Optimiser le dégivrage des meubles frigorifiques

Optimiser le dégivrage des meubles frigorifiques


Les meubles frigorifiques fermés, mixtes ou ouverts négatifs

  

Meuble mixte négatif, meuble fermé négatif et meuble ouvert négatif à ventilation forcée.

Le dégivrage « forcé » par les moyens courants tels que les résistances chauffantes ou par injection de gaz chaud côté circuit frigorifique est un mal nécessaire pour les meubles frigorifiques fermés, mixtes ou ouverts négatifs. En général, ce sont les mêmes techniques de dégivrage que les chambres frigorifiques qui leur sont appliquées.

À l’heure actuelle, sur la plupart des meubles de ce type, les équipements de dégivrage sont prévus en standard sous forme de résistances électriques.

La technique, par injection de gaz chaud à l’évaporateur nécessite une installation plus complexe et, par conséquent plus coûteuse.

Paramètres de régulation du dégivrage « forcé »

Un fabricant de meubles frigorifiques renseigne les paramètres de réglage des meubles frigorifiques négatifs. On peut y retrouver des valeurs de réglage standards en fonction de la classe d’ambiance déterminée par ouverture d'une nouvelle fenêtre ! EUROVENT, à savoir généralement pour une classe d’ambiance 3 (25°C, 60 % HR) :

Paramètre Définition Optimum énergétique
T0 température d’évaporation [°C] la plus faible possible
N/24h le nombre de dégivrage par 24 heures [N/24 heures] le plus faible possible
Tter la température en fin de dégivrage [°C] la plus basse possible
td la durée de dégivrage [min] la plus faible possible
tegout le temps d’égouttage [min] le plus faible possible
tvent le temps de retard pour redémarrer les ventilateurs [min]

Il est bien entendu que tous ces paramètres doivent trouver leur optimum énergétique suivant le type d’application, d’ambiance des zones de vente avoisinantes, …, tout en conservant la qualité du froid alimentaire.

Pour différents modèles de meubles frigorifiques et pour une température d’évaporation T0 [°C],ces paramètres sont consignés dans le tableau ci-dessous.

Type de meuble négatif Référence Type de dégivrage T0[°C] N/24 [N/24 heures] Tter[°C] td[min] tegout[min] tvent[min]
Meuble mixte vertical 3L1 RVF3 électrique -35 1 5 40 10 5
Meuble vertical vitré 3L1 RVF4 électrique -35 1 15 30 10 5
gaz chaud 1 10 10 5 5
Meuble vertical vitré 3M1 RVF4 électrique -10 1 10 10 5 0
Meuble horizontal 3L1 IHF4 électrique et gaz chaud -35 2 5 45
Meuble horizontal 3L3 électrique -10 2 10 45
Source : Costan (Sabcobel)

Il est donc nécessaire de s’assurer que ces consignes soient respectées.

Pré-programmation des dégivrages

Lorsque le magasin est composé d’un nombre impressionnant de meubles linéaires (cas des super et hypermarchés), la programmation des temps de dégivrage doit être décalée dans le temps sachant que l’appel de puissance électrique des compresseurs, pour redescendre les températures des meubles à leur valeur nominale, peut être important. La possibilité de mettre en réseau les régulateurs individuels de chaque meuble avec un superviseur (GTC : Gestion Technique Centralisée), facilite la tâche des gestionnaires techniques des magasins.

La programmation d’un décalage des démarrages des dégivrages dans le temps permet de maîtriser les pointes de courant responsables des pointes quart-horaire excessives alourdissant la facture électrique.


Les meubles frigorifiques positifs

Meuble convection naturel positif (vitrine) et meuble ouvert vertical positif avec rideau d’air en convection forcée.

Pour les applications en froid positif, le « dégivrage naturel » suffit dans la plupart des cas.

À noter qu’en option il est toujours possible de placer des résistances de dégivrage, mais ce serait prêcher contre sa chapelle puisqu’il est possible de s’en passer. Il faut compter de l’ordre de 60 à 70 W/ml pour des résistances électriques simples.

Paramètres de régulation du dégivrage « naturel »

Le principal paramètre de ce type de dégivrage est la durée de dégivrage td [min]. Les fabricants par défaut programment des temps de dégivrage maximum de l’ordre de 40 à 45 minutes. Il est nécessaire de choisir une régulation qui permette de réduire les temps de dégivrage en fonction de la classe d’ambiance. Dans la réalité, c’est au cas par cas et suivant le climat interne que va dépendre le temps de dégivrage.

Dans l’absolu, le dégivrage « naturel » est intéressant puisque pendant cette phase :

  • la production de froid est interrompue;
  • il n’y a pas de consommation électrique de dégivrage proprement dite.

Pré-programmation des dégivrages

Le même type de programmation décalée que pour les meubles de froid négatif en centralisant toutes les demandes de dégivrage au niveau d’une gestion technique centralisée (GTC) est aussi possible pour les meubles frigorifiques positifs.

Source : Delhaize Mutsaart.

Ici, on visera l’interruption de ou d’une partie de la production de froid couplée avec :

  • l’arrêt des circulateurs sur une boucle caloporteur. On privilégiera l’arrêt des circulateurs individuels des meubles frigorifiques plutôt que l’arrêt du ou des circulateurs centraux (on parlera alors de pompe de circulation) afin d’espacer dans le temps les dégivrages individuels et, par conséquent, les pointes d’appel de puissance électrique à la fin d’un dégivrage programmé central.

Boucle monotube : arrêt individuel des circulateurs de meuble.

  • la fermeture de l’alimentation d’une vanne en amont du détendeur.

Boucle caloporteur : fermeture individuelle des vannes d’alimentation des évaporateurs de meubles.

Détente directe : réglage individuel des détendeurs des meubles frigorifiques.

La programmation d’un décalage des démarrages des dégivrages dans le temps permet de maîtriser les pointes de courant responsable des pointes quart-horaire excessives alourdissant la facture électrique.

Exemple.

Le cas d’un hypermarché où la facture d’électricité risque d’être salée de par le non-décalage des débuts de dégivrage sur 150 m de meubles linéaires positifs.

Période d’enregistrement sur 24  heures.

En analysant de plus près, on se rend compte que l’appel de puissance de la journée 430 KW a été enregistré comme pointe quart-horaire à 07h30; ce qui signifie que la facture électrique intégrera cette valeur comme pointe quart-horaire mensuelle. On aurait pu éviter cette pointe en décalant les périodes de dégivrage dans le temps.

Bilan énergétique d’un meuble fermé vertical négatif

Bilan énergétique d'un meuble fermé vertical négatif

Calculs

Pour se rendre compte des énergies mises en jeu, les deux exemples ci-dessous prennent des cas concrets de meubles frigorifiques couramment rencontrés sur le marché.

Hypothèses générales

Pour déterminer le bilan énergétique, il est nécessaire comme pour le meuble positif vertical de poser des hypothèses semblables à celles qui sont utilisées dans les essais pour la certification ouverture d'une nouvelle fenêtre ! EUROVENT :

  • Les conditions d’ambiance externes sont de la classe 3 (température Tambiance = 25 °C, Humidité HRa = 60 %).
  • L’enthalpie hambiance = 58 kJ/kg dans les conditions standards retenues par EUROVENT (soit à une température ambiante de 25 °C et 60 % d’humidité relative).

Caractéristiques d’un meuble négatif

On retrouve souvent en application négative des meubles verticaux dont les caractéristiques sont les suivantes :

Schéma principe meuble négatif.
  • température de conservation = – 18°C;
  • nombre de dégivrages journaliers nbre_dégivr = 2;
  • temps de dégivrage tdégivr = 0,5 heure;
  • longueur =  2,34 m;
  • hauteur = 2,3 m;
  • Surfacepénétrative = 15 m²;
  • Surfaceporte_vitrée = 4,3 m²;
  • Kmoyen_paroi = 0,6 [W/m².K] pour un meuble vertical avec de l’ordre de 6 cm d’isolant;
  • Kmoyen_porte_vitrée = 3 [W/m².K] pour un double vitrage classique;
  • nombre de portes Nporte = 3.

Calculs

Pour évaluer le coefficient de conductivité thermique d’une paroi
  • Les conditions d’ambiance internes sont liées à la classe de température des paquets « test », soit L1 pour les meubles frigorifiques négatifs (la température des paquets les plus chaud est de -15°C et celle des paquets les plus froid de -18°C).
  • L’enthalpie hinterne = -15 kJ/kg dans les conditions standards retenues par EUROVENT.
  • La puissance électrique des ventilateurs Pvent =  150  W.
  • la puissance électrique de l’éclairage Pécl =  288  W (soit 2 x 4 tubes de 36 W);
  • La puissance du cordon chauffant Pcordon_chaud = 60 W.
  • La puissance de dégivrage Pdégivrage = 6 400 W.
  • Nombre d’ouverture des portes Nouverture = 10 ouvertures/h.porte.
  • Temps ouverture des portes touverture = 10 s/porte.
  • Le volume libre (entre les denrées et les portes) Vlibre_meuble = 0,8 m³.

Énergie de jour

L’énergie de jour est principalement due à la pénétration au travers des parois (isolant et vitrage des portes), à l’ouverture des portes et au dégivrage.

Qjour  = Σ Pi apports_jour x tijour [Wh/jour]
Apports de chaleur Calculs Qjour[Wh/jour]
Pénétration paroi Qpen_paroi  = K moyen_paroi x Sparoi x (Tambiance – Tinterne) x tjour

= 0,6 x 15 x (25 – (-18)) x 10

3 870
Pénétration vitrage Qpen_vitrage  = Kmoyen_porte_vitrée x Sparoi x (Tambiance – Tinterne) x 

(tjour – touverture_porte)

= 3  x 4,3 x (25 – (-18)) x (10 – (3 x 10 x 10 / 3 600))

5 498
Ouverture des portes Nporte x Nouverture  x Vlibre_meuble x Cair  x 

(Tambiance – Tinterne) / 3600

= 3 x 10 x  0,8 x 2 x (25 – (-18) x 10 / 3,6

5 733
Ventilation Qvent  = (Pvent + Pcordon_chaud) x tjour

= (150 + 60) x 10

2 100
Éclairage Qéclair  = Péclair  x tjour

= 288 x 10

2 880
Dégivrage Qdég  = Pdég  x tdég

= 6 400 x 0.5 x 2

6 400
Qjour 26 481

 

Energie de nuit

La perte d’énergie de nuit continue par les parois principalement et les vitrages. L’éclairage est éteint et le ventilateur continue de brasser l’air dans le meuble fermé.

Qnuit  = Σ Pi apports_nuit x tinuit [Wh/jour]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [Wh/jour]
Pénétration paroi Qpen_paroi  = K moyen_paroi x Sparoi x (Tambiance – Tinterne) x tnuit

= 0,6 x 15 x (25 – (-18)) x 14

5 418
Pénétration vitrage Qpen_vitrage  = Kmoyen_porte_vitrée x Sparoi x (Tambiance – Tinterne)

 x tnuit

= 3  x 4.3 x (25 – (-18)) x 14

7 766
Ouverture des portes
Ventilation Qvent  = (Pvent + Pcordon_chaud) x tnuit

= (150 + 60) x 14

2 940
Eclairage

Qnuit

16 124

Bilan énergétique

L’énergie frigorifique journalière est l’énergie froide consommée par l’évaporateur du meuble ouvert.

Qtotal = QjourQnuit [Wh/jour]
Apports de chaleur Energie de jour (10 heures/jour) Energie de nuit (14 heures/jour) Energie total journalière
Pénétration paroi 3 870 5 418 9 288
Pénétration vitrage 5 498 7 766 13 264
Ouverture des portes 5 733 0 5 733
Ventilation/cordon chaud 2 100 2 940 5 040
Eclairage 2 880 0 2 880
Dégivrage 6 400 0 6 400
Total 42 605
Total/m² d’ouverture de portes 42 605/(4.3 x 1000) = 9,9 [kWh/m².jour]

Puissance frigorifique de l’évaporateur

Vu la présence d’un système de dégivrage électrique (en négatif, le dégivrage naturel ne suffit pas), la détermination de la puissance frigorifique du meuble doit s’effectuer en partant de l’énergie journalière. Soit :

P0 = (Qtotal)  / (24 – nombredégivrage x tempsdégivrage)

P0 = 42 605  / (24 – 2 x 0.5)

P0 = 1 852 [W]

Puissance frigorifique spécifique

La puissance frigorifique spécifique ou couramment connue sous le nom de puissance par mètre linéaire de meuble frigorifique est de :

Pml = P 0 / longueur du meuble

Pml = 1 852  / 2,3

Pml = 805  [W/ml]

Bilan énergétique d’un meuble ouvert horizontal négatif

Schéma caractéristiques meuble négatif.

Définitions

Bilan thermiques

Les bilans thermiques instantanés de jour et de nuit sont différents. Ils s’expriment par la somme des déperditions tant internes qu’externes selon la période de la journée, à savoir :

Bilan thermique instantané de jour Pjour >=

Σ P apports_jour = P pen + Pind_jour + Pray_jour + Pecl + Pvent [W]

Bilan thermique instantané de nuit Pnuit =

Σ P apports_nuit = Ppen + Pouv_nuit + Pray_nuit  + Pvent [W]

  • Ppen : apport par pénétration (déperditions négatives) au travers des parois du meuble [W].
  • Pind_jour : apport par induction (mélange de l’air de la zone de vente et de l’air du meuble) [W].
  • Pray_jour : apport par rayonnement mutuel des parois chaudes extérieures au meuble et les parois froides internes du meuble principalement par les ouvertures [W].
  • Pecl : apport des éclairages internes au meuble [W].
  • Pvent : apport des moteurs de ventilation placés dans le flux d’air froid [W].
  • Pouv_nuit : apport par l’ouverture du meuble. S’il n’y a pas de rideau de nuit ou des couvercles de couverture, les apports sont par induction. Par contre si le rideau de nuit est présent, ce sont plutôt des apports par pénétration au travers de la protection qui doivent être considérés.

Bilan énergétique

Le bilan énergétique journalier représente l’énergie nécessaire à l’évaporateur du meuble frigorifique pour vaincre les apports internes et externes. Il s’écrit de la manière suivant :

Bilan énergétique

 Q = Pjour x t jour + Pnuit x tnuit + Pdégivrage x nbre_dégivr x tdégivr[kWh/jour]

avec :

  • nbre_dégivr = nombre de dégivrage par jour;
  • tdégivr = temps de dégivrage.

Calculs

Pour se rendre compte des énergies mises en jeu, les deux exemples ci-dessous prennent des cas concrets de meubles frigorifiques couramment rencontrés sur le marché.

