppe. La mode est à « la transparence », à l’ouverture des façades du sol au plafond… Or la zone inférieure d’une fenêtre est très peu efficace en matière d’éclairage naturel. La présence d’une allège opaque est donc thermiquement préférable (présence d’une isolation pour diminuer les pertes en hiver et opacité vis-à-vis des apports solaires en été).

Cette transparence totale de la façade va générer une sensibilité très forte à la surchauffe (les agriculteurs en sont bien conscients dans leur serre…). D’où la mise en place de doubles façades coûteuses, … pour gérer le problème que l’on a créé !

Double peau globale et double peau par étage.

En hiver, l’intérêt est réel grâce au préchauffage possible de l’air neuf et à la diminution des déperditions de la paroi vitrée. Mais en période de refroidissement, un store doit être placé dans la lame d’air et la double peau peut devenir alors une contrainte pour éliminer la chaleur emprisonnée (par rapport à un simple store extérieur).

Cette technique semble à réserver aux bâtiments nécessitant un apport d’air neuf fort élevé, pour lesquels la double-peau constitue un moyen de préchauffer l’air.

Les surcoûts sont importants et, sans vouloir tirer ici des conclusions trop rapides, on est en droit de se poser la question si ce budget ne serait pas mieux utilisé dans d’autres améliorations énergétiques, plus efficaces et plus simples à gérer dans le temps ? À titre d’exemple, un récupérateur de chaleur sur l’air extrait apporte lui aussi une possibilité de préchauffer l’air neuf, mais avec un coût d’installation incomparable…

Aula Magna de Louvain La Neuve.

Détail de la double peau,  qui n’est pas en communication avec l’ambiance intérieure.

La présence d’une protection solaire

On ne peut imaginer la conception d’un immeuble, climatisé ou non, sans l’organisation d’une protection solaire efficace.

Dans un bâtiment climatisé, elle permet une diminution drastique des coûts d’exploitation. Dans les autres, elle limite le risque de surchauffe.

Dans les deux cas, elle permet de gérer l’éblouissement, tout particulièrement pour faciliter le travail sur ordinateur. Des stores intérieurs compléteront utilement le dispositif.

Les éléments architecturaux (balcons, débords de toiture, décrochements, …) sont particulièrement efficaces au Sud puisque le soleil est alors haut sur l’horizon.

En été…   … et en hiver.

   

Stores verticaux, simultanément capteurs solaires photovoltaïques.

   

Bâtiment Sedilec à LLN.

Certaines protections architecturales tentent de stopper le soleil, tout en privilégiant la réflexion du rayonnement lumineux vers le plafond (« light-shelves« ).
Les stores mobiles extérieurs sont les plus efficaces pour contrôler le flux solaire en fonction du besoin réel. Mais ils sont délicats en terme de maintenance et nécessitent un contrôle automatique pour être relevés en cas de vent. La réduction du champ visuel de l’occupant en est un autre inconvénient.

Se croirait-on sur la Poztdammer Platz de Berlin ?

Panneaux de bois coulissants.

concevoir

Pour plus d’informations sur la mise en place de protections solaires.

Protections végétales ?

Des végétations plantées à proximité du bâtiment peuvent participer à la gestion des apports solaires.

Les arbres à feuilles caduques ont l’avantage de perdre leurs feuilles et de permettre ainsi l’exposition au soleil en hiver.

Mais il s’agit là d’un appoint, plutôt à vocation domestique, et non d’une solution complète, ne fut-ce que pour les étages supérieurs.


Annexe : les paramètres du bureau-type

L’immeuble de bureaux-type utilisé ci-dessus présente les caractéristiques suivantes :

Dimensions extérieures : 60 x 18 m, sur 3 plateaux, soit un total de 3 240 m².

Dans la version dite « de base » :

  • l’orientation des façades principales est Nord-Sud,
  • le pourcentage de vitrages est de 50 % sur toutes les façades,
  • le vitrage est double avec un traitement basse émissivité (k = 1,9 W/m².K),
  • l’isolation est de 6 cm en façade, 12 cm en toiture et 3 cm dans les planchers sur sol,
  • les apports internes dans les bureaux sont de 35 W/m² (un PC de 160 W, une lampe individuelle de 18 W, un éclairage généralisé de 13 W/m² et une personne dont le métabolisme apporte 81 W pour une surface de travail de 12 m²).

Stratégie « soft-énergie » à tous niveaux

Stratégie "soft-énergie" à tous niveaux


L’énergie dans le bâtiment, ce n’est pas que chauffer et refroidir…

L’énergie consommée par un immeuble de bureaux, c’est le double de celle demandée par le chauffage et le refroidissement du bâtiment. En effet, l’éclairage, la bureautique, les pompes et ventilateurs, … alourdissent fortement la facture.

Il est utile de prendre le temps d’étudier tous ces aspects globalement, dès le départ. La place réservée à l’éclairage naturel des locaux en est un exemple clair.

Photo bâtiment Iveg à Anvers.   Photo bâtiment Iveg à Anvers - 02.

Le siège d’Iveg à Anvers consomme 2 x moins que la moyenne … mais sa conception a été étudiée durant 2 ans, en collaboration avec le centre de recherches du CSTC.

 

Le siège d’Elia à Bruxelles est Passif, BREEAM et NZEB grâce à la lumière naturelle, 30 cm d’isolation, du triple vitrage et ses 4 000 m² de PV.

L’énergie dans un immeuble, c’est combien par an ?

L’analyse énergétique d’un local type de bureau (Bâtiment ancien avec 8 cm d’isolant)  :

  • entre 70 et 100 kWh/m²/an de chauffage,
  • 120 kWh/m² électricité (soit 300kWh d’énergie primaire /m²).
  • TOTAL de 385kWh/m²/an d’énergie primaire,
    • dont +- 8,5 m³ de gaz naturel et 120 kWh d’électricité ;
  • Soit +- 47€/m²/an

Dans un immeuble de bureaux QZEN construit aujourd’hui, l’énergie hors bureautique représente un coût d’environ 10 €/m²/an €.

Évaluer

Pour plus d’informations sur les consommations dans différents types d’immeubles climatisés.

Quelle répartition des consommations dans un bâtiment ?

Dans un bâtiment climatisé, en très grosse approximation (puisque tout dépend du type de bâtiment, des vecteurs énergétiques et de son usage), ce coût se répartit en :

  • 15 % pour le chauffage des locaux et de l’air neuf hygiénique,
  • 15 % pour le refroidissement des locaux,
  • 15 % pour l’éclairage,
  • 15% pour les auxiliaires (pompes et ventilateurs) et équipements électriques divers ;
  • 40 % pour la bureautique.

À partir du programme du bâtiment, on demandera au bureau d’études d’établir un bilan global prévisible des sources de consommation.

Concevoir

Pour découvrir un exemple d’analyse des besoins thermiques d’un immeuble de bureaux.


Un choix d’équipements électriques à faible consommation

Une politique « soft-énergie » globale

Pour limiter l’énergie, il est donc tout aussi important d’agir sur le choix du luminaire, sur le mode de régulation de la ventilation que sur l’épaisseur de l’isolant.

Mieux, l’investissement sur des équipements électriques performants permet de faire « coup double » :

  • économie directe d’électricité,
  • économie indirecte sur la demande de refroidissement et donc sur la capacité de « s’en sortir sans climatisation » !

Toute consommation électrique se transforme en chaleur…

La consommation électrique a doublé en 15 ans dans le secteur tertiaire ! La bureautique (PC, imprimante, photocopieuse, …) explose. De plus en plus, nous chauffons nos bureaux … à l’électricité !

Mais ce chauffage-là, il nous est impossible de l’arrêter en été. Pire, le ventilateur de l’air de refroidissement chauffe l’air de 1 degré, environ. Donc plus nous surdimensionnons nos installations, plus le ventilateur sera puissant, plus il faudra le refroidir …

Ne sommes-nous pas là dans un cercle infernal ?

Si on ne peut aller totalement contre cette évolution qui impose l’équipement électrique comme outil de développement économique, il nous est possible de l’infléchir lorsque l’on prend conscience de l’impact de nos choix.

Par exemple, à débit constant, si nous doublons le diamètre d’un conduit d’air, la consommation du ventilateur chute au 32ème de sa valeur !!!

Des options à prendre dès le début du projet

Voici une série de propositions qui peuvent permettre concevoir un bâtiment « low-tech », « low-energy » … tout en étant « high-design » !

Assurer dans tous les locaux de vie, un éclairement naturel qui rende l’éclairage artificiel nécessaire pendant moins de 40 % du temps d’occupation.

Concevoir

Choisir les luminaires.
 Limiter l’éclairage artificiel à une puissance de 8 Watts/m² pour un éclairement de 500 lux : choix de luminaires et de lampes performantes.

Concevoir

Choisir les luminaires.

Réguler l’éclairage artificiel en fonction de l’éclairage naturel pour ne pas avoir de cumul de chaleur entre éclairage artificiel et éclairage solaire.

Concevoir

Apport d’éclairage naturel dans la page Choisir la gestion et la commande
Réguler l’éclairage et la bureautique en fonction de la présence effective de l’utilisateur.

Concevoir

Choisir les ordinateurs
 Placement de l’imprimante et de la photocopieuse à proximité de l’extraction d’air hygiénique (évacuation directe des polluants et de la chaleur dissipée).
 Concentration des équipements informatiques et de communication communs (centraux téléphoniques et data, serveurs informatiques, etc…) dans un local séparé des zones de vie ou de travail. Ce local pouvant être refroidi mécaniquement d’une façon distincte.
Intégration des conduits d’air dès la phase de l’esquisse pour favoriser des sections larges et droites, et ainsi limiter les puissances des ventilateurs.