Hypothèses générales

Pour déterminer le bilan énergétique, il est nécessaire comme pour le meuble positif vertical de poser des hypothèses semblables à celles qui sont utilisées dans les essais pour la certification ouverture d'une nouvelle fenêtre ! EUROVENT :

  • Les conditions d’ambiance externes sont de la classe 3 (température Tambiance = 25 °C, Humidité HRa = 60 %).
  • La température des parois de la zone de vente Tparoi_vente est de l’ordre de 30 °C.
  • L’enthalpie hambiance = 58 kJ/kg dans les conditions standards retenues par EUROVENT (soit à une température ambiante de 25 °C et 60 % d’humidité relative).
  • Le facteur d’émissivité entre les surfaces du plafond et du meuble frigorifique φ1 = 0,8; ce qui correspond à des valeurs d’émissivité de corps noirs des parois de la surface de vente et des parois du meuble de respectivement εp et εi de l’ordre de 0.9 (1 correspond à un corps noir parfait).
  • Le facteur d’angle sous lequel les deux parois se voient φ2 = 1 pour un meuble horizontal.

Caractéristiques d’un meuble négatif

On retrouve souvent en application négative des meubles horizontaux à rideau d’air dont les caractéristiques sont les suivantes :

Schéma caractéristiques meuble négatif.
  • température de conservation = – 18°C.
  • nombre de dégivrage journalier nbre_dégivr = 2.
  • temps de dégivrage tdégivr = 0,5 heure.
  • longueur =  7,5 m.
  • largeur = 1,1 m.
  • Surfacepénétrative = 24.6 m².
  • Surfacerideau_d’air = 8,25 m².
  • Débitrideau_d’air = 0,3 kg/s.
  • taux d’induction X = 0.06.
  • Kmoyen_paroi = 0,4 [W/m².K] pour un meuble horizontal avec de l’ordre de 10 cm d’isolant.
  • Kmoyen_rideau_nuit = 2,5 [W/m².K] pour une toile classique de protection d’ouverture.

Calculs

Pour évaluer le coefficient de conductivité thermique d’une paroi 
  • Les conditions d’ambiance internes sont liées à la classe de température des paquets « test » soit L1 pour les meubles frigorifiques négatifs (température du paquet le plus chaud est de -15°C et celle du paquet le plus froid de -18°C).
  • L’enthalpie hinterne = -15 kJ/kg dans les conditions standards retenues par EUROVENT.
  • Le coefficient d’échange équivalent entre deux parois considérées comme corps noirs et orthogonales hro = 4,9 W/m²K.
  • La puissance électrique des ventilateurs Pvent =  240  W.
  • La puissance électrique de l’éclairage Pécl =  0 W.
  • La puissance du cordon chauffant Pcordon_chaud = 200 W.
  • La puissance de dégivrage Pdégivrage = 9 600 W.

Apports de jour

Les apports de jour sont principalement dus au rayonnement et à l’induction. On remarque que les pertes par radiation sont importantes du fait que l’écart des températures des parois qui se font vis-à-vis (parallèles) est plus grand (30 – (-18)) [°C] que pour un meuble frigorifique positif.

Pjour = Ppen + Pind_jour + Pray_jour + Pvent  Pcord_chauf + PEclair [W]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [W]
Pénétration

Ppen  = K moyen_paroi x Sparoi x (Tambiance – Tinterne)

= 0,4 x 24,6 x (25 – (-18))

423
Induction

Pind_jour  = Xrideau_air x mrideau_air x (hambiance – hinterne) x

1000

= 0,06 x 0,3 x (58 – (-15)) x 1 000

1 314
Rayonnement

Pray_jour = hro x Souverture (Tparoi_vente – Tinterne) x φ1 x φ2

= 4,9 x  8,25  x (30 – (-18) x 0,8 x 1

1 552
Ventilation Pvent  = Pvent + Pcordon_chaud 440
Éclairage PEclair  = PEclair 0
Pjour= Σ Papports_jour 3 729

Apports de nuit

Les apports de nuit continuent par les parois principalement, y compris par le couvercle ou le rideau de nuit placé au dessus de l’ouverture du meuble. Globalement le coefficient de pénétration est plus faible que pour le meuble vertical positif sachant que pour une configuration d’une paroi horizontale, à l’extérieur le chaud monte et à l’intérieur le froid descend; l’échange y est donc réduit. Tout comme pour la cas du meuble vertical, les apports par rayonnement, dans ce cas-ci aussi sont inclus dans le poste induction.

Pnuit = Ppen + Pind_nuit + Pray_nuit + Pvent  [W]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [W]
Pénétration

Ppen  = K moyen_paroi x Sparoi x (Tambiance – Tinterne)

= 0,4 x 24,6 x (25 – (-18))

423
Ouverture

Pouv_nuit  = K moyen_rideau_nuit x Srideau_nuit x (Tambiance – Tinterne)

= 2,5 x 8.25 x (25 – (-18))

887
Rayonnement Pray_nuit = hro x Souverture (Tparoi_vente – Tinterne) x φ1 x φ2 0

(intégré dans les apports par induction)

Ventilation Pvent  = Pvent + Pcordon_chauffant 440
Eclairage QEclair  = PEclair 0

Pnuit= Σ Papports_nuit

1 750

Bilan énergétique

L’énergie frigorifique journalière est l’énergie de froid consommée par l’évaporateur du meuble ouvert.

Q = Pjour x t jour + Pnuit x tnuit + Pdégivrage x nbre_dégivr x tdégivr [kWh/jour]
Apports de chaleur Énergie de jour (10 heures/jour) Energie de nuit (14) heures/jour) Energie total journalière
Pénétration 4,2 5,9 + 12,4 10,1
Induction 13,1 0 25,6
Rayonnement 15,5 0 15,5
Ventilation/ cordon chaud 4,4 6,1 10,5
Dégivrage 9,6 0 9,6
Total 71,4
Total/m² 71,4/8,25 = 8,6 kWh/m².jour]

Pour ce cas de figure le bilan énergétique est repris ci-dessous :

Meuble frigorifique horizontal ouvert négatif : bilan énergétique journalier.

Puissance frigorifique de l’évaporateur

Vu la présence d’un système de dégivrage électrique (en négatif, le dégivrage naturel ne suffit pas), la détermination de la puissance frigorifique du meuble doit s’effectuer en partant de l’énergie journalière. Soit :

P0 = Q / (24 – nombredégivrage x tempsdégivrage

P0 = 71,4  / (24 – 2 x 0.5)

P0 = 3.1 [kW]

Puissance frigorifique spécifique

La puissance frigorifique spécifique ou couramment connue sous le nom de puissance par mètre linéaire de meuble frigorifique est de :

Pml = P 0 / longueur du meuble

Pml = 3 100  / 7,5

Pml = 413  [W/ml]

Bilan énergétique d’un meuble ouvert vertical positif

Bilan énergétique d'un meuble ouvert vertical positif

Définitions

Bilan thermique

Les bilans thermiques instantanés de jour et de nuit sont différents. Ils s’expriment par la somme des déperditions tant internes que externes selon la période de la journée, à savoir :

Bilan thermique instantané de jour Pjour =

Σ P apports_jour = P pen + Pind_jour + Pray_jour + Pecl + Pvent [W]

Bilan thermique instantané de nuit Pnuit =

Σ P apports_nuit = Ppen + Pouv_nuit + Pray_nuit  + Pvent [W]

  • Ppen : apport par pénétration (déperditions négatives) au travers des parois du meuble [W].
  • Pind_jour : apport par induction (mélange de l’air de la zone de vente et de l’air du meuble) [W].
  • Pray_jour : apport par rayonnement mutuel des parois chaudes extérieures au meuble et les parois froides internes du meuble principalement par les ouvertures [W].
  • Pecl : apport des éclairages internes au meuble [W].
  • Pvent : apport des moteurs de ventilation placés dans le flux d’air froid [W].
  • Pouv_nuit : apport par l’ouverture du meuble. S’il n’y a pas de rideau de nuit, les apports sont par induction. Par contre si le rideau de nuit est présent, ce sont plutôt des apports par pénétration au travers de la protection qui doivent être considérés.

Bilan énergétique

Le bilan énergétique journalier représente l’énergie nécessaire à l’évaporateur du meuble frigorifique pour vaincre les apports internes et externes. Il s’écrit de la manière suivante :

Bilan énergétique

 Q = Pjour x t ouverture + Σ Pnuit x tfermeture + Pdégivrage x nbre_dégivr x tdégivr[kWh/jour]

(si un dégivrage électrique est nécessaire)

avec :

  • Pdégivrage : puissance de dégivrage.
  • nbre_dégivr : nombre de dégivrages par jour.
  • tdégivr : temps de dégivrage [h];
  • touverture : période d’ouverture du magasin [h].
  • tfermeture : période de fermeture du magasin [h].

Calculs

Pour se rendre compte des énergies mises en jeu, les deux exemples ci-dessous prennent des cas concrets de meubles frigorifiques couramment rencontrés sur le marché.

Hypothèses générales

Pour déterminer le bilan énergétique, il est nécessaire de poser des hypothèses de départ semblables à celles qui sont utilisées dans les essais pour la certification ouverture d'une nouvelle fenêtre ! EUROVENT :

  • Les conditions d’ambiance externes sont de la classe 3 (température Tambiance = 25 °C, Humidité HRa = 60 %).
  • La température des parois de la zone de vente Tparoi_vente est de l’ordre de 30 °C.
  • L’enthalpie hambiance = 58 kJ/kg dans les conditions standards retenues par EUROVENT (soit à une température ambiante de 25 °C et 60 % d’humidité relative).
  • Le facteur d’émissivité entre les surfaces du plafond et du meuble frigorifique φ1 = 0,8; ce qui correspond à des valeurs d’émissivité de corps noirs des parois de la surface de vente et des parois du meuble de respectivement εp et εi de l’ordre de 0.9 (1 correspond à un corps noir parfait).
  • Le facteur d’angle sous lequel les deux parois se voient φ2 = 0,65 pour un meuble vertical.

Caractéristiques d’un meuble vertical positif

On retrouve souvent en application positive des meubles verticaux à rideau d’air dont les caractéristiques sont les suivantes :

Schéma de principe meuble ouvert vertical positif.
  • température de conservation = 2°C.
  • nombre de dégivrage journalier nbre_dégivr = 2.
  • temps de dégivrage tdégivr = 0.67 heure.
  • longueur =  2,5 m.
  • hauteur = 2 m.
  • Surfacepénétrative = 10 m².
  • Surfacerideau_d’air = 4,25 m².
  • Débitrideau_d’air = 0,3 kg/s.
  • taux d’induction X = 0.15.
  • Kmoyen_paroi = 0,6 [W/m².K] pour un meuble vertical avec de l’ordre de 6 cm d’isolant.
  • Kmoyen_rideau_nuit = 6 [W/m².K] pour une toile classique de protection d’ouverture.

Calculs

Pour évaluer le coefficient de conductivité thermique d’une paroi
  • Les conditions d’ambiance internes sont liées à la classe de température des paquets test, soit H2 pour les meubles frigorifiques positifs (température du paquet le plus chaud = 10°C et température du paquet le plus froid =-1°C.
  • L’enthalpie hinterne = 12 kJ/kg dans les conditions standards retenues par EUROVENT.
  • Le coefficient d’échange équivalent entre deux parois considérées comme corps noirs et orthogonales hro = 5,2 W/m²K.
  • La puissance électrique des ventilateurs Pvent =  150  W et la puissance du cordon chauffant est de l’ordre de 60 W.
  • La puissance électrique de l’éclairage Pécl =  288  W (soit 2 x 4 tubes de 36 W).

Apports de jour

Les apports de jour, en principe, interviennent tout au long du fonctionnement du meuble frigorifique pendant la période d’ouverture du magasin. Les apports par induction conditionnent énormément le bilan frigorifique sachant qu’une grande partie de la puissance frigorifique part dans l’ambiance au niveau du rideau d’air.

Pjour = Ppen + Pind_jour + Pray_jour + Pvent  Pcord_chauf + PEclair [W]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [W]
Pénétration

Ppen  = K moyen_paroi x Sparoi x (Tambiance – Tinterne)

= 0,6 x 10 x (25 – 2)

138
Induction

Pind_jour  = Xrideau_air x mrideau_air x (hambiance – hinterne) x

1000

= 0,15 x 0,3 x (58 – 12) x 1 000

2070
Rayonnement

Pray_jour = hro x Souverture (Tparoi_vente – Tinterne) x φ1 x φ2

= 5,2 x  4,25 x (30 – 2) x 0,8 x 0,65

321
Ventilation Pvent  = Pvent + Pcordon_chauffant 210
Éclairage PEclair  = PEclair 288
Pjour= Σ P apports_jour 3 027

Apports de nuit

En général, si le commerce est bien géré, en dehors des heures d’ouverture, l’éclairage est éteint et le rideau de nuit (s’il est présent) est baissé. Le bilan thermique se résume à des apports par pénétration et par les déperditions du ventilateur et du cordon chauffant. Les pertes par l’ouverture du meuble sont réduites par la présence du rideau de nuit. En simplifiant, ces pertes se font par pénétration au travers d’une toile (paroi verticale) avec une convection normale sur sa face externe et une convection forcée sur sa face interne. À noter aussi que les pertes par rayonnement sont comprises dans le poste induction de nuit.

Pnuit = Ppen + Pouv_nuit + Pray_nuit + Pvent  [W]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [W]
Pénétration

Ppen  = K moyen_paroi x Sparoi x (Tambiance – Tinterne)

= 0,6 x 10 x (25 – 2)

138
Ouverture

Pind_nuit  = Kmoyen_rideau_nuit x Srideau_nuit x (Tambiance – Tinterne)

= 6 x 4.25 x (25 – 2)

586
Rayonnement Pray_nuit = hro x Souverture (Tparoi_vente – Tinterne) x φ1 x φ2 0

(intégré dans les apports par induction)

Ventilation Pvent  = Pvent + Pcordon_chauffant 210
Eclairage PEclair  = PEclair 0
Pnuit= Σ Papports_nuit 874

Puissance frigorifique de l’évaporateur

Dans ce cas, la puissance frigorifique nécessaire pour que l’évaporateur puisse contrecarrer les apports tant interne qu’externe est de :

P0 = 3 027 [W]

Puissance frigorifique spécifique

La puissance frigorifique spécifique ou couramment connue sous le nom de puissance par mètre linéaire de meuble frigorifique est de :

Pml = P 0 / longueur du meuble

Pml = 3 027  / 2,5

Pml = 1 210 [W/ml]

Bilan énergétique

L’énergie frigorifique journalière est l’énergie froid consommée par l’évaporateur du meuble ouvert.

Q = Pjour x t jour + Pnuit x tnuit [kWh/jour]
Apports de chaleur Énergie de jour (10 heures/jour) Energie de nuit (14 heures/jour) Energie total journalière
Pénétration 1,4 1,9 + 8,2 3,3
Induction 20,7 0 28,9
Rayonnement 3,2 0 3,2
Ventilation/cordon chaud 2,1 2,9 5,0
Eclairage 2,9 0 2,9
Total 43,5
Total/m² 43,5/4,25 = 10,23 [kWh/m².jour]

Pour ce cas de figure le bilan énergétique est repris ci-dessous :

Meuble frigorifique vertical : bilan énergétique journalier.

Masse d’eau piégée par un évaporateur - EnergiePlus

Masse d’eau piégée par un évaporateur

Masse d'eau piégée par un évaporateur

La quantité de condensats des meubles frigorifiques

Il existe une énergie non négligeable de refroidissement qui actuellement n’est pas récupérée et envoyée directement à l’égout.

Il y a t-il un intérêt à la récupérer ?


Masse d’eau piégée

Meuble ouvert vertical avec rideau d’air.

Cycle de l’air du meuble ouvert sur le diagramme de l’air humide.

La masse d’eau piégée par les meubles frigorifiques ouverts peut être importante. Ce type de meuble agit en véritable climatiseur et déshumidificateur des ambiances de vente. Dans les « allées froides », par exemple, la température ambiante peut atteindre des valeurs de 16 à 18°C avec des taux d’humidité relative de l’ordre de 30 à 40 %. Si l’humidité ambiante diminue c’est nécessairement qu’elle se retrouve au niveau de l’évaporateur du meuble sous forme de givre, de neige, de glace, …

Eau piégée

La masse d’eau piégée par jour [kg/j] peut se calculer par la relation suivante et en s’appuyant sur le diagramme de l’air humide :

Mgivre = Xinduction x  M1 (xa – xi)  x 24 x 3,6 [kg/j] (1)

où :

  • Xinduction = taux d’induction du rideau d’air (si présent).
  • M1 = le débit d’air du rideau d’air [kg/s].
  • xa = l’humidité absolue dans l’ambiance de la zone de vente [geau / kg air sec].
  • xi =  l’humidité absolue à l’intérieur du meuble [geau / kg air_sec].

par définition le taux d’induction du rideau d’air est la quantité d’air ambiant mélangé au rideau d’air. On a la relation suivante :

Xinduction = Ma / M1

Estimation du taux d’induction

La masse d’eau piégée par jour [kg/j] peut aussi se calculer par la relation suivante lorsque l’on considère que toute l’humidité dans l’air ambiant se condense sur l’évaporateur :

Mgivre = M1 (x1 – x2)  x 24 x 3,6 [kg/j] (2)

où :

  • M1 = le débit d’air du rideau d’air [kg/s].
  • x1 = l’humidité absolue à la sortie des buses de pulsion du rideau d’air [geau / kgair_sec].
  • x2 =  l’humidité absolue à la bouche de reprise du rideau d’air [geau / kg air_sec].

Des relations (1) et (2) on peut en déduire le taux d’induction qui caractérise l’efficacité du rideau d’air :

Xinduction ~ (x2 – x1) / (xa – xi)

où :

  • M1 = le débit d’air du rideau d’air [kg/s].
  • x1 = l’humidité absolue à la sortie des buses de pulsion du rideau d’air [geau / kgair_sec].
  • x2 =  l’humidité absolue à la bouche de reprise du rideau d’air [geau / kg air_sec].

Avec une précision relative, le taux d’induction peut aussi s’estimer par la relation suivante :

Xinduction ~ (t2 – t 1) / (ta – t i)

où :

  • t1 = température à la sortie des buses de pulsion du rideau d’air [°C].
  • t 2 = température à la bouche de reprise du rideau d’air [°C].
  • ta =  température dans l’ambiance de vente [°C].
  • t i = température à l’intérieur du meuble [°C].

Exemple : calcul pour un meuble frigorifique ouvert

Données

Un supermarché est équipé de 150 m de meubles frigorifiques verticaux ouverts (laitier, charcuterie, traiteur, pâtisserie, …) dits linéaires.

Par mètre linéaire on a les données suivantes :

  • taux d’induction Xinduction = 0,15 (valeur courante).
  • débit du rideau d’air par mètre linéaire M1 = 0,15 kg/s.ml.
  • xa = 12 geau / kg air_sec pour une température d’ambiance de 25°C et une humidité relative de 60 %.
  • xi = 3 à 4 geau / kg air_sec pour une température de l’ordre de 4°C au sein du meuble.

Calcul de la masse piégée

Mgivre = Xinduction x M1 (xa – xi) x 24 x 3,6 [kg/j.ml]

où,

  • Mgivre = 0,15 x 0,15 (12 – 4) x 24 x 3,6
  • Mgivre = 15,6 [kg/j.ml]

pour les 150 m de meubles, on a :

Mgivre_total = 15,6 x150 = 2 333 [kg/j]

Calcul d’une valeur du taux d’induction

La détermination du taux d’induction est nécessaire afin d’évaluer l’efficacité du rideau d’air. La formule approchée déterminée ci-dessus est basée sur le relevé des températures :

  • t1 = température à la sortie des buses de pulsion du rideau d’air = 1 [°C].
  • t2 = température à la bouche de reprise du rideau d’air = 5 [°C].
  • ta = température dans l’ambiance de vente = 25 [°C].
  • t i = température à l’intérieur du meuble = 4 [°C].

Xinduction ~ (t2 – t 1) / (ta – t i)

Xinduction ~ (5 -1) / (25 – 4)

Xinduction ~ 0,19

Diminuer le niveau sonore [Froid alimentaire]

Diminuer le niveau sonore [Froid alimentaire]


Plan d’action

Évaluer sa situation

Schéma niveau sonore dans commerce.

Évaluer

Après l’analyse de la situation sur le terrain, la logique à suivre est basée sur le type de bruit.

Repérer le type de bruit

Soit le bruit est aérien

Puisqu’il est produit par l’écoulement de l’air et les turbulences qui y sont liées, on peut envisager de réduire la source du bruit, par exemple en diminuant la vitesse de rotation du ventilateur, en améliorant l’écoulement dans les bouches, dans les coudes,…

À défaut, puisque ce bruit est émis à haute fréquence, il possible de l’absorber  par des matériaux fibreux : silencieux, parois de gaines absorbantes,…

Si ce bruit est transmis entre deux locaux, c’est l’isolation phonique des parois qui les séparent qu’il faut améliorer.

Soit le bruit est solidien (bruit d’impact)

Puisque ce sont les vibrations des équipements qui sont transmises par voie solide, la diminution de vitesse permettra également de réduire les vibrations. Certaines sociétés de maintenance peuvent enregistrer les vibrations émises à l’arbre d’un ventilateur et dire si un balourd serait responsable du bruit en cause.

A défaut, on cherchera à couper toute transmission du bruit par le placement d’un matériau résilient entre l’équipement et son environnement : plots antivibratiles, manchettes souples, plancher flottant,…

Schéma bruit solidien - 01.

Idéalement, c’est la coupure du matériau qui empêchera le mieux la transmission du son.

Schéma bruit solidien - 02.

A défaut, il faudra interrompre le matériau dur par un matériau plus souple (dit « matériau résilient « ).

Agir à la source du problème

Agir à la source :

  • Placer des supports antivibratiles
  • Limiter le bruit des pompes

Agir à la transmission :

  • Limiter la transmission sonore des tuyauteries

Agir au niveau des locaux :

  • Modifier la disposition des locaux
  • Réaliser le doublage acoustique des parois
  • Renforcer l’isolation acoustique des baies vitrées

Placer des supports antivibratiles

Photo supports antivibratiles.

Pour réduire la propagation des vibrations de certains appareils (compresseurs, ventilateurs,…) à la structure du bâtiment, on insère des supports élastiques antivibratiles.

L’ensemble « équipement-support » constitue un système « masse-ressort », soumis aux lois de la mécanique des vibrations, et disposant dès lors d’une fréquence propre.

Pour dimensionner correctement les plots antivibratiles, il faut connaître :

  • la fréquence excitatrice liée à la vitesse de rotation du moteur,
  • la masse de l’équipement et sa répartition sur la dalle.

Schéma supports antivibratiles - 01.

Schéma supports antivibratiles - 02.

Schéma supports antivibratiles - 03.

Pour une bonne efficacité, la fréquence propre du système antivibratile doit être 3 à 4 fois inférieure à la fréquence excitatrice. Dans certains cas il sera nécessaire d’alourdir la dalle sur laquelle sont fixés les équipements afin de réduire la fréquence propre de vibration. De plus, le fait « d’écraser davantage les ressorts » permet un meilleur amortissement des vibrations.

Exemple.

un ventilateur tournant à une vitesse de rotation de 1 500 tours/minute provoque des vibrations de 25 Hz (puisque rotation de 25 tours/seconde). Les plots devront être calculés sur une fréquence propre de 6 à 8 Hz.

En pratique, on rencontre :

  • des ressorts, utilisés pour toutes les fréquences propres mais surtout lorsqu’ inférieures à 8 Hz,
  • des plots à base de poudre de liège mélangée à un élastomère, pour des fréquences propres supérieures à 8 Hz
  • des plots à base d’élastomères, pour les fréquences propres supérieures à 12 Hz
  • un système de « dalle flottante », c.-à-d. la construction d’un socle de béton sur un matelas de laine minérale ou de mousse plastique souple, pour les fréquences propres moyennes ou aiguës.

Ce dernier système de dalle flottante est assez difficile à réaliser puisqu’ en aucun endroit il ne peut y avoir de contact (raccords de mur, écoulement de sols, tuyauteries, conduits, …). Devant la nécessité d’exercer un contrôle quasi permanent durant les travaux, on préfère parfois la technique des éléments antivibratiles…! Ou alors un contrôle de la qualité acoustique de la dalle est imposé à la fin des travaux.

Exemples de ponts phoniques par le tuyau d’écoulement et la plinthe.

En général, il sera fait appel à un spécialiste de cette question pour le dimensionnement correct des plots.


Limiter le bruit des pompes

Origines du bruit des pompes

  • Les bruits d’origine hydraulique : c’est la source de bruit la plus importante. On remarque l’effet de sirène qui est dû à l’interaction entre les aubes et les parties fixes. Ce type de bruit est le plus gênant dans les bâtiments, car il se produit dans une zone de fréquences audibles.Lorsque la pression disponible à l’aspiration de la roue est trop faible, un bruit de cavitation apparaît. Il faut dans ce cas veiller à faire fonctionner la pompe avec une pression à l’aspiration suffisante. Lorsque de l’air s’introduit dans le fluide, il se crée des turbulences et des écoulements bruyants au niveau de la pompe. Il faudra veiller à purger correctement le circuit.
  • Les bruits d’origine électromagnétique : ces bruits proviennent du moteur qui transmet des vibrations aux équipements et structures environnantes.
  • Les bruits d’origine mécanique : ces bruits apparaissent au niveau des garnitures mécaniques et des paliers de la pompe, on les appelle balourds. Ils proviennent généralement d’une erreur de montage, d’équilibrage ou d’une erreur de conception de la pompe.
  • Les bruits d’origine aéraulique : ces bruits proviennent du passage de l’air, nécessaire au refroidissement du moteur, dans le ventilateur de la pompe. Il peut s’agir dans certains cas de la source de bruit la plus importante d’une pompe. Le fabricant de pompes doit correctement calculer les grilles d’aspiration et de refoulement de l’air qui peuvent être des obstacles au bon écoulement de l’air et donc générer du bruit.

Transmission du bruit

Une pompe transmet du bruit par trois voies différentes :

  • Par voie aérienne : le moteur de la pompe émet une diffusion acoustique qui se propage dans le local technique puis dans locaux occupés adjacents.
  • Par voie hydraulique : la pompe génère des variations de pression dans le fluide qui sont transmises par les canalisations et diffusent sur les structures environnantes.
  • Par voie solide : les vibrations émises par la pompe se transmettent par contact direct aux différentes structures.

Le niveau de bruit des pompes

Le niveau de puissance acoustique d’une pompe dépend principalement de sa conception, de ses conditions de fonctionnement (débit et pression) et de sa puissance électrique. Aucune norme ne spécifie les caractéristiques acoustiques des pompes.
Il est possible d’effectuer un calcul approximatif du niveau de pression acoustique à 1 m :

Lp = 48 + 10 log Pe [dB (A)]

où,

  • PE est la puissance électrique du moteur [W]

Mise en œuvre

  • Il faut limiter la vitesse du fluide dans la pompe à 1,5 m/s.
  • Il faut soigner la fixation de la pompe en mettant en œuvre un dispositif d’assise souple : placer la pompe sur une petite dalle flottante de 15 cm d’épaisseur, reposant sur des supports élastiques. La dalle flottante aura à peu près trois fois le poids de l’équipement.
  • Il faut équiper l’aspiration et le refoulement des pompes de manchons antivibratoires.

Manchon antivibratoire.

  • Il est également important d’entretenir les pompes, de lubrifier les paliers. L’usure de certaines pièces peut conduire à des vibrations génératrices de bruits.

Limiter la transmission sonore des tuyauteries

Empêcher la transmission des bruits de vibration

Il est utile de réaliser des raccords souples entre les conduits (fluides, gaz, électricité…) et la machine qui vibre, afin d’éviter non seulement la transmission des vibrations, mais également le risque de rupture.

Schéma transmission des bruits de vibration.

Pour diminuer la transmission des vibrations des tuyauteries aux parois, on peut introduire des coquilles isophoniques entre la tuyauterie et le collier de fixation. Il est également possible d’utiliser des colliers avec caoutchouc isophonique mais ceux-ci sont moins efficaces que les coquilles isophoniques.

Schéma colliers avec caoutchouc.

Exemple : pour la fixation des tuyauteries d’eau glacée aux parois du bâtiment, il est de bonne pratique de réaliser les 3 premières fixations après la pompe avec des fixations anti-vibratoires.

Autre exemple : lors du placement d’un split-system, un soin tout particulier doit donc être apporté à la sélection de l’emplacement du condenseur et à son mode de fixation : une coupure élastique doit être prévue entre l’appareil et le mur de fixation afin d’empêcher de mettre en vibration la structure du bâtiment (l’appareil doit bouger lorsqu’on le secoue !). De même, les tuyauteries doivent être raccordées via des raccords flexibles.

Il est également possible de suspendre élastiquement une tuyauterie à un plafond.