Un emplacement central des groupes de traitement d’air est aussi favorable à ce niveau.

La même démarche peut être réalisée pour les tuyauteries d’eau, mais l’impact énergétique est 10 fois plus faible.

Concevoir

Choisir le réseau de distribution.

Vers une stratégie « soft-énergie »

Poursuivons la traque aux sources de consommation

Sans être ici exhaustif, mais plutôt pour expliquer la logique du raisonnement, on envisagera de :

Maîtriser les apports solaires par le choix de surfaces vitrées limitées (= ne pas vitrer toute la façade) et équipées de protections solaires.

Concevoir

Choisir la fenêtre comme capteur d’énergie solaire.
Prérefroidir l’air hygiénique de ventilation par le passage dans un conduit enterré.
Éviter toute boucle de circulation d’eau chaude sanitaire dans le bâtiment, en décentralisant la production près des points de puisage.

Concevoir

Choisir le réseau d’eau chaude sanitaire

Vers un bâtiment inerte et stable en température intérieure

Si les sources (internes et externes) d’échauffement sont bien maîtrisées, le risque de surchauffe est nettement diminué. Si le bâtiment comporte un grand « réservoir thermique de stockage » : c’est l’inertie de ses parois.

Prévoir d’emblée une inertie thermique accessible suffisante dans les parois : sous l’effet du soleil, le bâtiment ne doit pas se comporter comme une voiture ! Sans inertie, la température intérieure monterait très rapidement et la climatisation mécanique devrait être enclenchée.

Finalement, dans quel type de bâtiment trouvons-nous de la fraîcheur naturelle en été : le préfab de chantier ou l’ancien immeuble de la maison communale ?

Evaluer

Repérer l’origine de la surchauffe

Équipé d’une régulation peu sophistiquée

Et dans ce bâtiment massif, fortement isolé, efficacement ombré, les fluctuations de température seront relativement lentes. Il est donc possible d’y intégrer une forme de régulation qui combine des prises de mesure limitées (la température de quelques locaux représentatifs par exemple) et des actions « douces » (modification d’un régime de température, ouverture modulée d’un dispositif de ventilation, etc.). L’important sera que l’action du système de régulation soit basée sur une mesure la plus représentative possible du ressenti, et donne lieu à des actions mesurées, auxquelles les occupants peuvent déroger. Dans tous les cas, le fonctionnement du bâtiment devra être le plus intuitif possible pour les occupants, et induire naturellement des comportements d’utilisation rationnelle de l’énergie.

Retenons qu’une stratégie « soft-énergie », appliquée à l’ensemble des consommateurs, est un point de départ qui permet ensuite d’envisager pour le traitement thermique des locaux de nombreuses alternatives… douces !


Favoriser les énergies renouvelables

Pour diminuer encore l’appel à des énergies fossiles, il est possible de recourir à la production :

  • d’eau chaude par des capteurs solaires thermiques ou photovoltaïque,
  • d’électricité par des capteurs solaires photovoltaïques,
  • cogénération,
  • pompe à chaleur à haut rendement,
  • de chaleur par utilisation de la biomasse (essentiellement le bois).

Concevoir

Pour plus d’informations sur le chauffage solaire de l’eau chaude sanitaire.

Limiter les pertes de chaleur

Limiter les pertes de chaleur


Un profil de demande thermique en forte évolution

Les conséquences de l’isolation des parois extérieures

Hier et aujourd’hui
(couleur beige = isolant).

Le fonctionnement thermique des bâtiments tertiaires subit une révolution depuis 20 ans suite à la conjugaison de 3 facteurs :

  1. Un renforcement de l’isolation et surtout l’arrivée de vitrages très performants.
  2. Une explosion des apports internes électriques.
  3. Une tendance à augmenter les surfaces vitrées en façade.
Résultats d’une simulation informatique

Pour un même immeuble type de bureau, nous avons comparé les bilans énergétiques entre une construction ancienne (simple vitrage, murs non isolés, …) avec une version usuelle aujourd’hui (double vitrage, murs isolés, …).

Voici les bilans obtenus (évolution de la demande en fonction de la température extérieure, celle-ci variant de – 10 à + 30 °C) :

Une évolution sensible par rapport aux bâtiments des années 70 apparaît :

  • L’isolation élevée diminue les besoins de chauffage en hiver.
  • La bureautique couvre une part des besoins d’hiver… mais augmente les besoins de refroidissement en été et en mi-saison.
  • Le soleil génère des pointes de température difficile à accepter par l’occupant. Les périodes de canicule sont présentes, elles génèrent un risque d’inconfort majeur, mais ne représentent pas une consommation d’énergie élevée, car le temps est court.

Si autrefois le chauffage était arrêté par + 15°C extérieur, aujourd’hui le chauffage des locaux est arrêté dès + 11°C extérieur, voire moins s’il y a beaucoup d’apports internes (la chaudière reste en service pour l’éventuel chauffage de l’air neuf et de l’eau chaude sanitaire). En mi-saison, des locaux restent en demande de chaleur au nord, alors que la façade sud est déjà en demande de refroidissement.

L’isolation diminue la demande de chauffage (hiver) et augmente la demande de refroidissement (été). Mais le bilan global des consommations annuelles est toujours positif en faveur de l’isolation.

Par rapport à un bâtiment mal isolé, la consommation de chauffage tombe au tiers de sa valeur. Et parmi ce tiers restant, le chauffage de l’air neuf hygiénique représente la moitié des besoins.

Si autrefois il y avait 8 mois d’hiver et 4 mois d’été, aujourd’hui la période de chauffe est limitée à 6 mois (15 octobre – 15 avril).

Mais le besoin de rafraîchissement est accru, en été et en mi-saison.

La diminution de l’inertie et l’augmentation des gains internes

Autrefois, le bâtiment disposait d’une bonne inertie thermique qui lissait les pointes d’apports solaires en journée (les bâtiments ne se comportaient pas comme une voiture laissée en plein soleil …) grâce à l’immense réservoir que constituait la masse des parois.

Suite à sa faible isolation, le bâtiment se « déchargeait » la nuit de la chaleur accumulée en journée.

Aujourd’hui, la tendance va vers :

  • La diminution de l’inertie pour des raisons fonctionnelles (tapis, faux plafond, cloisons mobiles, …).
  • L’augmentation des équipements de bureautique (doublement des consommations électriques du secteur tertiaire durant ces 15 dernières années !).
  • L’amplification des apports solaires suite au souhait du Maître d’Ouvrage de larges baies vitrées.
  • La chaleur interne se retrouve « piégée » dans le bâtiment suite à l’isolation des parois.

Faut-il une forte isolation ? Ne perd-on pas en climatisation ce que l’on gagne en chauffage ?

Non, toutes les simulations informatiques montrent que le bilan reste bénéficiaire en faveur de l’isolation, notamment parce que la saison de chauffe est plus longue que l’été.

Voyons les choses positivement : autrefois, on n’avait pas conscience de l’existence d’une « chaleur interne » parce que celle-ci était négligeable face aux déperditions des parois. A présent, les fuites de chaleur étant maîtrisées et les apports internes amplifiés par l’évolution technologique, ces apports viennent à satisfaire en bonne partie nos besoins hivernaux. Nous arrivons à chauffer nos bureaux avec 7 litres de fuel au m², contre 20 à 25 dans les années 50. Et c’est tant mieux.

Puisqu’une consommation électrique minimale est nécessaire (bureautique, éclairage, …), tant mieux si nous pouvons « utiliser une deuxième fois » cette énergie pour nous chauffer.

Quant aux besoins de rafraîchissement, la courbe bleue du diagramme ci-dessus montre qu’ils apparaissent majoritairement lorsque la température extérieure est entre 14 et 22°C, c.-à-d. plus froide que l’ambiance intérieure. À ce moment, il devrait être possible « d’ouvrir le bâtiment » pour valoriser l’air frais et décharger le bâtiment,… mais le bruit, la pollution de l’air ou le risque d’intrusion rendent cette ouverture parfois complexe.

Ceci renforce l’importance d’une conception initiale du bâtiment adaptée à ce nouveau profil de consommation et la mise en place d’un système de refroidissement qui valorise l’air frais extérieur.

Théories

Pour plus d’informations sur l’évolution des besoins thermiques des immeubles, suite à l’isolation des parois.

Et ceci ne nous épargne pas la nécessité de trouver une solution pour gérer la période de canicule !


Optimaliser le volume du bâtiment

En réalité la chose n’est pas simple : il s’agit de trouver, selon la programmation du bâtiment et le contexte d’implantation (forme et taille du terrain, environnement bâti ou paysager, …) le compromis optimal entre :

  • une grande compacité pour limiter les pertes de chaleur,
  • et une faible compacité pour profiter d’éclairage naturel et faciliter le rafraîchissement par ventilation naturelle.

L’intérêt de la forte compacité

Un bâtiment compact, s’approchant du cube, a peu de pertes de chaleur. La surface de déperdition de l’ensemble de ses façades est limitée par rapport au volume des locaux. Les zones centrales, en contact avec d’autres locaux à la même température, ont beaucoup moins de pertes de chaleur que les locaux périphériques.

Par contre, ces zones sont difficilement éclairées et ventilées naturellement.

L’intérêt de la faible compacité

Un bâtiment peu compact (barre, en « peigne », carré avec cour intérieure, présentant de nombreux décrochements, …) a une surface de façade plus importante par rapport au volume des locaux et aura donc plus de déperditions, et une demande de chauffage accrue.

Par contre, le fait d’avoir plus de locaux en façade permet de les éclairer naturellement, et d’organiser relativement facilement une ventilation naturelle.

Exemple : Queen’s Building de l’Université de Montfort, en Angleterre. Les locaux, ventilés naturellement, sont agencés par rapport à leur fonction et la développée de l’enveloppe est importante.

Photo Queen's Building.

Plan Photo Queen's Building.

Plan du premier niveau :

  1. ateliers d’électricité
  2. salles de cours
  3. atrium
  4. auditoires
  5. laboratoire de mécanique

Concrètement

Selon les cas, le juste compromis sera en faveur de l’une ou de l’autre solution.

Dans les bâtiments récents, bien isolés, le problème de la surchauffe et de la consommation de froid prend de plus en plus d’importance par rapport à celui de la consommation de chauffage.

Il convient donc, a priori, de favoriser autant que possible l’éclairage naturel et les possibilités de refroidir naturellement le bâtiment par ventilation naturelle intensive en :

  • Limitant la profondeur des locaux. On recommande de limiter la profondeur des bureaux au double de la hauteur du local, soit à environ 6 m. Ainsi, si deux rangées de bureaux sont séparées par un couloir central, cela donne une profondeur de bâtiment d’environ 15 m.
  • Limitant le nombre d’étages à 2 ou 3 idéalement. Les contraintes techniques pour organiser une ventilation naturelle intensive dans des bâtiments plus hauts deviennent très lourdes (exemple : cheminées hautes).

Limiter les besoins de chauffage

Opter pour un bâtiment bien isolé

L’isolation de l’enveloppe est, et de loin, le moyen le plus efficace pour réduire la consommation d’un bâtiment. Et les vitrages très performants permettent aujourd’hui de diminuer drastiquement les consommations d’hiver.

Non, on n’isole JAMAIS trop. L’isolation diminue la demande de chauffage en hiver et augmente celle de refroidissement en été, mais le bilan global des consommations annuelles est toujours en sa faveur.

Il est toujours utile d’isoler, même si cela entraîne la nécessité de climatiser. Bien entendu, l’idéal est de trouver des solutions naturelles pour rafraîchir le bâtiment et éviter ainsi le refroidissement mécanique.

Dans les propos ci-dessous, on supposera toujours que le bâtiment est bien isolé.

On donnera également aux concepteurs le temps et les moyens nécessaires pour étudier les détails de construction à prévoir pour éviter les ponts thermiques (principe de continuité de l’isolation).

Concevoir

Pour plus de détails sur la conception des détails de façades.

Favoriser l’étanchéité de l’enveloppe

Le problème est qu’il est impossible d’arrêter ce type de ventilation lorsqu’elle n’est pas nécessaire, en dehors des temps d’occupation notamment. Or elle est fortement consommatrice d’énergie.

Aujourd’hui, il convient de réaliser une enveloppe très étanche à l’air (parois, joints, portes, etc.) et d’organiser une ventilation hygiénique contrôlée (naturelle ou mécanique).

  • Lors de la construction, on sera très attentif à l’étanchéité à l’air des parois. Le bâtiment ne doit pas se « décharger » de sa chaleur en hiver par des fuites multiples de son enveloppe. La norme européenne EN 13779 recommande un taux de renouvellement d’air maximum sous la pression d’essai de 50 Pa (n50) de 1/h, ce qui génère en moyenne un taux de renouvellement d’air par infiltration de 4 % (0,04/h).

« Blower-test » de contrôle de l’étanchéité .

  • Il sera très utile de prévoir un sas à l’entrée du bâtiment, particulièrement en cas de climatisation de celui-ci.
  • On sera très attentif également à la fermeture des grilles de châssis (ventilation hygiénique) pendant la nuit et le week-end, quitte à installer des grilles motorisées si la motivation future de l’occupant paraît faible…

Limiter les besoins de chauffage de l’air neuf hygiénique

Dans un immeuble bien isolé d’aujourd’hui, le chauffage de l’air neuf hygiénique génère plus de la moitié des consommations de chauffage. On veillera dès lors à :

  • Limiter le débit d’air neuf à 30 m³/heure/personne en période de chauffe. Ce débit peut bien sûr être augmenté en mi-saison et/ou en été.
  • Favoriser les installations de ventilation « double flux » : une école est occupée 25% du temps, un bureau 30% du temps ! Il est donc fondamental de pouvoir stopper le débit d’air en période d’inoccupation.
  • Gérer ce débit en fonction de la présence effective des occupants : un capteur (détecteur de présence, sonde CO2, …) peut permettre de moduler le débit, par palier (ventilateur à plusieurs vitesses) ou en continu (ventilateur à vitesse variable). Tout particulièrement, le débit d’air neuf sera stoppé lors de la relance du bâtiment (le lundi matin, par exemple), avant l’arrivée des occupants.
  • Préchauffer l’air neuf hygiénique par récupération de chaleur
    • Sur l’air extrait (échangeur à plaques, par exemple). Idéalement, il faudra prévoir alors que les conduites d’extraction soient proches des conduites de pulsion d’air.
    • Sur une zone tampon du bâtiment. Par exemple, une prise d’air placée dans un atrium captera de l’air déjà préchauffé par le bâtiment et/ou le soleil.
    • Sur un puits canadien dans le sol pour capter l’énergie géothermique.
    • Sur un condenseur de machine frigorifique, si celui-ci présente un fonctionnement annuel. On imagine par exemple qu’un rideau d’air chaud à l’entrée du bâtiment puisse être alimenté par le refroidissement de la salle informatique ou de la chambre froide de la cuisine.

Si ces idées sont retenues dès le début du projet, elles entraînent peu de surcoûts.

Concevoir

Pour plus de détails sur la conception des installations de ventilation.

Faut-il forcément climatiser le bâtiment ?

Pour certains, le rafraîchissement de l’ambiance intérieure semble aujourd’hui incontournable. Le maître d’ouvrage se trouve-t-il alors confronté à l’obligation d’investir à la fois dans une installation de chauffage, certes plus petite qu’avant, mais aussi dans une installation de refroidissement ?

Non, une machine frigorifique ne doit pas être obligatoirement être installée dans nos régions. Mais une « stratégie de rafraîchissement active » doit être étudiée si la puissance thermique des apports de chaleur dépasse 50 à 60 W/m² au sol.

Décrivons ci-dessous ces diverses possibilités.

Calculs

Pour évaluer la puissance thermique prévisible dans un local et vérifier que les 60 W/m² ne sont pas dépassés, nous vous proposons

une feuille de calcul simplifiée sur Excel.

Trois stratégies sont possibles :

Stratégie 1 : limiter les sources de chaleur et se passer de la machine frigorifique

Constat : depuis l’âge de la pierre, l’homme se chauffe. Cela se comprend, il souhaite vivre dans une ambiance entre 20 et 24°C. Or la température moyenne extérieure annuelle dans nos Régions est de 10°C. Un complément de chaleur est nécessaire.

Par contre, la température à Uccle dépasse 24° durant 2 % de l’année seulement ! Autrement dit, 98 % du temps, il fait plus froid à l’extérieur du bâtiment qu’à l’intérieur. Comment se fait-il que nous ayons alors besoin d’une machine frigorifique pour le refroidir ???

Inspirons-nous du mas provençal (qui reste bien frais même lorsqu’il fait torride à l’extérieur) pour construire un bâtiment.

  • Il dispose de suffisamment d’inertie intérieure pour stabiliser les variations de température en journée,
  • il « décharge » le bâtiment via un rafraîchissement nocturne par air (free cooling) ou par eau (slab cooling) pour évacuer l’excédent de chaleur grâce à l’air frais de la nuit.

Free cooling et slab cooling.

Pour vous faire une opinion, voici trois exemples conçus en Angleterre, pays qui a pris beaucoup d’avance dans ce domaine :

Études de cas

Le bâtiment environnemental du « BRE ».

Études de cas

Le centre administratif de Powergen.

Études de cas

Le « Queen’s Building » de l’Université De Monfort.

Mais en Belgique aussi, des initiatives sont prises, comme dans le bâtiment IVEG à Anvers :

Études de cas

Le bâtiment IVEG.

Stratégie 2 : installer chauffage et refroidissement, mais en limiter l’usage aux périodes extrêmes

Analysons la répartition des températures extérieures à Uccle :

Admettons l’évolution actuelle vers l’installation d’une machine frigorifique. Ce n’est pas en soit plus mauvais de refroidir que de chauffer (contrairement à une idée couramment répandue, avec un 1 kWh électrique au compresseur, on produit 3 kWh de froid. Et pour obtenir 1 kWh électrique en sortie de centrale, il faut consommer 2,8 kWh d’énergie primaire. Donc le bilan entre chauffage et refroidissement est neutre).

L’objectif de conception devient :

  • recours au chauffage des locaux durant les seules périodes de grands froids (T°ext <…5°C…),
  • recours au refroidissement mécanique aux seules périodes chaudes (T°ext >…18°C…),
  • durant le reste du temps (5°C < T°ext > 18°C), c.-à-d. plus de 60 % de l’année, les apports internes et externes « gratuits » assurent le chauffage, et l’air extérieur assure le refroidissement de mi-saison. Aucun apport thermique par combustible ne doit être apporté à ce moment.

Cela sous-entend une conception adaptée du bâtiment (pouvoir ouvrir les façades dès qu’il fait trop chaud à l’intérieur, par exemple) et du système de climatisation (conçu comme un appoint), ainsi que le placement d’un récupérateur de chaleur sur l’air extrait, …

C’est une solution à très basse consommation, mais qui nécessite parfois un investissement plus élevé, sauf si le même système gère le chaud et le froid (slab cooling, pompe à chaleur, …). En contre-partie, elle apporte une garantie de résultat final : chauffage et climatisation sont présents pour couvrir toute période de pointe, toute évolution future du bâtiment.