Par contre, il faut éviter de placer des tuyauteries sur des parois légères ou les parois séparant les locaux techniques des locaux occupés.

Limiter les bruits de dilatation

Lorsque la force de dilatation des tuyauteries devient trop importante, des frottements apparaissent entre les conduits et les colliers de support. Ce phénomène de dilatation provoque des claquements bruyants.
Recommandations :

  • Prévoir des points fixes et des compensateurs entre les points fixes.


Compensateur de dilatation.

  • Éviter de bloquer les canalisations à la traversée des parois.

  • En cas de problèmes, desserrer légèrement certains colliers.
  • Éviter les variations brusques de température dans l’installation, par exemple en utilisant des vannes à 3 voies en mélangeuses.
  • Placer des matériaux souples entre les colliers et les tuyauteries, et entre les fourreaux et les tuyauteries.

Diminuer la production de turbulences

Les vitesses admissibles dépendent du tracé et des accessoires utilisés. Si des vitesses élevées peuvent être admises dans les tubes droits, on doit adopter des vitesses plus réduites dans les coudes, les réductions.

Une installation peut créer des turbulences suite au placement même des équipements : tuyauteries à angle droit, vannes placées trop près les unes des autres,…

Schéma diminution de la production de turbulences.

Ce deuxième type de raccordement sera de loin préférable.

La présence de bulles d’air dans les circuits est également génératrice de bruit, il faut doter l’installation de dispositifs comme purgeurs (manuels ou automatiques), pots de dégazage, séparateur d’air tangentiel.


Modifier la disposition des locaux

De par la localisation des fonctions dans un magasin, une grande partie de l’isolement acoustique peut déjà être effective :

  • disposition de locaux tampons entre locaux bruyants et locaux calmes (ex : locaux de stockage),
  • rassemblement des locaux bruyants,

Dans un magasin existant, le déplacement du local technique (local des compresseurs par exemple) est difficilement réalisable, mais certaines réorganisations internes d’activité sont possibles.

Mais plus que tous les bâtiments tertiaires classiques, un magasin vit, des parois se déplacent,… les critères acoustiques peuvent parfois entrer en compte dans le choix de la nouvelle disposition des locaux !


Réaliser le doublage acoustique des parois

Si le son perturbateur est créé par du bruit aérien traversant une paroi, il est possible de doubler celle-ci. On pense tout spécialement aux locaux techniques dont on souhaiterait renforcer l’isolation par rapport au reste du bâtiment.

Si la faute correspond à une insuffisance des éléments de construction, il est possible d’améliorer la situation jusqu’à 10 dB environ, à l’aide d’un panneau rapporté (plafond suspendu constitué de plâtre dépourvu de joint, panneaux de carton-plâtre rapportés devant les parois). Pour que le doublage placé devant le mur puisse faire son effet de cloison double, on privilégiera une fixation indépendante et des joints élastiques. À défaut, une fixation par colle. Au pire une fixation par clous,…

Schéma doublage acoustique des parois.

Exemple.

une paroi de séparation entre un local technique et un magasin était constituée d’un mur en briques modulaires de 17,5 cm enduit sur les deux faces. Son isolement acoustique initial (frein apporté par la paroi au passage du son) était de R = 48 dB. Le doublage au moyen de panneaux de carton-plâtre avec supports en profilés métalliques (pose indépendante du mur) a permis d’améliorer l’isolement jusqu’à 56 dB.


Renforcer l’isolation acoustique des baies vitrées

Si l’objectif est de se protéger d’un bruit extérieur (bruit de condenseur sur une plate-forme, par exemple), une amélioration de la qualité acoustique des baies peut être envisagée. Et le premier regard doit se porter sur l’étanchéité à l’air (davantage que sur la vitre elle-même). En effet, le bruit passe essentiellement par les joints non étanches. C’est ce qui fait la médiocre qualité des fenêtres coulissantes…

Le choix des travaux à réaliser sur les ouvertures d’un magasin dépend du niveau d’isolement acoustique que l’on désire obtenir.

Conservation des fenêtres existantes

Si l’on ne recherche pas un isolement de façade supérieur à 30 dB(A) et s’il n’y a pas d’entrée d’air spécifique en façade, il suffit la plupart du temps de mettre en place des joints d’étanchéité entre les ouvrants et les dormants.

Remplacement des fenêtres

Il existe une valeur seuil d’isolement au-delà de laquelle on doit changer les fenêtres, ce qui induit un surcoût important. Cette valeur seuil dépend de la surface des fenêtres. Elle se situe généralement aux alentours de 33 dB(A).

Une solution couramment adoptée consiste à conserver les anciens dormants en leur appliquant un traitement ou un renforcement éventuel. On pose alors une nouvelle fenêtre souvent en PVC, en fixant les nouveaux dormants sur les anciens, après la pose de joints préformés et, si nécessaire, l’ajout d’un joint en silicone. La nouvelle fenêtre est munie de double vitrage acoustique et d’une entrée d’air insonorisée. Cette technique a cependant l’inconvénient de réduire la surface vitrée. Ainsi, on obtient un isolement acoustique supérieur à 35 dB(A), à condition d’avoir effectué un traitement acoustique des bouches de ventilation et une mise en œuvre correcte.

Toutefois, pour certaines fenêtres particulières, le remplacement est indispensable quel que soit l’objectif d’isolement. Par exemple, pour une fenêtre coulissante, le simple changement des vitrages n’est souvent pas suffisant pour atteindre l’objectif d’isolement acoustique fixé.

D’autre part, pour les portes-fenêtres, les objectifs d’isolement sont plus difficiles à atteindre, même en cas de remplacement. En effet, la valeur de l’isolement acoustique d’une porte-fenêtre est en général inférieure à celle d’une fenêtre. On observe assez fréquemment un écart moyen de 2 dB(A). En effet, la surface de jointures, et donc de fuites possibles, est plus importante dans le cas d’une porte-fenêtre.

Photo baie vitrée.

Obtention d’un isolement de 40 dB(A) avec une seule fenêtre

L’obtention de cette valeur d’isolement nécessite toujours le remplacement des fenêtres par d’autres de très bonne qualité acoustique.

Le vitrage doit avoir un indice de réduction de bruit de l’ordre de 40 dB(A). Ce vitrage est obtenu à l’aide d’un feuilleté acoustique spécial. La menuiserie de la fenêtre doit comporter une triple barrière d’étanchéité entre l’extérieur et l’intérieur du logement pour les fenêtres en PVC. Un double rang de joints de bonne qualité doit être posé entre l’ouvrant et le dormant.

Pour une pièce aux dimensions standard, c’est-à-dire dont la surface est d’environ 25 m² , avec une fenêtre de 1,5 à 2 m² une isolation acoustique de 40 dB(A) est délicat à obtenir s’il y a une entrée d’air. Quelques précautions doivent alors être prises :

  • Les entrées d’air choisies doivent être insonorisées. La valeur de leur coefficient d’affaiblissement acoustique doit être la plus grande possible. Toutefois, il est difficile du trouver sur le marché des entrées d’air de faible encombrement, pouvant être placées dans la menuiserie, ayant une valeur du coefficient d’affaiblissement acoustique supérieure à 42 dB(A). La zone de fonctionnement de la bouche d’entrée d’air choisie doit permettre d’atteindre le débit nominal. En effet, certains systèmes intégrés dans une fenêtre ont une surface d’entrée d’air trop faible pour obtenir le débit nominal imposé par les systèmes d’extraction actuels.
  • L’étanchéité entre le gros-œuvre et le dormant doit être de qualité. L’amélioration de l’étanchéité, obtenue par la pose d’un joint mastic de type silicone ou polyuréthane, augmente la valeur de l’isolement acoustique.
  • Il est utile de vérifier et de remettre en état les joints de façade des grands panneaux préfabriqués, surtout s’il y a des entrées d’air parasites.

Pose de double fenêtre

C’est pratiquement la seule solution technique si l’on veut obtenir une isolation acoustique supérieure à 40 dB(A). La pose s’effectue le plus souvent au nu extérieur de la façade, avec ou sans conservation des volets existants. La nouvelle menuiserie est généralement de type vantaux coulissant, en aluminium ou en PVC. Cette solution permet d’atteindre, dans certaines configurations, des isolements proches de 50 dB(A).

Elle est également satisfaisante sur le plan thermique en hiver, mais présente cependant quelques inconvénients :

  • la difficulté de nettoyage, surtout de la face extérieure de la nouvelle fenêtre,
  • les difficultés d’ouverture de la nouvelle fenêtre et d’accès aux persiennes,
  • la nécessité de remplacer les éventuels volets existants, ce qui induit un surcoût important,
  • une certaine diminution de l’éclairage naturel,
  • la difficulté éventuelle d’obtenir les autorisations urbanistiques.

Il faut évidemment éviter la pose d’entrées d’air insonorisées en regard l’une de l’autre pour limiter la création de pont phonique.

Comment améliorer l’installation de froid alimentaire ?

Comment améliorer l'installation de froid alimentaire ?


Améliorer l’étanchéité du bâtiment

   

De manière générale, toute infiltration d’air génère une consommation supplémentaire de chaleur en hiver, de froid en été. Elle peut être estimée en considérant qu’elle augmente la consommation liée au taux d’air neuf du magasin.

En particulier pour les magasins où le froid alimentaire est présent :
  • en période froide, on serait tenté de dire que c’est une bonne chose de laisser « entrer le froid » et ce afin de réduire les apports thermiques aux applications de froid (et donc réduction des consommations énergétiques). Mais bien évidemment, le confort dans les zones tempérées comme les caisses, le « no food », …, ne serait pas assuré. Pour les courageux dans les commerces de détail, on pourrait envisager un fonctionnement comme sur les marchés (boucherie, crémerie, …);
  • en période chaude, de manière générale, le manque d’étanchéité du magasin cause des surconsommations d’énergie électrique au niveau des compresseurs des productions de froid. En effet, la température externe (via l’ambiance du magasin) augmente indirectement les apports thermiques. Quant à l’humidité, indirectement aussi, elle générera de la condensation au niveau des points froids, mais surtout le givrage des évaporateurs des installations de froid alimentaire.

Pour les commerces, c’est principalement par les entrées que l’étanchéité est rompue.

Les portes d’entrée

De manière générale, le problème des commerces réside dans les ouvertures et fermetures incessantes des portes par les clients. Bien vite s’installe une habitude de laisser les portes ouvertes en permanence, été comme hiver, afin de faciliter l’accès à l’intérieur et, tout aussi important pour le commerçant d’améliorer son marketing (comme dirait un commerçant béninois : « entre, c’est ouvert, tout est gratuit jusqu’à la caisse !).

Les impacts énergétiques et de confort ne sont pas les mêmes suivant qu’il s’agit d’un commerce de type « no food » ou « food » :

  • Pour les commerces type « no food », en période froide, les ouvertures devraient être fermées afin d’éviter les pertes de chaleur vers l’extérieur. En période caniculaire, il faudrait garder les portes fermées en journée, limiter les éclairages, éviter la climatisation, … et la nuit tenter de refroidir par un free cooling de nuit (refroidissement naturel par l’air);
  • Pour les commerces type « food », en période froide, au détriment  peut-être du confort (surtout ne faites pas fuir vos clients), certains pourraient ouvrir leurs portes (comme l’adopte si souvent les commerces « non-food » afin de réduire la sollicitation de la machine frigorifique (pour autant que le chauffage ne soit pas à fond). En mi-saison et en période chaude, par contre, il est impératif de fermer ses portes afin de réduire les apports externes vers les comptoirs ou les meubles frigorifiques.

On voit bien que les comportements des deux types de commerces sont assez différents.

Pour les grandes et moyennes surfaces, type « food »

Vu qu’il y a plus de place, en général, les améliorations possibles sont principalement la mise en place :

  • de sas d’entrée (coûts relativement importants);
  • de tourniquets;
  • d’une surpression contrôlée au niveau de la ventilation hygiénique afin d’éviter les courants d’air incontrôlés entre les entrées principales et les accès fournisseurs;

La fermeture des accès en mi-saison et en période chaude est importante.

Pour les commerces de détail, type « food »

Pour ce type de commerces, les solutions ne sont pas légion. La fermeture des accès en mi-saison et en période chaude est importante.

En période froide, mais c’est une question de motivation, quand la température externe correspond à la température de travail dans les boucheries, par exemple, pourquoi ne pas soulager la production frigorifique en laissant les portes ouvertes (vu à plusieurs reprises dans d’autres pays); il faudra naturellement tenir compte de la qualité de l’air externe.

Un exemple frappant : sur les marchés, en période froide, les besoins en froid sont très faibles.

Améliorer

Pour en savoir plus sur l’amélioration de l’étanchéité des bâtiments

Limiter les apports tant internes qu’externes

En froid alimentaire, les ennemis des meubles frigorifiques, des ateliers et des chambres froides sont les apports thermiques tant externes qu’internes.

Les apports externes

Quand on parle d’apports externes, on pense généralement aux apports solaires (rayonnement solaire direct). Ces apports solaires au travers des vitrages contribuent :

  • à réchauffer, directement ou indirectement via l’ambiance, les applications de froid (augmentation des apports);
  • à dégrader les denrées exposées à un rayonnement solaire direct au travers des baies vitrées.

Les vitrages

Photo vitrages de toiture.  Photo vitrages de toiture.

Baie vitrée orientation est-ouest (source : Bioshanti).

« Shede » orienté nord (source Delhaize).

Dans les bâtiments tertiaires avec apports internes élevés, il faut limiter les surfaces vitrées au Sud et surtout à l’Ouest, et prendre la lumière naturelle au Nord afin de profiter du rayonnement diffus (dans la limite des possibilités urbanistiques).

On entend par rayonnement diffus, le rayonnement émit par le ciel. Cette valeur de rayonnement a l’avantage de rester relativement constante au cours de l’année, du moins en Belgique.

Les protections solaires

Photo protections solaires.   Photo protections solaires.   Photo protections solaires.

Pour que les protections solaires soient efficaces, il est nécessaire de concilier la protection contre les surchauffes et un apport en éclairage naturel suffisant, quelle que soit la saison.

Les apports internes

   

L’apport des occupants

Les occupants apportent de la chaleur sensible (température du corps) et latente (respiration, transpiration). En période froide cet apport contribue à l’amélioration du bilan thermique du chauffage de l’ambiance de vente. Il est bien entendu que le bilan thermique des meubles frigorifiques est d’autant meilleur que les apports internes sont faibles. Néanmoins, le confort du personnel et des clients doit être assuré; ce qui signifie que les apports internes sont les biens venus en période froide si on considère que le confort thermique doit être assuré (« c’est un soulagement pour la chaudière ! »).