Comment choisir ?

La première stratégie devrait a priori être toujours étudiée. Puisqu’elle ne fonctionne que si les apports de chaleur sont drastiquement réduits, ceci sous-entend que l’approche énergétique est globale. On y gagne donc deux fois : parce que les équipements sont à faible consommation et parce qu’ils n’ont pas entraîné le fonctionnement d’un climatiseur. De plus, la simplification des systèmes est une garantie d’exploitation future à faible coût. Enfin, elle permet à l’occupant de retrouver le contact avec l’extérieur par l’ouverture des fenêtres, ce qui est luxe à nul autre pareil.

La deuxième stratégie est certainement prometteuse. Cette recherche « d’autonomie » maximale du bâtiment sans énergie autre que celle des équipements interne (éclairage et bureautique) et externe (soleil), cette conception des systèmes de chauffage et de refroidissement comme appoint en période de pointe, … constitue un des défis majeurs à relever pour les bâtiments futurs. Lorsque le contexte l’impose (environnement bruyant et pollué, volonté de garantir une stricte consigne de température intérieure, …), c’est la voie à suivre. Elle demande de la créativité tant à l’architecte qu’à l’ingénieur. Encore faut-il leur en laisser le temps et les moyens dans la phase de conception.

À noter une troisième stratégie « de compromis » :

Peut-être qu’une climatisation partielle du bâtiment est la solution ?

Dans les locaux avec forte production de chaleur interne (le centre informatique d’une société d’assurances, par exemple), la climatisation s’impose. Mais il est possible de regrouper dans cette partie du bâtiment les équipements les plus dispensateurs de chaleur (photocopieuses, imprimantes, …) et d’y prévoir une installation de free-chilling (by-pass de la machine frigorifique en hiver et refroidissement direct sur l’air extérieur).

Une telle centralisation des équipements de bureautique permet également de mieux gérer le bruit dans les locaux : les moniteurs des PC sont centralisés en ne laissant plus l’accès qu’aux écrans et claviers. Des lecteurs communs de CD ou de disquettes sont accessibles en partage.

De même, l’ensemble des locaux de réunion peuvent être regroupés (superposés, un ou deux par étage) et gérés par une installation « à volume d’air variable » (VAV).

Enfin, les autres locaux, dégagés des apports thermiques principaux, peuvent alors être gérés par refroidissement naturel.

A chaque besoin,… sa solution. Et cette « décomposition thermique » du bâtiment peut avoir un impact extérieur visible sur son architecture, … ce qui n’est pas inintéressant !

Choisir le programme de bâtiment

Définir le programme, c’est aussi imaginer l’ambiance intérieure …


Mise en commun et chasse à l’inoccupation des espaces

Un point important pour réaliser des économies d’énergie consiste mettre en commun un maximum de services de manière à réduire le nombre de ceux-ci tout en permettant qu’ils soient de taille et qualité satisfaisante.

Lors des premiers dessins, il faut se poser la question du taux d’occupation des différents espaces et étudier la possibilité de combiner des usages de manière à réduire la quantité d’espace non utilisé de longues heures chaque jour. En agissant ainsi, le coût de la construction sera réduit et ce sont autant de m² et de m³ qui ne devront être chauffés alors qu’ils sont inoccupés la plupart du temps.

Est-il nécessaire d’avoir 8 imprimantes par étage ? Faut-il réellement une salle de réunion par département ? Chaque étage doit-il avoir sa cafétéria ? Plutôt que d’avoir un parking de 200 places chacun, nos deux enseignes ne pourraient-elles pas se contenter d’un parking commun de 300 places utilisable en soirée par les riverains ?

Un point important pour réaliser des économies d’énergie consiste mettre en commun un maximum de services de manière à réduire le nombre de ceux-ci tout en permettant qu’ils soient de taille et qualité satisfaisante.

Lors des premiers dessins, il faut se poser la question du taux d’occupation des différents espaces et étudier la possibilité de combiner des usages de manière à réduire la quantité d’espace non utilisé de longues heures chaque jour. En agissant ainsi, le coût de la construction sera réduit et ce sont autant de m² et de m³ qui ne devront être chauffés alors qu’ils sont inoccupés la plupart du temps.

Plus la mise en commun sera forte et plus le taux d’occupation des espaces sera optimisé, plus les économies d’énergie seront grandes.

Schéma sur le principe de mise en commun des espaces.


Choisir l’ambiance intérieure souhaitée

L’architecte et le bureau d’études ne pourront développer des stratégies adéquates que si le Maître de l’Ouvrage s’est préalablement positionné sur l’ambiance intérieure qu’il souhaite créer dans son bâtiment.

Le souhait de pouvoir gérer son propre environnement

Parmi les attentes exprimées auprès des promoteurs, on entend de plus en plus souvent le souhait des occupants de pouvoir ouvrir leur fenêtre. Il y a un certain rejet des ambiances feutrées, trop coupées du bruit du monde extérieur.

Malgré la fluctuation des températures que cela peut entraîner, il apparaît que l’occupant est beaucoup plus conciliant avec le confort lorsqu’il gère lui-même son environnement. Par contre, il sera très exigeant avec le service de maintenance lorsqu’il se trouve face à une fenêtre fixe, totalement dépendant de la pulsion d’une bouche d’air…

Dans les bureaux paysagers, les personnes qui ont vue sur l’extérieur et accès à l’ouverture de la fenêtre sont généralement beaucoup plus satisfaites que les autres occupants.

Plus généralement, c’est donc l’accès éventuel par l’occupant à la ventilation, à l’éclairage, aux protections solaires, au chauffage, … qui doit être défini dès le départ du projet.

Attention : la définition de l’ambiance dépasse le simple souhait et demande une réflexion approfondie. Ainsi,

  • l’ouverture des fenêtres peut générer des nuisances acoustiques,
  • l’air extérieur peut être pollué et nécessiter une filtration,
  • si la climatisation est installée, elle devra être coupée lors de l’ouverture de la fenêtre. L’occupant devra alors choisir : fermer sa fenêtre et avoir une ambiance refroidie, ou ouvrir sa fenêtre et laisser la température monter.

Par exemple, au siège d’ELIA à Bruxelles, chaque zone de 40 m² peut réguler la température locale de +-2 °C par rapport à la température de consigne générale et ouvrir une bouche d’aération naturelle sur simple pression d’un bouton. La hauteur et l’exposition au vent grâce au site dégagé du bâtiment rendent la ventilation naturellement puissante et sensible par les occupants.

Le remplacement de la climatisation par un free cooling de nuit

Voici un autre exemple de choix d’un type d’ambiance : une stratégie de « free-cooling », c’est à dire de refroidissement naturel du bâtiment sans climatisation mécanique, peut être décidée. On profite de la fraîcheur de la nuit pour ventiler le bâtiment.

Ceci sous-entend une variation de la température intérieure sur la journée puisque c’est le bâtiment qui fait tampon, accumule la chaleur en journée et attend la nuit pour se décharger.

Il faut donc décider d’accepter ou non le fait qu’en été le bâtiment soit par exemple à 22°C au matin et à 26°C au soir.

L’intégration de la lumière dans le bâtiment

Photo d'un atrium.

Par un jeu d’atria, par des puits de lumière, par des coupoles vitrées,… il est possible d’intégrer la lumière naturelle au sein du bâtiment. La consommation d’éclairage artificiel en sera diminuée d’autant, mais surtout, le bâtiment y trouvera son âme.

A contrario, ce sont des m² ou des m³ à financer. Et ce sont bien souvent des apports de chaleur excédentaires en été, qui ne pourront être maîtrisés que par une possibilité d’ouverture automatisée en toiture. Donc un coût.

Il faut trouver l’optimum entre une grande compacité pour limiter les pertes de chaleur et une moins grande compacité (augmenter les surfaces déperditives) pour profiter davantage d’accès à de la lumière naturelle. La compacité du bâtiment joue un rôle fondamental dans le calcul du niveau K du bâtiment.

Mais la qualité architecturale est un élément de satisfaction de l’employé sur son lieu de travail qui influe aussi sur sa productivité professionnelle…
En caricaturant quelque peu, on peut aller jusqu’au fait que le choix de la hauteur sous-plafond caractérisera la « hauteur d’esprit » des occupants !


Choisir des consignes de confort réalistes

Les études du « sick building syndrom » ont montré l’impact négatif d’un choc thermique trop important à l’entrée du bâtiment climatisé. Ceci ne veut pas dire que l’on apprécie pas la fraîcheur d’un bâtiment en plein été, mais bien que notre corps s’adapte au climat et trouve très confortable une ambiance à 26°C lorsqu’il fait 30°C dehors.

Si aux États-Unis l’ambiance intérieure semble établie sur base d’un « 22°C toute l’année, quelle que soit la température extérieure », un mouvement d’opinion se dessine chez nous pour rejeter ce « tout air conditionné » et réintégrer une certaine saisonnalité de l’ambiance intérieure. On parle plutôt de « rafraîchir » l’ambiance afin de passer plus facilement les quelques jours de canicule de l’année.

Le bureau d’études concevra le système et le dimensionnera en fonction des exigences de son client. C’est donc ce niveau d’exigence qui sera à la base du projet. On sera donc attentif à définir avec soin les consignes intérieures souhaitées.

Température et humidité

Solution 1

Classiquement, on impose au cahier des charges des températures intérieures à vérifier dans les situations extérieures les plus critiques.
Par exemple :

  • Température en hiver : 21°C par – 10°C extérieur (- 8° à Bruxelles et – 12°C en Ardennes).
  • Température en été : 24°C (26°C si plafonds froids) par + 30°C et 50 % HR.
  • Humidité : min 40 % en hiver, max 65 % en été.