En période chaude, les évaporateurs des meubles frigorifiques condensent la transpiration du corps humain; ce qui défavorise le bilan thermique des évaporateurs et, par conséquent, celui de la machine de froid. Outre la fermeture des ouvertures des meubles frigorifiques, une manière d’améliorer leur bilan énergétique est de réduire au maximum les températures ambiantes à leur proximité immédiate de manière à réduire la transpiration des clients (attention au confort des consommateurs).

L’apport des équipements

Toute charge électrique (éclairage, caisse électronique, TV, Hifi, …) dans un local où le froid alimentaire est présent est payée plus d’une fois :

  • une fois pour effectuer le travail attendu (consommation électrique pour produire de la lumière par exemple),
  • plus une partie pour évacuer cette énergie qui s’est transformée en chaleur et qui doit être évacuée par l’évaporateur et, in fine, par la machine frigorifique.

L’éloignement des sources de chaleur tel que les fours de boulangerie, rôtissoires, … des comptoirs frigorifiques est nécessaire. En ce qui concerne les éclairages à proximité immédiate des meubles frigorifiques, s’ils sont nécessaires à la vente, la sélection d’une source lumineuse énergétique efficace est de mise.


Améliorer le confort thermique

Illustration améliorer le confort thermique.

On sait que le travail dans les ambiances froides des commerces doit-être adapté. Le seul moyen d’améliorer son confort est d’adapter son habillement et son temps de travail à la température qu’il y règne.

A proximité des meubles frigorifiques ouverts ou dans les « allées froides », le message doit être très clair : le confort des clients et du personnel de réapprovisionnement des meubles ouverts est quasi incompatible avec la performance énergétique du froid alimentaire et, dans une moindre mesure avec l’efficacité thermique, à moins de fermer les frigos.

Le tout est de savoir ce que l’on veut !

Dans les allées froides des meubles frigorifiques ouverts

Fermer les ouvertures

Le simple fait de fermer une ouverture de meuble frigorique ouvert, réduit considérablement les déperditions typiques à ce type de meuble (par induction d’air et par rayonnement) de l’ordre de 30 à 40 %. Lorsque les ouvertures des meubles sont obturées, l’air d’ambiance à leur proximité immédiate se refroidit moins, les échanges radiatifs entre les parois froides et le corps humain sont réduits, d’où l’impression de confort accrue.

Photo frigos fermés.   Photo frigos fermés.

Meuble négatif et meuble positif (source Bioshanti).

Faut-il chauffer les allées froides ?

À cette question délicate on aurait tendance à répondre ceci :

« Êtes-vous bien sûr de ne pas vouloir fermer les ouvertures même en journée ? »

Dans la négative, une seconde question vient tout de suite à l’esprit :

« Pensez-vous, si vos clients sont sensibilisés, que réduire la température de confort dans les espaces de froid alimentaire va les faire fuir ? »

Dans l’affirmative, il vaut mieux chauffer les allées froides à l’aide d’un système de chauffe performant à haut rendement.

Dans les zones froides

Adapter l’habillement et le temps de travail

L’adaptation de sa tenue vestimentaire et de son temps de travail dans les zones réservées au personnel (atelier chambre froide, …) est nécessaire pour améliorer le confort et la sécurité thermique.


Améliorer le confort acoustique

Schéma améliorer le confort acoustique.

Évaluer

Après l’analyse de la situation sur le terrain, la logique à suivre est basée sur le type de bruit.

Soit le bruit est aérien

Puisqu’il est produit par l’écoulement de l’air et les turbulences qui y sont liées, on peut envisager de réduire la source du bruit, par exemple en diminuant la vitesse du ventilateur, en améliorant l’écoulement dans les bouches, dans les coudes,…

À défaut, puisque ce bruit dispose d’un spectre développé surtout dans les hautes fréquences, il est possible d’absorber le bruit par des matériaux fibreux : silencieux, parois de gaines absorbantes,…

Si ce bruit est transmis entre deux locaux, c’est l’isolation phonique de ces parois qu’il faut améliorer.

Soit le bruit est solidien (bruit d’impact)

Puisque ce sont les vibrations des équipements qui sont transmises à la masse du bâtiment, la diminution de vitesse permettra également de réduire les vibrations. Certaines sociétés de maintenance peuvent enregistrer les vibrations émises à l’arbre d’un ventilateur et dire si un balourd serait responsable du bruit en cause.

A défaut, on cherchera à couper toute transmission du bruit par le placement d’un matériau résilient entre l’équipement et son environnement : plots antivibratiles, manchettes souples, plancher flottant,…

Réaliser le doublage acoustiques des parois

Lorsqu’un local est adjacent à un local technique, différentes dispositions peuvent être prises afin de réduire la transmission du bruit tel que le dédoublement des parois de carton-plâtre, …

Renforcer l’isolation acoustique des baies vitrées

Si l’objectif est de se protéger d’un bruit extérieur (bruit de condenseur sur une plate-forme, par exemple), une amélioration de la qualité acoustique des baies peut être envisagée. Et le premier regard doit se porter sur l’étanchéité à l’air (davantage que sur la vitre elle-même). En effet, le bruit passe essentiellement par l’inétanchéité des joints. C’est ce qui fait la médiocre qualité des fenêtres coulissantes…


Diminuer les consommations énergétiques des meubles

La principale consommation énergétique des meubles frigorifiques ouverts est issue de l’échange entre l’ambiance de la zone de vente et l’intérieur du meuble au travers :

  • du rideau d’air par induction et rayonnement;
  • des parois de la « carcasse » du meuble par conduction et convection. Il constitue les apports externes.

Cependant, il ne faut pas négliger les apports internes constitués par l’éclairage internes des denrées, la production de chaleur des ventilateurs, des cordons chauffants et des systèmes de dégivrage.

La solution radicale

 

Meuble frigorifique ouvert et confinement et isolation légère (double vitrage).

Confinement et isolation importante (enceinte opaque).

Quel que soit le type d’application de froid alimentaire, le confinement des denrées dans des espaces fermés est la règle d’or.

Il faut bien reconnaître que dans la pratique, ce n’est pas tout à fait le cas vu la recrudescence des meubles frigorifiques ouverts afin de favoriser la vente. Néanmoins, certains magasins ont appliqué cette excellente résolution avec succès sans impact sur le chiffre d’affaire en plaçant des protections devant les meubles.

Par exemple, le placement de fermetures en plexyglass sur les gondoles négatives a permis à une chaîne alimentaire de notre pays de réduire les consommations énergétique de l’ordre de 30 à 35 % (source DAPESCO).

D’autres encore ont opté pour des solutions encore plus radicales, à savoir le confinement global ou partielle d’une grande partie des produits frais dans des chambres froides avec libre passage des clients au travers d’ouvertures contrôlées.

Optimiser l’efficacité du rideau d’air

Pour les irréductibles des meubles ouverts, l’optimisation du rideau d’air est impératif. Ce mal nécessaire limite les apports de chaleur par induction de l’air ambiant, à hauteur de 50 à 66 % de la puissance frigorifique nécessaire à l’évaporateur et, in fine, à la machine frigorifique.

Ces échanges de chaleur entre l’ambiance des zones de vente et les denrées doivent être réduits au maximum. Pour atteindre ce but, un optimum est à trouver au niveau du débit du rideau d’air. On conseille en pratique de limiter les vitesses des rideaux d’air :

  • pour les meubles horizontaux, à 0,5 m/s;
  • pour les meubles verticaux, entre 0,6 et 0,7 m/s.

Réduire les pertes par rayonnement

Surtout pour les meubles frigorifiques horizontaux négatifs (« bacs à frites », « bacs à glace », …), l’échange par rayonnement entre les parois des meubles et le plafond peut représenter de l’ordre de 40 % de l’appel de puissance à l’évaporateur. La réduction des consommations énergétiques passe par le placement de « baldaquins » qui permettent de réduire les températures des denrées en surface de l’ordre de 3 à 5 °C. De même, la création « d’allée froide » (meubles verticaux ouverts positifs placés en vis à vis) réduit aussi les apports par rayonnement. Attention seulement au confort.

Baldaquins pour les meubles horizontaux ouverts.

Limitation du rayonnement vers le plafond

Placer ou optimiser les protections de nuit

Le simple placement de couvertures de nuit pour les meubles ouverts horizontaux ou de rideaux de nuit pour les meubles ouverts verticaux permet de réduire les consommations énergétiques de l’ordre de 8 à 30 % selon le cas.

Photo couvertures de nuit pour les meubles ouverts horizontaux.

Optimiser ou supprimer l’éclairage des tablettes

Le placement d’éclairage dans l’enceinte même du meuble frigorifique est une très mauvaise idée puisque le commerçant puise deux fois et peut-être plus à sa propre caisse :

  • une première fois parce que l’éclairage proprement dit consomme de l’électricité;
  • une seconde fois pour la simple raison qu’une grande partie de l’énergie consommée par les luminaires est transformée en chaleur et doit être évacuée par l’évaporateur;
  • enfin, vu que la plupart des luminaires utilisés en froid commercial sont des lampes fluorescentes (TL), à basse température, ce type de lampes a un mauvais rendement lumineux (de l’ordre de 40 %).

Une nette amélioration passe par la coupure des éclairages à l’intérieur de l’enceinte du meuble et l’optimisation ou le placement d’un éclairage performant à l’extérieur du meuble comme par exemple en dehors du rideau d’air.


Optimiser le dégivrage

L’air ambiant autour de l’évaporateur contient de l’eau. Cette eau givre au contact des surfaces froides de l’évaporateur lorsque la température du fluide à l’intérieur de celui-ci est inférieure à 0°C.

Du côté de la chambre froide ou du meuble frigorifique fermé ou mixte négatif, le givre diminue le transfert thermique entre l’air et la surface extérieure de la batterie. L’apport de froid vers la chambre se fait moins bien. La température de la chambre froide monte quelque peu.

D’autre part, du côté du circuit frigorifique, le compresseur de la machine frigorifique travaille avec une mauvaise efficacité énergétique : la couche de glace sur l’évaporateur peut être comparée à une couverture posée sur un radiateur (pour obtenir la même chaleur, il faudra augmenter la température de l’eau et diminuer le rendement en chaudière).

Il faut donc débarrasser périodiquement l’évaporateur du givre formé : c’est le dégivrage.

La chambre froide, les meubles frigorifiques, les vitrines, …doivent  donc être équipées d’un dégivrage automatique.

Le personnel d’exploitation, s’il n’effectue pas lui-même le dégivrage, doit cependant en vérifier le bon déroulement et surtout s’assurer périodiquement que les dégivrages sont effectués complètement. Aucune trace de givre ne doit subsister sur la surface froide à la fin du dégivrage.

Amélioration du dégivrage au niveau des chambres froides

Pour une question d’efficacité et de limitation du nombre de dégivrages, l’évaporateur doit être placé le plus loin possible de l’entrée de la chambre ou des bouches de reprise des meubles frigorifiques. Si dans votre situation existante ce n’est pas le cas, il faut envisager de la déplacer. De plus, pour les opérations de dégivrage proprement dites, on vérifie qu’une vanne magnétique sur le circuit réfrigérant est présente (début de l’opération de dégivrage). Dans la négative, à voir avec le frigoriste l’intérêt de la placer. Le placement d’un manchon peut s’avérer intéressant.

Précautions à prendre au niveau de l’utilisation de l’enceinte

Il est un fait certain que moins il y aura d’ouvertures des portes du meuble fermé ou de la chambre froide (organisation rationnelle), moins on gaspillera de l’énergie nécessaire :

  • pour le dégivrage,
  • pour le refroidissement et le séchage de l’air extérieur entré par la porte,
  • pour évacuer la chaleur produite au niveau de l’évaporateur par l’opération de dégivrage.

Amélioration ou remplacement de la régulation du dégivrage

Vu que le dégivrage est une source de dépense énergétique, l’optimisation du dégivrage prend toute son importance en terme de fréquence et de longueur de cycle. Parmi les types de dégivrage, les plus courants, du moins au plus efficace, sont les systèmes :

  • par horloges (difficulté d’optimisation par rapport à l’organisation de la cuisine) – -> +;
  • électroniques contrôlant la présence de glace par l’analyse de la courbe de remontée en température de l’évaporateur (plateau de t° = fusion) –> ++;
  • électroniques contrôlant l’écart de température entre l’ambiance et l’évaporateur –> +++.

Les systèmes électroniques sont en plus capables d’accepter des niveaux d’alarme, de contrôler un délestage, …

Dans le cadre d’une rénovation conséquente, il serait intéressant, si la régulation existante est vétuste, de la moderniser.

Les meubles fermés ou mixtes négatifs

Les principes généraux de dégivrage des chambres froides s’appliquent assez bien aux meubles frigorifiques fermés ou mixtes négatifs car l’évaporateur subit le même type d’agression hygrothermique lors des ouvertures des portes. En ce qui concerne les meubles frigorifiques ouverts négatifs horizontaux (gondoles par exemple), ils subissent les agressions hygrothermiques de manière moins forte vu que l’influence de l’induction de l’air de la zone de vente n’est pas prépondérante. Néanmoins, pour ce type de meubles, le dégivrage par résistance électrique ou injection de gaz chaud est souvent nécessaire. A vérifier sa présence et son efficacité par un contrôle du niveau de givrage.

Les meubles ouverts positifs

Ce type de meubles, quant à lui, subit les agressions hygrothermiques en permanence de par l’induction de l’air de l’ambiance de vente de manière naturelle ou au travers d’un rideau d’air en ventilation forcée. L’induction d’air apportant irrémédiablement de la vapeur d’eau contenue dans l’air ambiant sur l’évaporateur, le dégivrage est plus que nécessaire mais, vu les températures d’échange au niveau de l’air sur les ailettes de l’évaporateur sont proches de 0°C, un dégivrage naturel sans apport de chaleur (pas de résistance électrique) est suffisant dans la plupart des applications en laissant tourner la ventilation forcée au niveau de l’évaporateur.

Il est nécessaire d’adapter les périodes de dégivrage de chaque groupe de meuble en cas de présence massive de linéaires afin de réduire la pointe quart horaire.


Améliorer la machine frigorifique

 Remarques :

  • Pour les actions développées ci-dessous, il est difficile et pas forcément nécessaire d’établir de savants calculs de rentabilité ! Souvent, la méthode par essais successifs (modification de la consigne, …) entraîne des économies importantes, sans même que l’utilisateur ne s’en aperçoive…
  • Il est cependant toujours utile de consulter préalablement le fournisseur du matériel.
  • Vous trouvez qu’il y a bien trop de choses à lire : mettez un compteur de COP sur l’installation, imposez une valeur minimale et laissez la société de maintenance se débrouiller, c’est son boulot après tout.