Imposer une telle exigence à un bureau d’études, c’est forcément imposer une climatisation mécanique.

Solution 2

On peut également lui proposer un niveau d’exigences plus compatible avec la recherche de solutions alternatives, admettant de dépasser temporairement certaines limites de température. Par exemple, en Hollande, il est proposé le critère de « 100 heures par an au dessus de 25,5°C, dont 20 heures au dessus de 28°C ». C’est une simulation informatique qui devra prouver que cette exigence sera bien satisfaite pour une année climatique type moyenne.

Solution 3

On peut également aborder le problème sur base d’un rafraîchissement garanti. Ce n’est plus une consigne intérieure fixe mais bien un abaissement de 3 ou 4°C par rapport à la température extérieure.

Solution 4

Et un compromis peut être trouvé : une climatisation partielle des lieux. Pourquoi ne pas concentrer les locaux générateurs de surchauffe (locaux informatiques, salles de réunion, …) dans une zone du bâtiment qui sera refroidie mécaniquement ? Les autres locaux seront moins chargés en apports internes et seront plus facilement refroidis naturellement. Les niveaux d’exigence sont alors adaptés en fonction des lieux.

Apport d’air neuf hygiénique

Dans un bâtiment bien isolé, la consommation liée au traitement de l’air neuf hygiénique (chauffage et humidification en hiver, refroidissement en été) dépasse les pertes par les parois de l’enveloppe. La définition du débit est donc d’une importance capitale pour la consommation future du bâtiment.

La norme européenne EN 13779 (Ventilation for buildings – Performance requirements for ventilation and air-conditionning systems, Commission technique CEN/TC 156, 1999) propose différents débits d’air neuf à respecter en fonction de la qualité de l’ambiance à respecter :

Norme européenne EN 13779 pour les locaux sans fumeur.
Catégorie de qualité d’air Débit d’air neuf
Excellente qualité
(niveau ambiant de CO< 400 ppm au dessus du niveau extérieur)
> 54 [m³/h.pers]
Qualité moyenne
(niveau ambiant de CO400 – 600 ppm au dessus du niveau extérieur)
de 36 à 54 [m³/h.pers]
Qualité acceptable
(niveau ambiant de CO600 – 1 000 ppm au dessus du niveau extérieur)
de 22 à 36 [m³/h.pers]
Faible qualité
(niveau ambiant de CO> 1 000 ppm au dessus du niveau extérieur)
< 22 [m³/h.pers]

L’exigence du RGPT, 30 [m³/h.pers], correspond donc à une qualité acceptable. Un courant actuel venu des pays nordiques tend à installer de 50 à 70 [m³/h.pers]. Compte tenu des fortes conséquences énergétiques de ce choix (chauffage, humidification, refroidissement), une valeur située entre 30 et 40 m³/h semble adéquate. On choisira certainement 30 m³/h si une possibilité d’ouvrir les fenêtres existe. Un système double flux avec récupération de la chaleur sur l’air rejeté permet de préchauffer l’air neuf et réduire considérablement les pertes liées à la ventilation.

Éclairage

Une des techniques les plus économes pour un immeuble de bureaux consiste à assurer un éclairement général de 200 lux, tout en dotant chaque poste de travail de son éclairage individualisé. On atteint dans ce cas une puissance installée de 7 Watts/m²/500 lux… soit 3 x moins que ce qui était installé dans les années 70.

Question : lorsque le bureau d’études estime les charges thermiques du local, doit-il cumuler la charge d’éclairage et celle d’ensoleillement ? Si le soleil est présent, ne peut-on tabler sur une extinction des luminaires ?

Bureautique

Il existe des solutions pour diminuer les charges internes. Un PC dégage 150 Watts, dont 100 pour l’écran. Si le choix d’écran plat est décidé, les apports de chaleur diminuent au tiers. Et le gain énergétique est double puisqu’à l’énergie électrique plus faible pour alimenter l’équipement est ajoutée l’énergie économisée en climatisation.

En tant que maître de l’ouvrage, il faut clairement définir les charges liées à l’équipement. Cela évitera au bureau d’études de prendre des coefficients de sécurité trop importants. Si le niveau énergétique est faible, cela lui donnera également plus d’aisance pour proposer des solutions alternatives.

Par exemple, si la charge thermique est faible (équipements à faible consommation et apports solaires limités), il est possible d’utiliser des plafonds froids ou des poutres froides, alimentés par de l’eau à 17°C (régime 17/19).

Photo plafond froid.

Le risque de condensation est faible lors de l’ouverture des fenêtres et l’on ne devra plus consommer beaucoup d’énergie pour déshumidifier l’air neuf hygiénique. De plus, une partie de l’année, l’eau réchauffée à 19°C pourra être refroidie en toiture sans équipement frigorifique, simplement en passant dans un aéroréfrigérant (= échangeur eau/air avec ventilateur). Ce sera particulièrement efficace la nuit et le bâtiment pourra ainsi être déchargé de la chaleur accumulée en journée.


Choisir le degré de flexibilité

La flexibilité est aujourd’hui un must, surtout si l’on est promoteur. Le bâtiment devient une boîte dans laquelle le client futur installera ce qu’il souhaite.

Cette approche génère généralement trois difficultés majeures :

  1. Les cloisons intérieures légères sont sans inertie et des faux-plafonds (et/ou faux-planchers) coupent l’accès thermique aux dalles de béton. L’espace intérieur devient très sensible aux apports solaires (effet similaire à la voiture laissée au soleil…) et une climatisation s’impose.
  2. Si le client peut intégrer où il veut une salle de réunion (apport d’air neuf hygiénique élevé) ou une salle informatique (apports thermiques élevés), le bureau d’études va devoir surdimensionner les installations de tout le bâtiment, créant des coûts d’exploitation nettement plus élevés des auxiliaires (pompes, ventilateurs).
  3. L’architecture du projet en soufre et donc la qualité des ambiances. Sans citer de marque, on peut tenter un parallèle avec des hôtels préfabriqués aux abords de nos villes… que nous acceptons pour dormir une nuit, mais pas pour vivre ou travailler.

Il apparaît important de limiter dans le programme les zones de flexibilité, réservant à certains espaces des tâches spécifiques.

Il est d’ailleurs curieux de constater que les anciens bâtiments de qualité sont toujours là, rénovés certes, mais en y adaptant un nouveau programme. À l’opposé, les bâtiments légers modulaires, pourtant très flexibles, sont abandonnés et détruits.


Une réflexion qui intègre le bureau d’études dès l’esquisse

La conception d’un bâtiment à basse énergie forme un tout : choix de l’orientation, choix de l’enveloppe, choix des équipements, … tout est lié.

Architecte et bureau d’étude doivent y travailler ensemble dès le départ. Par exemple, le free cooling naturel du bâtiment demande des taux de renouvellement d’air horaires > 4, donc des débits d’air importants, donc des sections élevées, donc des « cheminées » à intégrer dès le début du projet architectural.

Cheminées de ventilation naturelle du bâtiment du BRE.

Une des difficultés à ce niveau est créée par le principe des concours d’architecture. L’architecte y travaille seul pour limiter les frais (il travaille souvent à perte…). Il conçoit une enveloppe attractive pour gagner le concours… et se voit contraint de la respecter ensuite. C’est là que l’on voit parfois les bureaux d’études s’arracher les cheveux !

Suggestion : idéalement, le maître d’ouvrage devrait prendre en compte le coût d’exploitation du bâtiment et proposer parmi les critères d’évaluation du concours un quota de 30 %, par exemple, pour la vision globale des coûts sur la durée de vie du bâtiment. Le bureau d’études doit alors être associé au concours…


Acoustique

L’ambiance acoustique de chaque espace doit également être conçue dès la programmation tant les nuisances sonores peuvent être à l’origine de tensions ou de problèmes de concentration. Il conviendra de regrouper les espaces en fonction du niveau sonore produit et accepté dans le cadre des activités ayant cours dans cet espace et/ou, à défaut, de recourir à des dispositifs d’isolement et/ou d’absorption acoustique adéquats.

 

À gauche : dispositifs d’absorption acoustique appliqués sur un plafond à forte inertie.
À droite : paroi légère vitrée et dédoublée séparant un openspace d’une salle de réunion.

Choisir la fenêtre comme capteur de lumière naturelle [Esquisse du projet]

Favoriser l’éclairage naturel extérieur

Dans une démarche de construction ou de rénovation lourde, on privilégiera l’utilisation de la lumière naturelle à la place de l’éclairage artificiel. La qualité « spectrale » de la lumière naturelle ainsi que sa variabilité et ses nuances offrent une perception optimale des formes et des couleurs. L’éclairage artificiel devrait donc être considéré comme un complément à la lumière naturelle. Aussi, d’un point de vue énergétique, l’utilisation de l’éclairage naturel comme « source » lumineuse est gratuite ; ce qui signifie que la facture en électricité sera d’autant plus réduite que l’éclairage naturel exploité.

Dans bien des projets de conception ou de rénovation de bâtiments tertiaires, en confort lumineux, l’objectif premier est de privilégier l’ouverture des espaces de travail vers la lumière naturelle tout en sachant qu’une trop grande ouverture des façades est souvent synonyme d’éblouissement, de surchauffe et déperditions thermiques au travers des baies vitrées. Le compromis reste de rigueur !