Les principes à suivre

Les projets d’amélioration peuvent poursuivre plusieurs objectifs :

  • Réduire la consommation d’énergie,
  • limiter la pointe de puissance quart-horaire,
  • améliorer la maintenance de l’installation.

Améliorer la régulation de puissance du compresseur

En partant du constat que les groupes frigorifiques sont surpuissants lors du dimensionnement de l’installation un technicien peu agir à plusieurs niveaux pour réguler la puissance du ou des compresseurs en fonction de la charge réelle :

  • Mieux contrôler les cascades si l’installation comporte plusieurs compresseurs ou plusieurs étages de compression;
  • Adapter la puissance de la machine en faisant varier la vitesse du compresseur ou en mettant hors service certains cylindres tout en sachant que les bas régimes ne sont pas énergétiquement profitables;
  • Supprimer la régulation par injection des gaz chauds à l’évaporateur (destruction de l’énergie).
  • Augmenter le seuil de déclenchement de la haute pression du compresseur.

Une supervision par régulation numérique

Photo régulation numérique.

La régulation numérique (ou digitale) est en plein essor ces dernières années. Cette fois, ce n’est plus le câblage qui va déterminer les séquences, mais bien le programme inclus dans l’automate programmable ou le régulateur du groupe.

Il s’agit en fait une gestion globale du système qui vient se superposer à celle des équipements frigorifiques.

Améliorer le fonctionnement du condenseur

Photo condenseur.   Photo condenseur.

Le principe de base est l’abaissement de la température de condensation. Pour y arriver, on peut :

  • Positionner et configurer le condenseur dans un endroit où la fraîcheur de l’air extérieur est mise à profit en évitant les recirculations d’air extrait;
  • Favoriser l’échange de chaleur par un entretien régulier des ailettes des condenseurs à air et par un détartrage régulier des condenseurs à eau;
  • Réguler la vitesse des ventilateurs des condenseurs à air en fonction de la charge réelle;
  • Travailler avec des détendeurs électroniques plutôt qu’avec des thermostatiques.

Placer des compteurs sur l’installation existante

Le placement de compteurs horaires sur l’alimentation électrique du compresseur permet d’évaluer la puissance moyenne au cours de l’année en fonction du nombre d’heures de fonctionnement et du dimensionnement de la machine. Le calcul du COPfroid au cours de l’année nécessite de mesurer la consommation électrique du compresseur.

Récupérer l’eau de pluie et les condensats des évaporateurs

Il faut garder à l’esprit qu’une partie de l’énergie prise à l’ambiance par les évaporateurs des meubles frigorifiques est perdue. À l’heure actuelle, les condensats qui se forment au niveau de l’évaporateur sous forme d’eau, de givre, … sont mis à l’égout en permanence ou lors des dégivrages. On estime la quantité d’eau glacée mis à l’égout aux alentours de 0.6 à 1 litre d’eau par mètre linéaire de meuble et par heure. Elle représente une source de refroidissement du condenseur qui peut être intéressante à récupérer dans certains cas. A méditer !

Il pleut beaucoup en Belgique. Alors, pourquoi ne pas récupérer l’eau de pluie. On estime à 0,06 m³/m².mois la quantité d’eau qui tombe. Pour les grandes surfaces pourquoi ne pas combiner la récupération d’eau de pluie pour les sanitaires du personnel avec un refroidissement adiabatique des condenseurs.

Schéma récupération eau de pluie.   Schéma récupération condensats des évaporateurs.


Récupération de chaleur au condenseur

La récupération de la chaleur de réjection (au condenseur) dans une installation existante doit être considérée comme une intervention importante; ce qui signifie, tout comme les projets de conception, qu’elle doit passer entre les mains expertes d’un bureau d’étude spécialisé sachant qu’une récupération mal étudiée pourrait, sous certaines conditions s’avérer devenir une « catastrophe énergétique » comme le chauffage du magasin par l’équivalent d’un chauffage électrique direct.

Principe de fonctionnement

Une machine frigorifique transfère de la chaleur extraite du bâtiment vers l’extérieur.

Il semble dès lors logique de tenter de récupérer la chaleur sur le condenseur de la machine frigorifique. Par la même occasion, on améliore le rendement du groupe de froid en abaissant la température de condensation.

Application au chauffage du magasin ou des annexes par l’air

En première approche, il est indispensable de garder à l’esprit que la récupération de chaleur au condenseur passe après :

  • la limitation des apports tant externes (rayonnement solaire direct, meubles frigorifiques ouverts, …) qu’internes (éclairage d’étagères, ventilateur peu performant, …);
  • l’isolation de l’enveloppe du magasin par rapport aux rigueurs du climat;
  • la fermeture des meubles frigoriques ouverts

Si vraiment toutes ces améliorations sont impossibles à réaliser pour des questions budgétaires, architecturales, …, des calculs simplifiés purement théoriques montrent que la récupération directe de chaleur dans l’enceinte du magasin est intéressante lorsqu’elle est importante et permettrait, par exemple, de compenser les déperditions d’un magasin peu isolé.

Récupération de la chaleur de condensation.

Evacuation de la chaleur de condensation à l’extérieur.

On voit tout de suite d’après les figures ci-dessus, qu’en période froide, la récupération est maximale lorsque la chaleur des condenseur est récupérée dans le magasin. Dans cette configuration, on réduit théoriquement les consommations de chauffage par 3.

Il est évident que la mise en œuvre d’un tel système n’est pas simple. En effet, en période chaude, la chaleur à évacuer des condenseurs est excédentaire et doit donc être évacuée à l’extérieur.

Un grand distributeur en Belgique a effectué plusieurs essais d’installations comme montré ci-dessous :

  • en pérode froide, la chaleur est récupérée;
  • en période chaude, la chaleur est évacuée.

 Récupération de la chaleur de condensation.

Evacuation de la chaleur de condensation à l’extérieur.

Application au chauffage du magasin ou des annexes par l’eau

Une idée novatrice, serait de récupérer une partie de la chaleur de réjection d’un condenseur à eau et de l’injecter dans un chauffage au sol. Le confort dans les allées froides devrait être meilleur. À l’heure actuelle, les systèmes mis en œuvre n’ont pas encore fournit de résultats de bilans énergétiques chiffrés et validés.

Exemple de schéma de principe.

Application au préchauffage de l’eau chaude sanitaire

L’idée est ici de profiter d’un besoin de chauffage d’un fluide à basse température (la température de l’eau de ville varie entre 5° en hiver et 15°C en été).

Mais le système ne fonctionnera bien que lorsque la puissance de récupération nécessaire est supérieure à la puissance fournie par le condenseur. Autrement dit, il faut que les besoins d’eau sanitaire soient très importants par rapport à la puissance de la machine frigorifique comme par exemple dans les cuisines.


Améliorer la maintenance de l’installation

Il est impossible de reprendre ici toutes les règles d’entretien pour toutes les installations frigorifiques. Cependant, on peut attirer l’attention sur les interventions qui influencent la facture énergétique.

Machine frigorifique

Une check-list du groupe frigorifique est reprise dans les pages de détails; en voici les principaux points :

  • Température et régime d’eau glacée,
  • intensité mesurée au compresseur,
  • écart de température entre le condenseur et le fluide refroidissant,

Un contrôle régulier de ces points de mesure améliore le rendement, les consommations et la durée de vie de l’installation.

Boucle frigoporteur

La mesure régulière des températures d’eau glycolée permettra de mettre en évidence des pertes d’efficacité des groupes frigorifiques dues principalement :

  • à des températures de boucle trop élevées;
  • à des écarts de températures entre l’entrée et la sortie de l’évaporateur trop faible traduisant des débits d’eau trop importants;

Aérorefroidisseurs

Le contrôle de l’état d’encrassement et de corrosion des ailettes, le suivi de la régulation de l’aérorefroidisseur telle que la régulation de la pression de condensation en vérifiant le fonctionnement des ventilateurs.

Déclenchements du compresseur par forte température extérieure

L’augmentation temporaire du niveau de déclenchement de la haute pression (avec accord du constructeur) permet dans un temps limité de pallier au manque de puissance de l’installation.

Nuisances acoustiques

Si la nuisance sonore est surtout importante aux basses fréquences, il est possible que les machines tournantes (ventilateur du condenseur, moteur du compresseur,…) soient mal équilibrées. Ce défaut s’accentue avec l’usure des équipements; des solutions sont possibles …


Optimiser le dégivrage des chambres froides

Optimiser le dégivrage des chambres froides


Amélioration du dégivrage au niveau des chambres froides

Au niveau de la configuration de l’enceinte et pour éviter la formation de givre sur l’évaporateur, il est préférable que celui-ci soit situé loin de l’entrée par laquelle est amené l’air chaud et humide. Si ce n’est pas le cas, il est nécessaire de se poser la question en terme financier par rapport au gain énergétique, du déplacement de l’évaporateur vers le fond de la chambre froide.

Exemple.

La chambre froide est installée chez un grossiste en fruits et légumes. L’évaporateur de la chambre froide se situe comme sur le dessin ci-après :

La porte est ouverte toute la journée pour permettre aux clients (des petites supérettes) de venir faire leurs achats, des bandes en plastique sont installées pour limiter les pertes frigorifiques.

La température d’évaporation étant de -8° un dégivrage est nécessaire. La proximité de la porte favorise les entrées d’air à température moyenne de 20°. Cet air chaud est aspiré par l’évaporateur et du givre apparaît très vite sur la batterie.
Un dégivrage est nécessaire toutes les deux heures alors que dans d’autres conditions seuls 3 à 4 dégivrages par 24 heures seraient suffisants.

Pour éviter des consommations importantes d’électricité et une régulation qui apporterait toujours des soucis, il a été prévu d’arrêter la production frigorifique toutes les deux heures tout en laissant tourner les ventilateurs de l’évaporateur. On dégivre 10 minutes uniquement grâce à la température ambiante de l’air.

En ce qui concerne l’installation, pour faciliter et optimiser les opérations de dégivrage, on vérifie , si l’installation est équipée :

  • d’une vanne magnétique sur le circuit frigorifique (juste avant l’évaporateur).
    Cette vanne va permettre d’arrêter le cycle du fluide frigorigène lors d’un dégivrage : lors d’un dégivrage, l’alimentation électrique de la vanne magnétique est coupée. La vanne se ferme. La Basse Pression au compresseur descend et le compresseur s’arrête dès que le niveau réglé sur le pressostat Basse Pression est atteint. Quand il n’y a pas de vanne magnétique, le compresseur devrait être directement arrêté électriquement (contacteur). Mais dans ce cas, une migration de réfrigérant peut se produire et encore continuer à s’évaporer, ce qui peut poser problème.
  • de manchons souples placés à la sortie du ventilateur de l’évaporateur si la technique de dégivrage produit de la chaleur sur l’évaporateur. Lors d’un dégivrage, lorsque la ventilation est à l’arrêt, ce manchon retombe et se rabat sur la surface de pulsion du ventilateur. Une barrière physique est ainsi créée autour de la chaleur produite dans l’évaporateur pour dégivrer l’évaporateur.
    Ces manchons souples en fibre polyester sont encore appelés « shut up ».


Précautions à prendre au niveau de l’utilisation de la chambre froide

Une organisation rationnelle des interventions dans les chambres froides peut être source d’économies d’énergie. On peut regrouper les interventions et laisser les portes ouvertes pendant un temps le plus court possible.

Il y aura ainsi moins d’air humide qui entrera à l’intérieur de l’enceinte. Au niveau économies d’énergie, on gagne ainsi sur trois plans :

  • au niveau de l’énergie nécessaire pour dégivrer,
  • au niveau de l’énergie nécessaire au refroidissement et au séchage de l’air humide qui entre dans l’enceinte,
  • au niveau de l’énergie nécessaire pour éliminer les quantités de chaleur accumulées dans les évaporateurs au moment des dégivrages, dont le nombre et la durée peuvent diminuer.
Exemple.

Soit une chambre froide négative de dimensions intérieures : L = 4 m, l = 4 m, h = 3 m.
L’air à l’extérieur de la chambre a les caractéristiques suivantes : t° = 28°C, HR = 80 %.
L’air intérieur a les caractéristiques suivantes : t° = -18°C, HR = 50 %.
La chambre est « sollicitée » pendant 12h/jours.

Il y a 10 interventions par heure, pendant chacune d’elle la porte est laissée ouverte pendant 30 secondes.
Avec cette utilisation, l’énergie électrique nécessaire pour le dégivrage est de 15,6 kWh/jour.

Avec une meilleure organisation, le personnel n’ouvre plus la porte que 5 fois par heure et ne la laisse plus ouverte que 6 secondes par intervention.
L’énergie électrique nécessaire pour le dégivrage n’est plus que de 3,9 kWh/jour soit une économie de 11,7 kWh/jour.
Avec un prix moyen de 0,11 € du kWh, cela représente une économie de 11,7 [kWh] x 0,11 [€] 260 [jours], soit 350 € par an pour une seule chambre froide.

Il faut ajouter à cette économie, l’énergie gagnée sur le refroidissement et le séchage de l’air entrant dans la chambre froide, ainsi que sur le givrage de la vapeur qu’il contient.
En effet, dans le premier cas, le renouvellement d’air de la chambre est de 61 volumes par 24 h; l’énergie frigorifique nécessaire pour traiter cet air est de 109,6 kWh pour le refroidissement et le séchage, dont 46,9 kWh pour le givrage.
Dans le second cas, le renouvellement n’est plus que de 6,2 volumes par 24h et l’énergie nécessaire n’est plus que de 11 kWh (refroidissement et séchage), dont 4,7 kWh pour le givrage.

Avec un COP global moyen de 2,5 et un coût moyen de 0,115 € du kWh électrique, cela représente une économie supplémentaire de ((109,6-11) [kWh] / 2,5) x 0,11 [€] x 260 [jours], soit 1179 € par an.

Dans cet exemple, on n’a pas diminué le nombre de dégivrages dans le cas où il y a moins de vapeur qui entre dans la chambre. Cela représente, en fait, une économie supplémentaire, car il faut moins d’énergie pour refroidir les masses métalliques des évaporateurs, chauffées lors des dégivrages.

Remarque : vu la remarque ci-dessous, cet exemple sert plus à montrer qu’il y a de grosses possibilités d’économies par une utilisation rationnelle de la chambre froide qu’à donner des chiffres exacts. En effet, la masse de l’évaporateur ainsi que le nombre de dégivrages ont été encodés de manière arbitraire.