Bien des paramètres viennent influencer de manière plus ou moins significative la pénétration de la lumière dans les espaces de travail :

  • L’orientation des façades ;
  • La présence d’ombres reportées (bâtiments ou autres façades du bâtiment étudié faisant de l’ombre) ;
  • La taille, la forme et la position des baies vitrées dans les façades ;
  • La forme et les dimensions des trumeaux ;
  • Les caractéristiques des vitrages ;
  • La présence de protection solaire (fixe, mobile, …) ;
  •  …

Vitrage clair.           Vitrage sélectif.           Auvent.           Lamelles.           Ombre reportée.

Pour un projet de taille importante, une étude par un bureau spécialisé est toujours intéressante sachant qu’il est possible d’optimiser conjointement les conforts lumineux et thermiques par des simulations dynamiques tenant compte de l’ensoleillement et du climat à tout moment de l’année disponible sous forme de bases de données type « météonorm » par exemple.

L’éclairage naturel extérieur n’est pas uniforme

L’intensité de la lumière naturelle varie fortement en fonction du type de ciel, du moment de l’année, de l’heure dans la journée, de l’orientation de l’ouverture, de son inclinaison et de son environnement.

Les études d’éclairage naturel des locaux sont basées, conventionnellement, sur un ciel couvert donnant un niveau d’éclairement de 5 000 lux sur une surface horizontale en site dégagé (Commission Internationale de l’Énergie).

Or, en Belgique, un tel éclairement est dépassé 80 % du temps entre 8h00 et 16h00, par ciel couvert. Et ce ciel couvert ne se présente que 36 % du temps de l’année.

À l’extrême, en juin, à midi et par ciel serein, l’éclairement dépasse 100 000 lux! (Franchement, de quoi se plaint-on ?!)

Lumière solaire directe ou lumière solaire diffuse ?

La lumière solaire directe dispense un flux considérable, facile à capter et à diriger. Elle présente une dynamique intéressante (création de reliefs dans le bâtiment) et peut être utilisée en tant qu’énergie thermique. Par contre, le rayonnement solaire direct est souvent une source d’éblouissement et parfois de surchauffe du bâtiment. De plus, sa disponibilité est épisodique et dépend de l’orientation des ouvertures.

La lumière diffuse du ciel est disponible dans toutes les directions. Elle suscite peu d’éblouissement, ne provoque pas de surchauffe, mais elle peut être insuffisante dans de nombreux cas. En outre, elle crée peu d’ombres et de très faibles contrastes. Une lumière diffuse est donc idéale pour des locaux de travail où il est important d’avoir un éclairage constant, sans source d’éblouissement. La lumière du nord est assurément une lumière diffuse (depuis toujours exploitée dans les ateliers d’artistes). Mais il est possible de valoriser également la lumière directe venant des autres orientations, pour autant qu’une protection masque le disque solaire ou qu’un rideau intérieur diffuse la lumière incidente.

L’influence de l’environnement

Lors de la conception d’un bâtiment, il est donc important de mesurer l’impact de l’environnement existant sur le nouvel édifice afin de profiter au mieux des possibilités offertes par le terrain pour capter la lumière.

Le relief du terrain, les constructions voisines, … peuvent modifier fortement l’apport.

L’effet de rue est caractérisé par le masque solaire que créent les bâtiments situés de l’autre côté de la rue. Il dépend de la hauteur de ces constructions et de la distance qui sépare les deux côtés de la rue.

Des surfaces réfléchissantes placées au sol telles qu’un dallage brillant ou un plan d’eau peuvent contribuer à capter davantage de lumière. Ainsi, l’eau, en réfléchissant le ciel et l’environnement, intensifie l’impression lumineuse d’un lieu.

Mais la présence d’un bâtiment voisin équipé de vitrages réfléchissants, précisément pour se protéger de l’ensoleillement, risque de provoquer un éblouissement excessif des occupants.

Des éléments liés au bâtiment lui-même, tel que des murs de refends, des surplombs, des light shelves, … peuvent aussi provoquer un ombrage en fonction de leur taille, de leur réflectivité et de leur orientation.

La végétation se distingue des autres écrans parce qu’elle peut être saisonnière, ce qui est le cas des arbres à feuilles caduques, et que par ailleurs elle ne possède qu’une opacité partielle. Elle se contente de filtrer la radiation lumineuse plutôt que de l’arrêter.


Sélectionner la fenêtre comme espace capteur de lumière

Pour quels locaux ?

A priori, tous les locaux devraient disposer d’un éclairage naturel (sauf archives et locaux techniques). On peut parler de nécessité pour les « locaux de vie » (où les occupants séjournent plusieurs heures par jour) et de souhait pour les sanitaires et les circulations (où les occupants ne font que passer).

Voici deux couloirs du même bâtiment, avec les mêmes orientations.
Dans le premier cas, l’architecte a introduit une dissymétrie dans la distribution des locaux, et des ouvertures vers l’extérieur pour introduire de la lumière naturelle.
Faut-il préciser que la première mise en œuvre est plus chère ?..
On parle ici de qualité de l’ambiance intérieure dans un lieu de travail.

Ouverture latérale ou zénithale ?

Ouverture latérale et ouverture zénithale.

Au niveau de l’apport de lumière naturelle, une ouverture zénithale s’ouvre sur la totalité de la voûte céleste. Elle induit une meilleure pénétration de lumière, particulièrement par temps nuageux. La distribution lumineuse obtenue par une ouverture zénithale est aussi beaucoup plus homogène que celle produite par une fenêtre latérale. De plus, la lumière entre dans les locaux par le plafond, ce qui limite a priori les phénomènes d’éblouissement. L’éclairage zénithal convient spécialement à la pénétration de la lumière naturelle dans les bâtiments bas et profonds.

Distribution de lumière très homogène,
mais défavorable à la perception du relief.

Mise en évidence du relief par l’éclairage latéral,
malgré un couloir rectiligne.

Par contre, la lumière latérale est favorable à la perception du relief. L’entretien est également plus facile que pour une ouverture zénithale. De plus, le bilan thermique est en faveur d’une ouverture verticale. En été, les apports peuvent être limités (particulièrement au sud, via une « casquette » architecturale).

Tandis que les apports d’été sont toujours excédentaires au niveau d’une ouverture en toiture.

Seule solution : la décapotable ! Si la coupole ou la verrière peut être largement ouverte en été, le problème peut être résolu. Reste la gestion de la pluie et du vent…

Quelle orientation de la fenêtre latérale ?

Les pièces orientées au nord bénéficient toute l’année d’une lumière égale et du rayonnement solaire diffus. Il est judicieux de placer des ouvertures vers le nord lorsque le local nécessite une lumière homogène, peu variable ou diffuse, et lorsque les apports internes sont élevés.

Les pièces orientées à l’est profitent du soleil le matin, mais le rayonnement solaire est alors difficile à maîtriser, car les rayons sont bas sur l’horizon. L’exposition solaire y est faible en hiver, mais elle permet d’apporter des gains solaires au moment où le bâtiment en a le plus besoin. Par contre, en été, l’orientation est présente une exposition solaire supérieure à l’orientation sud, ce qui est peu intéressant.

Une orientation ouest présente un risque réel d’éblouissement et les gains solaires ont tendance à induire des surchauffes. En effet, les vitrages tournés vers l’ouest apportent des gains solaires l’après-midi, au moment où le bâtiment est depuis longtemps en régime.

Une orientation sud entraîne un éclairement important. De plus, les pièces orientées au sud bénéficient d’une lumière plus facile à contrôler. En effet, en hiver, le soleil bas (environ 17°) pénètre profondément dans le bâtiment, tandis qu’en été, la hauteur solaire est plus élevée (60°) et la pénétration du soleil est donc moins profonde. En été, les apports solaires sur une surface verticale sont également nettement inférieurs au sud qu’à l’est ou à l’ouest, car ils sont diminués par un facteur égal au cosinus de l’angle d’incidence.

Les dimensions de l’ouverture

On peut quantifier l’apport de lumière naturelle dans un local par le facteur de lumière du jour (FLJ). Exprimé en %, il exprime le rapport entre l’éclairement intérieur sur le plan de travail dans le local, et l’éclairement extérieur sur le plan horizontal, en site dégagé, par ciel couvert.

Plus le facteur de lumière du jour est élevé, plus le temps d’utilisation des locaux avec la lumière naturelle est élevé, limitant ainsi la consommation d’éclairage artificiel.

Un objectif raisonnable est d’arriver à un temps d’utilisation de l’éclairage naturel d’au moins 60 %. Ceci entraîne un facteur de lumière du jour de 2,5 (exigence de 300 lux) à 4 % (exigence de 500 lux) dans les locaux de vie, et de 1,5 % dans les circulations et sanitaires (exigence de 100 lux).

Une méthode approchée permet d’évaluer le Facteur de Lumière du Jour moyen d’un local donné, en fonction de sa surface vitrée.

L’emplacement de l’ouverture

Bien sûr, plus la surface est importante, plus l’éclairage naturel est élevé. Mais on sait que les apports solaires augmenteront eux aussi et donc le risque de surchauffe du local. Il nous faut donc optimiser l’efficacité lumineuse de la fenêtre.

Pour évaluer l’influence de l’emplacement de la fenêtre sur la répartition de la lumière dans un local, nous comparons trois fenêtres identiques, situées à 3 hauteurs différentes.

Plus la fenêtre est élevée, mieux le fond du local est éclairé et plus la zone éclairée naturellement est profonde. Si le fond du local (situé à 7 m de la façade dans notre test) reçoit une valeur de référence 100 pour la fenêtre basse, il recevra 128 pour la fenêtre à mi-hauteur et 143 pour la fenêtre haute.

A surface égale, l’efficacité lumineuse d’une fenêtre est donc maximale au niveau d’un bandeau horizontal, situé en partie supérieure de la paroi.

Une telle fenêtre en hauteur procure les avantages suivants :

  • Une répartition très uniforme de la lumière dans l’espace ainsi qu’un bon éclairage du fond du local.

 

  • Une source de lumière au-dessus de la ligne de vision, ce qui réduit les risques d’éblouissement direct.

Cependant, le seuil se trouve au-dessus du niveau de l’oeil, la vue sur l’extérieur est impossible. La fenêtre ne peut jouer son rôle de lien entre un local et son environnement. De plus, une zone d’ombre est formée à proximité du mur de fenêtre. En général, il est préférable de coupler une telle fenêtre avec une fenêtre classique, équipée de protections solaires.

Pour maximiser les apports de lumière naturelle, on peut également interrompre un faux plafond à proximité de la fenêtre pour favoriser la pénétration de la lumière naturelle par cette ouverture. Ce procédé est connu sous le nom de « plafond biaisé ».

De cette étude, on peut déduire une autre conclusion très intéressante : c’est la zone inférieure d’une fenêtre qui est la moins efficace en matière d’éclairage naturel. La présence d’une allège opaque est donc thermiquement préférable (présence d’une isolation pour diminuer les pertes en hiver et opacité vis-à-vis des apports solaires).

La forme de la fenêtre

Analysons l’influence de la forme de la fenêtre en comparant la répartition lumineuse fournie par trois fenêtres de proportions différentes, pour une surface vitrée identique et une hauteur de l’allège constante.

Lorsque la largeur de la fenêtre diminue, la répartition devient moins uniforme, bien que l’éclairement moyen soit pratiquement le même dans les trois cas étudiés. Par contre, l’éclairement du fond du local augmente avec la hauteur de la fenêtre. Pour une même surface vitrée, une fenêtre haute éclaire davantage en profondeur. L’idéal réside donc dans une fenêtre horizontale, mais dont le linteau est élevé. En première approximation, une pièce est convenablement éclairée jusqu’à une profondeur de 2 à 2,5 fois la hauteur du linteau de la fenêtre par rapport au plancher.

Analysons l’influence de la répartition des ouvertures dans une façade : comparons la grande fenêtre centrée et deux fenêtres plus petites, placées symétriquement.

Dans les deux cas, les fenêtres ont une superficie vitrée totale identique et la même hauteur; leur allège est située au même niveau par rapport au sol. La moyenne des éclairements varie peu, mais la répartition de la lumière dans la partie du local avoisinant les fenêtres est différente. Dans le cas de deux fenêtres séparées, une zone d’ombre apparaît entre celles-ci, ce qui peut créer des problèmes de confort visuel pour les occupants.

Le type de châssis

Le type et la taille du châssis modifient la vue vers l’extérieur et la quantité de lumière admise dans un édifice.

Le châssis fixe sera sans conteste le plus mince mais il empêche le plaisir du contact direct avec l’air extérieur…

Le matériau utilisé pour le châssis détermine également son encombrement : en général, un châssis en bois est plus mince qu’un cadre en aluminium à coupure thermique. Les châssis en PVC sont les plus larges.

Mais les innovations récentes permettent de plus en plus de diminuer l’impact visuel des châssis et d’augmenter ainsi la quantité de lumière captée.

Cafétéria dans un lycée.


Valoriser l’éclairage naturel capté

Les dimensions du local

La profondeur du local ne devra pas dépasser le double de la hauteur du linteau de la fenêtre, puisque l’intensité de la lumière naturelle décroît très rapidement en fonction de l’éloignement de la fenêtre.

Ainsi, la profondeur des bureaux devrait être limitée à 6 mètres.

À noter qu’une variation de la hauteur sous plafond (pour une même baie vitrée et une surface de plancher identique) induit une très faible différence dans la répartition lumineuse du local. Le niveau d’éclairement est cependant un petit peu plus élevé dans les pièces ayant un plafond plus bas.

La réflexion sur les parois

La nature et la couleur des surfaces intérieures influencent directement l’éclairage naturel dû aux réflexions intérieures. Une bonne distribution de la lumière nécessite des parois et du mobilier de couleurs claires.

L’importance de la clarté des surfaces est due à un double effet

  • les facteurs de réflexion plus élevés permettent à la lumière d’être davantage réfléchie.

 

  • l’œil humain analyse des niveaux de luminance : sous les mêmes conditions d’éclairage, une surface claire est donc subjectivement perçue comme mieux éclairée qu’une surface foncée.

On peut dire que si le facteur de réflexion moyen des murs d’un volume quelconque est inférieur à 50 %, la lumière pénétrera difficilement en profondeur dans cet espace. Or la plupart des matériaux architecturaux ont de faibles facteurs de réflexion. Un plancher clair peut avoir un facteur de réflexion de 30 %, mais pas beaucoup plus, ce qui est nettement plus bas que les murs (~ 50 % ) et que les plafonds (~ 70 %).

Dès lors, pour favoriser la pénétration de la lumière dans un local, on adoptera un revêtement du sol et du mobilier relativement clair, possédant donc un facteur de réflexion élevé. De plus, la clarté des tables de travail s’avère un élément favorable au confort visuel dans la mesure où la réduction du contraste entre le papier et le support de la table induit une diminution des efforts d’accommodation que l’œil doit effectuer à chacun de ses mouvements.

En revanche, les sols sont souvent de couleur relativement sombre afin de faciliter leur entretien. Il faut donc envisager un compromis susceptible de satisfaire simultanément les exigences de confort et de maintenance.

Comme le plafond ne reçoit la lumière naturelle que de manière indirecte, son influence sur la répartition de la lumière est relativement faible. En revanche, lorsqu’un dispositif de distribution lumineuse dévie la lumière vers le haut, par exemple à l’aide d’un  light shelf, le plafond reçoit une grande quantité de lumière qu’il doit répartir dans toute la pièce; le facteur de réflexion de cette surface doit alors être élevé (> 70 %), valeur correspondant à celle du plâtre blanc propre.

Lorsque les matériaux de revêtement présentent une certaine brillance, la lumière arrive plus facilement en fond de pièce.

En contrepartie, les surfaces en question acquièrent une luminance élevée et peuvent donc devenir des sources d’éblouissement.

De manière générale, les surfaces brillantes sont donc à conseiller comme moyen de transmission de la lumière naturelle, mais elles sont à éviter dans les locaux de travail, dans la mesure où les activités (lecture, écriture,…) peuvent être perturbées lorsque l’environnement lumineux est fort contrasté.

Distribuer l’éclairage dans les locaux

L’inconvénient de la lumière naturelle par rapport à la lumière artificielle réside dans la grande inhomogénéité des éclairements qu’elle induit. La répartition de la lumière représente donc un facteur clef pour assurer un éclairage de qualité.

Un éclairage naturel direct engendre des risques importants d’éblouissement et entraîne une répartition des luminances très irrégulière dans le local.

L’éclairage naturel indirect utilise les réflexions des rayons lumineux sur une paroi pour obtenir une distribution lumineuse plus homogène. Cependant, le niveau d’éclairement assuré dépend fortement du coefficient de réflexion de la paroi et donc de sa maintenance régulière.

Le Kimbell Art Museum, conçu par L. Kahn, renferme un exemple d’éclairage naturel indirect fabuleux.

De longs plafonds cylindriques laissent pénétrer la lumière naturelle en leur centre grâce à un système filtrant et réfléchissant, qui redirige la lumière solaire éclatante du Texas sur les voûtes du musée.

L’aménagement des parois intérieures

La distribution de l’éclairage dépend aussi de l’organisation des espaces intérieurs. Utiliser des cloisons transparentes ou translucides permet à la lumière de se répandre dans les deux pièces séparées par la surface vitrée. À l’intérieur d’un bâtiment, l’architecte est tributaire des effets de lumière qui se créent : il dote les espaces intérieurs de l’atmosphère désirée par une disposition étudiée des ouvertures et des obstacles à la lumière. Par exemple, un local disposé à l’est peut, par le truchement des baies intérieures, recevoir un peu de lumière de l’ouest.

Dans un long couloir, la présence de fenêtres translucides donne un relief agréable et permet d’éviter l’éclairage artificiel (bandes verticales à côté des portes ou impostes au-dessus des portes).

Les meubles sont parfois de réels obstacles qui empêchent la transmission de la lumière vers certaines parties de la pièce. Il est donc essentiel de réfléchir au type de meubles, ainsi qu’à leur emplacement, de manière à favoriser la pénétration de la lumière naturelle.

Ces deux modes d’éclairage peuvent aussi être combinés pour créer un éclairage direct/indirect, alliant une ouverture directe à la lumière naturelle à un système d’éclairage indirect. Un exemple de ce type d’éclairage est une façade qui unit une fenêtre normale et un light shelf. Ce mode d’éclairage possède, en général, les avantages de l’éclairage indirect, mais la partie directe permet en plus de créer des ombres, qui mettent en valeur le relief des objets. D’autre part, la maintenance des coefficients de réflexion des parois est un peu moins critique vu qu’une partie de l’éclairage entre de manière directe dans l’espace.

Gérer l’éclairage artificiel en fonction de l’éclairage naturel

Force est de constater que les occupants d’un bâtiment tertiaire sont peu motivés à éteindre leurs luminaires, même si l’éclairage naturel est suffisant. De plus, la modulation ON-OFF n’est pas souple et provoque un choc psychologique lors de l’extinction.

      

Par exemple, il est possible aujourd’hui de placer une cellule sensible à l’intensité lumineuse en dessous du luminaire. Si, en présence de soleil, celle-ci dépasse les 500 Lux souhaités, l’alimentation électrique du luminaire est automatiquement réduite. Sans que l’occupant ne s’en rende compte, l’éclairage naturel est directement valorisé. C’est « la vanne thermostatique » du luminaire !