Calculs

Si vous voulez estimer vous même , les possibilités d’économiser de l’énergie grâce à une utilisation rationnelle de votre chambre froide.

Mais ATTENTION : ce tableau doit être utilisé avec beaucoup de précautions !

En effet, les résultats dépendent de paramètres introduits par l’utilisateur. Or ces paramètres ne sont pas toujours connus et dépendent eux-mêmes du résultat des calculs.

Par exemple :

  • La masse des évaporateurs est une donnée arbitrairement introduite par l’utilisateur. Or elle dépend d’une série de paramètres qui ne sont pas dans le tableau (et notamment la puissance frigorifique totale). Il est donc a priori très difficile d’introduire une valeur correcte pour la masse des évaporateurs.
  • Le nombre de dégivrages est aussi une donnée arbitrairement introduite par l’utilisateur.
    Or, il dépend de la masse de givre piégée sur les ailettes des évaporateurs, de l’écartement de ces ailettes, de la surface d’échange des évaporateurs (c’est-à-dire de leurs dimensions) qui conditionne l’épaisseur moyenne de givre collé sur les ailettes.

Il faut aussi se rappeler que le rendement d’un évaporateur baisse au fur et à mesure que du givre vient se placer dans les interstices entre les ailettes.
Cela veut dire que si on diminue artificiellement le nombre de dégivrages, on diminue évidemment l’énergie nécessaire pour les dégivrages parce qu’il faut moins souvent chauffer les masses métalliques, mais on diminue aussi le rendement des évaporateurs (et donc de la machine entière) avec le grand danger d’avoir des évaporateurs bourrés de glace, ce qui provoquera finalement l’arrêt de la machine.

En fait, cela revient à dire que le calcul des machines frigorifiques doit être un calcul intégré où les éléments du bilan frigorifique ne peuvent pas toujours être envisagés séparément, comme c’est le cas ici avec ce tableau…; il s’agit d’un calcul itératif !


Amélioration ou modernisation de la technique de dégivrage

Le réchauffage de la batterie pour assurer la fusion du givre peut se faire de diverses façons :

  • par résistance chauffante,
  • par introduction de vapeurs refoulées par le compresseur,
  • par aspersion d’eau sur la surface externe, givrée, de la batterie,
  • par circulation d’air.

Les deux premières méthodes citées ci-dessus sont les plus courantes :

Par résistance chauffante

Des résistances chauffantes sont imbriquées dans les tubes en cuivre qui composent la batterie de l’évaporateur. Leur position et leur puissance sont étudiées par le fabricant de manière à répartir uniformément la chaleur produite à l’ensemble de la batterie.

Avantages, inconvénients et choix

C’est une méthode simple, très répandue pour les unités de puissance moyenne.
Elle n’est pas dénuée de divers inconvénients : la consommation se fait en électricité directe, et donc à un prix élevé en journée, surtout si la période de dégivrage a lieu durant la pointe quart-horaire du mois.

Précautions

Dans les équipements frigorifiques des grandes cuisines, la place disponible fait souvent défaut et la tendance des architectes est de sélectionner du matériel très compact. D’autre part, les budgets sont de plus en plus étroits, ce qui ne facilite pas la sélection de matériel de qualité.

Cependant pour assurer un bon fonctionnement du dégivrage à long terme, certaines précautions sont à prendre :

  • Les résistances n’ont pas une durée de vie éternelle. Elles doivent être remplacées en cas de défaillance. Lors de l’installation de l’évaporateur, il ne faudra donc pas oublier de tenir compte de leur longueur (généralement la longueur de l’évaporateur) et laisser l’espace nécessaire pour permettre de les extraire de leur  » doigt de gant « .
  • Toutes les résistances sont fixées à l’aide de fixation ad hoc dans la batterie. Il importe de fixer également les nouvelles qui seraient introduites après un remplacement.
    En effet, si les résistances ne sont pas bien fixées, les dilatations produites lors du chauffage et du refroidissement peuvent faire bouger les résistances et les faire sortir de leur position initiale avec comme conséquence de ne plus chauffer uniformément la batterie sans compter les inconvénients matériels que cela suppose.

Par introduction de vapeurs refoulées par le compresseur

Cette technique, encore appelée dégivrage par « vapeurs chaudes » ou par « gaz chauds », consiste à inverser le cycle et à faire fonctionner l’évaporateur, le temps du dégivrage, en condenseur.

Avantages, inconvénients et choix

L’inversion de cycle est très économique, notamment car les vapeurs chaudes sont directement introduites dans les tubes avec des températures très élevées (avec le R22 on peut facilement atteindre plus de 90°). Les temps de dégivrage sont donc très courts : parfois quelques secondes suffisent.

Néanmoins, cette méthode complique le réseau des conduites frigorifiques : des éléments supplémentaires tels que la vanne à 4 voies (qui sert à l’inversion de cycle), vannes magnétiques pour couper les circuits, etc. viennent s’ajouter à l’installation en cas de rénovation.

Ainsi, elle est surtout utilisée dans les installations industrielles.

Dans les équipements frigorifiques des grandes surfaces, il n’y a que les machines à glaçons (lit de glace en poissonnerie), quand il en existe, qui sont parfois munies d’un système d’inversion de cycle pour démouler les glaçons.

Par aspersion d’eau sur la surface externe, givrée, de la batterie

Avantages, inconvénients et choix

Cette technique est parfois utilisée pour des enceintes froides à des températures voisines de 0°C et pour des enceintes réclamant une humidité élevée (chambres de conservation de fruits). La consommation d’eau, fluide de plus en plus coûteux, est un inconvénient.

Par circulation d’air de la chambre

De l’air provenant soit de l’intérieur de la chambre même, soit de l’extérieur, est envoyé sur l’échangeur. Dans le premier cas, le dégivrage est très lent. Dans le second, il faut isoler l’évaporateur de la chambre, ce qui n’est pas pratique.

Avantages, inconvénients et choix

L’inertie des produits stockés doit être suffisante à maintenir l’ambiance dans une fourchette de température acceptable. C’est donc une technique qui n’est pas à utiliser pour des chambres froides qui sont quasi vides juste avant le réapprovisionnement.

La première de ces méthodes a l’avantage de récupérer totalement l’énergie frigorifique stockée dans la glace. De plus, seule une horloge est nécessaire pour interrompre la production frigorifique. Elle ne tombe donc jamais en panne.

En général, cette méthode est utilisée avec une température de chambre supérieure à 0°C et lorsque les enceintes ne sont pas trop sollicitées par des ouvertures de portes. Mais la pratique montre que certains régulateurs « intelligents » utilisent également ce système lorsque la température est fortement négative, grâce au fait qu’en dessous de -5°C la structure de la glace est très différente (beaucoup plus poudreuse et donc moins collante : une sublimation est alors possible).

Remarque : cette technique est celle utilisée par un fabricant  qui propose une régulation intelligente des dégivrages.


Amélioration ou remplacement de la régulation du dégivrage

Le dégivrage est une source de consommation d’énergie :

  • Par l’apport de chaleur nécessaire à la fusion du givre (effet utile).
  • Suite à l’échauffement, suivi du refroidissement, de la masse métallique de la batterie (effet nuisible).
  • Par le réchauffement partiel, suivi de la remise en température de la chambre froide, une partie de la chaleur que nécessite le dégivrage ayant été perdu dans cette enceinte (effet nuisible).

Il existe donc une fréquence optimale de dégivrage pour minimiser l’énergie dépensée par cette opération :

  • Trop fréquents, ils sont effectués alors qu’une faible quantité de givre s’est déposée sur la surface froide, l’effet utile est insuffisant devant les effets nuisibles qui l’accompagnent.
  • Trop peu fréquents, la masse excessive de givre présente sur la batterie diminue l’efficacité énergétique de la machine frigorifique.

Dans le cadre d’une amélioration, les techniques de régulation et de commande modernes deviennent très accessibles financièrement parlant. Si votre régulation existante est vétuste, le remplacement d’une horloge classique, par exemple, par un module de régulation ne devrait pas vous ruiner.

Choix du type de régulation

Pour les petites enceintes, une régulation par horloge peut suffire. Mais mal utilisée, cette régulation peut conduire à des aberrations énergétiques : qu’il y ait présence ou non de glace, le dégivrage est enclenché à l’heure programmée, la durée du dégivrage est fixe, quelle que soit la présence effective de glace.

Ainsi, en fonction des conditions d’exploitation des enceintes froides (peu ou beaucoup d’ouvertures de portes), les agents d’exploitation devront modifier la fréquence des dégivrages par le réglage des horloges, et une sonde de fin de dégivrage doit permettre à l’installation de redémarrer plus rapidement que la période fixée.

Cependant, ils ne doivent, en aucun cas, intervenir sur la séquence. Certaines d’entre elles, interne des opérations de dégivrage, si elles sont mal conduites, peuvent créer des écarts de pression intolérables entre l’intérieur et l’extérieur des chambres froides.

Pour les plus grandes enceintes, il est indispensable, au niveau énergétique, que la séquence des dégivrages réels se rapproche au mieux de la séquence utile. On utilise pour cela une régulation électronique intelligente de dégivrage. De tels systèmes permettent des économies substantielles.

Il en existe au moins deux sur le marché :

  • Le premier système de régulation électronique intelligent permet d’espacer la séquence de dégivrages initialement programmés s’il n’a pas détecté de phase de fusion suffisamment longue durant les 10 dernières opérations de dégivrage programmées.
  • Le second système de régulation électronique intelligent détecte la présence de glace à partir de deux sondes de température (l’une mesure la température ambiante de la chambre, l’autre est placée dans les ailettes de l’évaporateur). L’explication de ce principe ne nous a pas été détaillée.
    Chez ce fabricant, le critère d’arrêt du dégivrage classique est une température d’évaporateur de 10°C. Cela semble élevé, mais c’est, semble-t-il, une sécurité par rapport à l’absence totale de glace.
    En plus de cette détection de givre, ce système choisit un dégivrage par circulation d’air de la chambre chaque fois que la température intérieure le permet. Ce qui est très intéressant au niveau énergétique puisque non seulement il ne faut pas produire de la chaleur pour le dégivrage, mais qu’en plus, toute l’énergie latente contenue dans la glace sera restituée à l’ambiance.
    Un dégivrage classique par résistance chauffante n’aura lieu que lorsqu’il n’est pas possible d’attendre la fusion de la glace par l’air ambiant.

Quel que soit le système de régulation intelligente, la souplesse de ces appareils par rapport aux thermostats mécaniques permet d’affiner les réglages et de proposer des fonctions complémentaires :

  • alarmes,
  • possibilité de faire fonctionner le congélateur avec une consigne abaissée de 5°C la nuit (pour bénéficier du courant de nuit),
  • possibilité de délester durant la pointe 1/4 horaire,

D’après le fabricant du second système ci-dessus, l’investissement (+/- 1 625 €) est amorti en moins d’un an.

Exemple.

Une chaîne de supermarchés belge a adopté ce système pour l’ensemble de ses chambres froides depuis 2 ans. Un des responsables techniques nous a confirmé que l’investissement a largement été amorti sur cette période en regard des économies d’énergie apportées (plus de 20 % de la consommation de la chambre). Une généralisation de ce système à l’ensemble des points de vente est programmée.

De plus, ces systèmes peuvent tout à fait s’adapter sur des installations existantes.

Lors de la pose d’un système de régulation de dégivrage, il est important de l’adapter au mieux à la chambre froide et à son utilisation. Il appartient au frigoriste de bien poser au client les questions pour comprendre son mode opératoire et de cibler la régulation la plus appropriée.

Autres précautions…

Pour optimiser le dégivrage, le frigoriste ne doit pas oublier de prévoir deux temporisations dans les étapes de dégivrage :

  • Après l’opération de dégivrage proprement dite, il faut prévoir une temporisation avant l’ouverture de la vanne magnétique (permettant à la production frigorifique de reprendre). Cette précaution permet d’assurer l’égouttage.
  • Ensuite, il faut prévoir une deuxième temporisation avant la remise en fonctionnement des ventilateurs de l’évaporateur. Cette temporisation permet à la batterie d’atteindre une température moyenne inférieure ou égale à celle de l’enceinte. À défaut, la remise en route prématurée des ventilateurs peut envoyer de la chaleur dans la chambre froide et/ou des gouttelettes d’eau encore présentes.

Il veillera aussi à prévoir un système de sécurité qui arrête le dégivrage dès qu’une température ambiante excessive est atteinte. Cette sécurité doit, par exemple, être accompagnée d’une alarme qui prévient le personnel du problème.

Cette précaution est d’autant plus importante que les produits stockés sont coûteux.

Exemple.

Il est déjà arrivé qu’un contacteur qui commandait les résistances électriques de dégivrage d’une enceinte stockant des crustacés, du caviar, etc. reste bloqué et que du chauffage soit diffusé toute la nuit dans la chambre avant que le personnel ne s’en aperçoive le lendemain matin.

 

Récupérer la chaleur sur condenseur de la machine frigorifique [Améliorer – Froid alimentaire]

Récupérer la chaleur sur condenseur de la machine frigorifique [Améliorer - Froid alimentaire]


Principe de fonctionnement

Une machine frigorifique transfère de la chaleur extraite d’une chambre froide, d’un meuble frigorifique ouvert, … vers l’extérieur.

Il semble dès lors logique de tenter de récupérer la chaleur sur le condenseur de la machine frigorifique.

Fonctionnement du condenseur

En principe, trois opérations successives se passent dans le condenseur de la machine frigorifique :

Evolution des températures du fluide frigorigène et du fluide de refroidissement.

  1. Dans une machine frigorifique, les gaz qui sont expulsés par le compresseur en fin de compression sont à très haute température (de 70 à 80°C). On dit qu’ils sont surchauffés. Comme la condensation se fait à une température largement inférieure (aux alentours de 40°C, par exemple), une quantité de chaleur va devoir être évacuée des gaz surchauffés pour les amener à leur température de condensation qui correspond à la pression de refoulement (dite pression de condensation). C’est la désurchauffe.
  2. Puis lors de la condensation elle-même, une importante quantité de chaleur va aussi devoir être évacuée pour liquéfier (si possible complètement) le fluide frigorigène gazeux.
  3. Enfin, si les conditions des échanges thermiques dans le condenseur le permettent (température du fluide refroidisseur suffisamment basse, débit du médium de refroidissement suffisamment important), le liquide condensé va subir le sous-refroidissement, ce qui améliore le rendement de l’évaporateur.