Concevoir

Pour plus d’informations sur la mise en place d’une technique de gestion de l’éclairage artificiel.

Renforcer l’éclairage naturel à l’intérieur du bâtiment

Le puits de lumière

Certaines zones centrales dans un bâtiment n’ont pas d’accès direct à la lumière du jour. Dès lors, un conduit de lumière, passant à travers différentes pièces, permet de répandre la lumière naturelle captée en toiture ou en façade dans ces locaux aveugles.

Signalons toutefois que les puits de lumière risquent d’occuper un assez grand volume dans le bâtiment. Leur surface interne doit être d’autant plus réfléchissante que la lumière naturelle doit être amenée profondément dans le bâtiment. Pour limiter au maximum les pertes par absorption, il faut utiliser des matériaux très performants au niveau photométrique.

Architecte : M. Botta.

Utilisation du verre
dans des éléments de sol ou d’escalier.

Si le puits de lumière prend de plus larges dimensions, on parle d’atrium. Sa gestion thermique est souvent difficile (refroidissement par la surface vitrée en hiver, surchauffe par l’excès d’apports solaires en été). Un équilibre dans le degré d’ouverture doit donc être trouvé pour favoriser l’éclairage des pièces centrales, tout en évitant un déséquilibre thermique … coûteux en climatisation !

   

Exemple d’un atrium bien dimensionné.

Au Lycée Vinci de Calais, une dynamique est donnée par les 3 ouvertures : bandeau lumineux sur toute la longueur, coupole en toiture, pignons vitrés aux deux extrémités.

Si toute la toiture avait été ouverte, l’énergie incidente aurait entraîné des surchauffes en été.

Le conduit solaire

Un conduit solaire transmet la lumière solaire directe au cœur même du bâtiment. Le rayonnement solaire est capté au moyen d’un système de miroirs et de lentilles ou de capteurs paraboliques, éléments qui se meuvent en fonction de la trajectoire du soleil. La transmission du rayonnement solaire se fait par des systèmes de miroirs, de lentilles, de prismes réflecteurs, de fibres optiques, de baguettes acryliques, de fluides de cristaux liquides ou des conduits creux, dont les faces intérieures sont recouvertes de métaux polis. Les faisceaux lumineux ainsi obtenus peuvent alors être dirigés sur une surface précise ou diffusés dans l’espace.

Ce conduit, beaucoup moins volumineux qu’un puits de lumière, peut facilement atteindre une longueur de 15  mètres. Il est parfois associé à un puits de lumière.

Le conduit solaire apporte un flux lumineux nettement plus important et plus concentré que le puits de lumière. Cependant, tous ces systèmes de gestion du rayonnement solaire direct sont relativement chers à installer et s’appliquent donc plus particulièrement aux régions fortement ensoleillées.

Le « light shelf »

Un light shelf est un auvent, dont la surface supérieure est réfléchissante.

L’objectif est double

  1. Rediriger la lumière naturelle vers le plafond, ce qui permet de faire pénétrer la lumière profondément dans la pièce.
  2. Protéger l’occupant des pénétrations directes du soleil (éblouissement et rayonnement direct).

La surface du light shelf doit être aussi réfléchissante que possible, mais peut-être mate, brillante ou spéculaire. Une surface spéculaire renvoie théoriquement plus de lumière, mais il faut pour cela qu’elle soit nettoyée très régulièrement, ce qui n’est pas toujours aisé. En pratique, un light shelf brillant (semi-spéculaire) est sans doute le meilleur choix.

La couleur du plafond doit être aussi claire que possible, car il joue le rôle de distributeur de la lumière naturelle réfléchie par le light shelf. Sa pente a également de l’importance : un plafond incliné vers le fond du local ou de forme arrondie incurvée vers l’intérieur de l’espace augmentera fortement la profondeur de pénétration de la lumière dans le local.

Architecte : Michael Hopkins and Partners.

Dans nos régions, il est surtout applicable pour des locaux profonds d’orientation sud. Ses performances sont fortement réduites pour des orientations est et ouest, pour lesquelles le rayonnement solaire a un angle d’incidence plus faible.

De manière relative, plus le local est sombre, plus l’apport d’un light shelf peut être intéressant. Si la composante réfléchie interne est déjà grande dans un local, le même système sera proportionnellement moins efficace. L’emploi d’un light shelf en rénovation sera particulièrement profitable dans les pièces dont les murs ont des coefficients de réflexion faibles et un mobilier foncé (à noter qu’il sera moins cher de commencer par repeindre les murs !).

Le choix de la meilleure configuration de light shelf résulte d’un équilibre entre les demandes d’éclairage naturel et les besoins d’ombrage d’un local.

Un light shelf est habituellement situé à environ deux mètres de hauteur, divisant la fenêtre de façade en deux parties. Sa position dépend de la configuration de la pièce, du niveau des yeux et de la hauteur sous plafond pour permettre une vue vers l’extérieur et ne pas causer d’éblouissement. Une position basse augmente la quantité de lumière réfléchie vers le plafond … mais accroît les risques d’éblouissement.

L’augmentation de la profondeur du light shelf limite l’éblouissement, mais diminue aussi la pénétration de la lumière et la vue vers l’extérieur. Le light shelf, affectant la conception architecturale et structurelle d’un édifice, est de préférence introduit au début de la phase de conception puisqu’il nécessite un plafond relativement haut pour être efficace.

Les light shelves horizontaux sont un bon compromis entre une inclinaison du système vers le centre de la pièce ou vers l’extérieur. Tournée vers l’extérieur, le light shelf crée un plus grand ombrage, mais tournée vers l’intérieur il éclaire mieux le fond de la pièce.
On peut classer un light shelf selon sa position : intérieur, extérieur ou combiné.

Ainsi que le montre les simulations de l’éclairage d’un local, sans et avec light shelf,

  • Le light shelf extérieur donne les meilleurs résultats du point de vue du niveau d’éclairement en fond de pièce, tout en ombrant la grande fenêtre.

 

  • Placé à l’intérieur, il réduit le niveau d’éclairement moyen du local, mais offre toutefois un ombrage pour la partie supérieure du vitrage.

 

  • Enfin, le light shelf combiné assure la distribution lumineuse la plus uniforme dans le local; il se révèle également la meilleure protection solaire.

Choisir le lieu d’implantation

Suivant le lieu d’implantation, la consommation liée au transport des occupants
risque de dépasser la consommation de l’immeuble de bureaux …


Valoriser les réseaux de transport en commun

 

Dans un immeuble de bureaux, la consommation journalière des 12 m² occupés par une personne correspond à un parcours aller/retour en voiture de 30 km.

La consommation liée au transport des occupants du bâtiment est donc souvent plus élevée que la consommation du bâtiment lui-même !

Lors du choix d’implantation, parmi les autres critères, on prendra en compte l’intégration dans un réseau de transport en commun.

Pour plus d’info sur ce thème, vous pouvez consulter le site ouverture d'une nouvelle fenêtre ! http://mobilite.wallonie.be de la Région Wallonne.


Favoriser le transport à pied ou à vélo

L’accessibilité des piétons et des cyclistes est essentiellement du ressort de l’urbanisme. Cependant, localement, il est possible de favoriser cette politique, par la réservation d’une zone de parkings pour les vélos, par exemple. Ou l’insertion au programme du bâtiment d’une salle de douches pour les occupants cyclistes.


Valoriser les services de proximité

Dans un zoning industriel, les repas de midi, les courses durant la pause, … génèrent des déplacements énergivores.

On peut donc penser au contraire à une implantation qui limite cet usage :

  • présence de restaurants, de commerces,
  • présence de sociétés de services à proximité,

Valoriser les ressources locales

Les matériaux qui entreront dans le projet représenteront chacun un investissement énergétique.

On privilégiera donc le choix de matériaux de construction locaux, l’utilisation de matériaux recyclables ou recyclés,…

Plus largement encore, une réflexion peut être menée sur la valorisation de la main-d’œuvre locale, voire sur l’appel à des organismes locaux d’insertion professionnelle.


Intégrer le bâtiment au sein d’un projet urbain global

Est-il normal de concevoir des immeubles similaires dans nos régions et sous les tropiques… ?

Ceci dépasse le seul critère énergétique, mais peut être porteur d’une réflexion intéressante :

  • Intégrer le bâtiment dans son contexte topographique, architectural, urbanistique, culturel, …
  • Apporter de la mixité dans les affectations urbaines (bureaux, logements, écoles, commerces, …).
  • Proposer un aménagement local dont la logique s’intègre au projet urbain existant ou peut s’étendre ultérieurement au voisinage futur.
  • Valoriser les espaces publics et semi-publics.

Plus localement, il est aussi utile de réintroduire le contact avec l’environnement grâce aux espaces extérieurs qui environnent le bâtiment.

 

Les fontaines, les bassins,… créent un rapport ludique et symbolique avec l’eau.
Ils favorisent la diversité biologique.

Mais aussi, ils modifient le microclimat dans l’espace environnant, réduisant en été la température de l’air extérieur par évaporation (chaleur latente).

 

Concevoir l’esquisse du projet – généralité

Concevoir l'esquisse du projet

Préalable, un document de synthèse peut être imprimé à destination du Maître d’Ouvrage.

Avertissement : l’esquisse décrite ici ne prend en compte que des considérations énergétiques et de confort s’adressant aux bâtiments du tertiaire de manière générale. La prudence est de mise lorsqu’on aborde certaines zones à risque de l’hôpital.

Conception énergétique d’un bâtiment tertiaire :

>  version PDF