Récupération de l’énergie

Dans certains cas, on pourrait envisager de récupérer cette énergie pour chauffer de l’eau ou de l’air, au lieu de la gaspiller en pure perte :

  • si on a des besoins en eau chaude sanitaire à une température pas trop élevée (45° à 50°C);
  • si on a des besoins de chauffage pour des allées froides, des locaux contigus, …
  • si on veut éviter ou diminuer la puissance de climatisation du local des machines, ou faire des économies d’énergie sur ce poste;
  • si on veut participer à la lutte contre le réchauffement global de l’atmosphère.

La récupération de l’énergie du côté des condenseurs suppose évidemment des investissements supplémentaires par rapport à des machines classiques plus simples :

  • des échangeurs de condenseurs adaptés;
  • des réservoirs-tampons pour l’eau chaude sanitaire ou de chauffage;
  • une disposition plus compliquée des tuyauteries;
  • une bonne évaluation des pertes de charge dans les tuyauteries;
  • une régulation complète permettant le contrôle correct de toute l’installation, y compris des récupérateurs.

Étant donné les spécificités inhérentes à chaque projet, le rapport entre l’investissement et les économies d’énergie doit faire l’objet de calculs adaptés, à demander aux auteurs de projet. Il faut en effet considérer ensemble la machine frigorifique et les appareils de production d’eau chaude sanitaire ou de chauffage.
Le bilan doit prendre en compte :

  • l’apport d’énergie « gratuite » par la machine frigorifique,
  • le fait que l’on doit quand même disposer, en plus des récupérateurs, d’une puissance installée suffisante pour palier au manque de puissance de chauffe lors des périodes où la machine frigorifique ne fonctionne pas,
  • la pénalisation énergétique apportée toute l’année par l’échangeur supplémentaire,
  • le cas où le condenseur de la machine frigorifique doit assurer à lui seul, l’évacuation de toute la chaleur (lorsqu’il n’y a pas de besoin d’énergie dans les récupérateurs, ou quand ces derniers sont arrivés à leur consigne maximale de température).
Exemple d’application très intéressante

Le plus logique est de récupérer la chaleur sur le condenseur à air pour chauffer directement l’air d’un local. Ainsi, un supermarché Delhaize à Bruxelles évacue la chaleur du condenseur du groupe frigorifique (armoires de congélation) en créant un rideau d’air chaud à l’entrée du magasin. En été, la chaleur est déviée en toiture par un clapet.


Application au chauffage de l’ambiance du magasin ou des annexes par l’air

Le moins qu’on puisse dire, c’est que les idées ne manquent pas quant à la récupération de la chaleur des condenseurs afin de chauffer l’ambiance des magasins directement ou des annexes indirectement.
La question traditionnelle qui revient dans les discussions est la suivante :

« J’ai déjà payé mon électricité pour garder à basse température mes aliments, que puis-je faire de la chaleur des condenseurs ? C’est quand même idiot de la rejeter à l’extérieur en période froide alors que je dois en plus chauffer mon magasin ».

Sur base du principe  :

« La véritable économie d’énergie est celle que l’on ne consomme pas ! »

On ne recommandera jamais assez de fermer les meubles frigorifiques tout en rappelant qu’un meuble de 1 mètre de largeur (1 mètre linéaire) échange par convection et rayonnement de l’ordre de 800 W et représente les 2/3 de la demande de froid au niveau de l’évaporateur.

Il est sûrement l’heure de rappeler aussi que l’on a atteint le paradoxe de la chaîne alimentaire froide. En effet, on en arrive, depuis un certain temps, à réchauffer les « allées froides » des magasins, et ce, afin d’assurer le confort des clients.

 » C’est une aberration énergétique criante ! »

Pour bien illustrer ce petit « coup de gueule », l’étude simplifiée qui suit montre les effets conjugués du succès des meubles frigorifiques d’ouverture de plus en plus imposante avec les effets négatifs qui vont de paire, à savoir :

  • le risque accru pour la conservation de la chaîne du froid;
  • l’inconfort évident des « allées froides ».

 Incorfort dans les allées froides.

Dans ce qui suit, on se propose d’analyser, de manière théorique, différents cas souvent rencontrés dans les magasins d’alimentation :

  • des meubles frigorifiques fermés avec le rejet de la chaleur de condensation dans l’ambiance du magasin et un appoint venant d’une chaudière traditionnelle;
  • des meubles frigorifiques fermés avec le rejet de la chaleur de condensation à l’extérieur du magasin et le chauffage du magasin venant d’une chaudière traditionnelle;
  • des meubles frigorifiques ouverts avec le rejet de la chaleur de condensation dans l’ambiance du magasin et un appoint venant d’une chaudière traditionnelle;
  • des meubles frigorifiques ouverts avec le rejet de la chaleur de condensation à l’extérieur du magasin et le chauffage du magasin venant d’une chaudière traditionnelle.

Ici, on analyse les consommations énergétiques finales et primaires ainsi que le bilan CO2 des différentes configurations en tenant compte des valeurs de rendement et d’efficacité énergétiques des équipements :

  • La chaudière présente un rendement saisonnier sur PCI (Pouvoir Calorifique Inférieur) de 0.90 ( ouverture d'une nouvelle fenêtre ! valeur de la CWaPE ou Commission Wallonne Pour l’Énergie.  ).
  • Le rendement global des centrales belges est de 55 % (selon la CWaPe). Dans cet exercice, on se place dans une situation défavorable, à savoir que le rendement moyen belge des centrales (en tenant compte du rendement des centrales nucléaires) est plutôt de 38 %.
  • 1 kWh de gaz consommé représente 251 g de CO2.
  • Le prix actuel du gaz est estimé à 0.05 €/kWh PCI.
  • Le prix de l’électricité est évalué à 0.11 €/kWh.

Les conditions d’ambiance du magasin sont simplifiées pour les besoins du calcul, à savoir :

  • la température ambiante que le commerçant veut assurer est de 24°C;
  • la température moyenne externe est de 6°C;

Le bilan thermique du magasin est aussi simplifié dans le sens où :

  • Les déperditions du magasin sont ramenées aux seules pertes des parois de l’enveloppe :
    • pour un petit commerce peu isolé de 40 m² au sol (4 façades), avec un Uglobal de l’ordre de 4 W/m².K, les déperditions sont de l’ordre de 12 kW en régime établi;
    • pour le même commerce fortement isolé, avec un coefficient Uglobal de l’ordre de 1.2 kW/m².K, les déperditions atteignent 3.6 kW;
  • Les apports internes et externes ne sont pas pris en compte (occupations, éclairage, … et l’ensoleillement. On se place donc dans des conditions défavorables au niveau de la récupération de chaleur.

Configuration 1 : meubles ouverts, condenseurs à l’extérieur et commerce peu isolé (configuration classique)

Le commerçant possède un commerce peu isolé (12 kW de déperditions). Il investit dans des meubles frigorifiques ouverts (2 x 10 kW) et les groupes de froid (groupes condenseurs) sont placés à l’extérieur.

La température de condensation des groupes condenseurs en externe est de l’ordre de 22°C pour un air externe moyen sur l’année de 6°C. Le coefficient de performance du groupe condenseur en externe est de 4.2 d’après un constructeur de machine frigorifique (COP’s équivalents donnés par Bitzer software de BITZER et Select 6 de COPELAND).

Pour cette configuration, un appoint de chaleur est nécessaire; c’est la chaudière qui le donne.

Schéma

Performance des équipements

Le bilan thermique montre que, vu la bonne performance des compresseurs pour une température de condensation basse (COP de l’ordre de 4.2), les rejets de chaleur à l’extérieur sont limités. Néanmoins, la chaudière doit apporter 32 kW pour maintenir un certain confort dans le magasin et compenser les déperditions de 12 kW au travers des parois et la perte de chaleur vers les meubles frigorifiques ouverts (soit 20 kW).

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

32/0.9 = 35.6

kWh/h

 

Energie compresseurs 

 

2.4 x 2 = 4.8 kWh/h
Energie condenseur 12.4 x 2 = 24.8 kWh/h
Coût 35.6 x 0.05 + 4.8 x 0.11= 2.3 €/h
Energie primaire (à la centrale électrique)
Energie primaire 35.6+ 4.8 / 0.38= 48.2 kWh/h
CO2 48.2 x 0.251 = 12.1 kg/h de CO2

Configuration 2 : meubles ouverts, condenseurs dans l’enceinte et commerce peu isolé

Le commerçant décide de remplacer ses groupes de condensation, car il sont vétustes (soumis au intempéries depuis 15 ans par exemple). L’installateur lui conseille de les placer à l’intérieur afin de récupérer la chaleur de condensation.

La température de condensation des groupes condenseurs en interne est de l’ordre de 50°C afin de pouvoir chauffer l’air aux environs des 40°C pour une température d’air d’entrée au condenseur de 32°C (condenseur placé dans des mauvaises conditions de fonctionnement). Le coefficient de performance du groupe condenseur est de 1.66 d’après un constructeur de machine frigorifique.

Schéma

Performance des équipements

Le bilan thermique nous montre que les compresseurs, vu leur performance médiocre (COP de 1.7), doivent évacuer plus de chaleur au niveau des condenseurs. Il en résulte que la chaudière, dans ce cas, n’a pas besoin de venir en appoint. La question clef est de savoir s’il faut récupérer la chaleur au prix de la dégradation de la performance énergétique des compresseurs ou l’inverse.

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

0

kWh/h

 

Energie compresseurs 

 

6 x 2 = 12 kWh/h
Energie condenseur 16 x 2 = 32 kWh/h
Coût 0 x 0.05 + 12 x 0.11= 1.32 €/h
Energie primaire (à la centrale électrique)
Energie primaire 0 + 12 / 0.38= 31.6 kWh/h
CO2 31.6 x 0.251 = 7.9 kg/h de CO2

Configuration 3 : meubles fermés, condenseurs à l’extérieur et commerce peu isolé

Le commerçant est très sensibilisé à l’énergie.

Il décide de réinvestir dans des meubles fermés. Pour une même capacité d’exposition des denrées, la puissance à l’évaporateur sera moindre. En effet, sur base de l’étude du bilan thermique des meubles ouverts, les pertes par l’ouverture représentent de l’ordre de 66 % de la puissance disponible à l’évaporateur. En fermant ces ouvertures, la puissance nécessaire à l’évaporateur est de l’ordre de 2 x 3 kW.

Dans un second temps, il se dit qu’il n’y a plus de nécessité de récupérer la chaleur de condensation puisqu’il devrait y avoir moins de pertes de chaleur vers les meubles frigorifiques. Les groupes de froid (groupes condenseurs) sont donc placés à l’extérieur.

La température de condensation des groupes condenseurs en externe est de l’ordre de 22°C pour un air externe moyen sur l’année de 6°C. Le coefficient de performance du groupe condenseur en externe est de 4.2 d’après le même constructeur de compresseur.

Schéma

Performance des équipements

Le bilan thermique nous montre que, vu la bonne performance des compresseurs pour une température de condensation basse (COP de l’ordre de 4.2), les rejets de chaleur à l’extérieur sont limités. La chaudière doit tout de même apporter 18 kW pour maintenir un certain confort dans le magasin et compenser les déperditions de 12 kW au travers des parois et la perte de chaleur vers les meubles frigorifiques fermés (soit 6 kW).

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

18/0.9 = 20

kWh/h

 

Energie compresseurs 

 

0.7 x 2 = 1.4 kWh/h
Energie condenseur 3.7 x 2 = 7.4 kWh/h
Coût 20 x 0.05 + 1.4 x 0.11= 1.2 €/h
Energie primaire (à la centrale électrique)
Energie primaire 20 + 1.4 / 0.38= 23.7 kWh/h

CO2

23.7 x 0.251 = 5.9 kg/h de CO2

Configuration 4 : meubles fermés, condenseurs dans l’enceinte et commerce peu isolé

Le commerçant furieux, demande à l’installateur de se débrouiller pour réduire la facture de chauffage. Les groupes de froid sont donc incorporés dans les meubles et la chaleur évacuée par les condenseurs est réintroduite dans le magasin aussi pour assurer le confort des clients (dans les allées froides par exemple).

La température de condensation des groupes condenseurs en interne est de l’ordre de 50°C afin de pouvoir chauffer l’air aux environs des 40°C pour une température d’air d’entrée au condenseur de 32°C. Le coefficient de performance du groupe condenseur est de 1.66 d’après un constructeur de machines frigorifiques.

Schéma

Performance des équipements

Le bilan thermique nous montre que malgré le rejet de 9,2 kW dans l’ambiance du magasin, la chaudière doit apporter 8,8 kW pour maintenir un certain confort dans le magasin et compenser les déperditions de 12 kW au travers des parois et la perte de chaleur vers les meubles frigorifiques fermés (soit 6 kW).

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

8.4/0.9 = 9.3

kWh/h

 

Energie compresseurs 

 

1.8 x 2 = 3.6 kWh/h
Energie condenseur 4.8 x 2 = 9.6 kWh/h
Coût 8.4 x 0.05 + 3.6 x 0.11= 0.8 €/h
Energie primaire (à la centrale électrique)
Energie primaire 8.4 + 3.6 / 0.38= 17.9 kWh/h
CO2 17.9 x 0.251 = 4.5 kg/h de CO2

Configuration 5 : meubles fermés, condenseurs dans une enceinte très isolée

Le commerçant constate qu’il a encore une facture de chauffage exagérée. Tout en conservant sa configuration précédente, il décide d’isoler son enveloppe (des primes existent). Les déperditions ne sont plus que de 3.6 kW.

La température de condensation des groupes condenseurs en interne est de l’ordre de 50°C afin de pouvoir chauffer l’air aux environs des 40°C pour une température d’air d’entrée au condenseur de 32°C. Le coefficient de performance du groupe condenseur est de 1.66 d’après un constructeur de machine frigorifique.

Schéma

Performance des équipements

Le bilan thermique nous montre que le rejet de 9,6 kW dans l’ambiance du magasin permet à la chaudière de ne pas être allumée et compenser, non seulement les 6 kW pris par les meubles frigorifiques, mais aussi les 3.6 kW de déperdition au travers des parois.

On a donc affaire à une pompe à chaleur dont :

  • la source froide (la source d’où provient l’énergie) est chaude puisque dans l’ambiance;
  • à la consommation près du compresseur, l’énergie, « tournant » sur elle-même, est utilisée pour refroidir les meubles frigorifiques et, après utilisation, est restituée à l’ambiance;
  • la chaleur de compression excédentaire sert en fait à compenser les déperditions au travers des parois de l’enveloppe.

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

0

kWh/h

 

Energie compresseurs 

 

1.8 x 2 = 3.6 kWh/h
Energie condenseur 4.8 x 2 = 9.6 kWh/h
Coût 3.6 x 0.11= 0.4 €/h
Energie primaire (à la centrale électrique)
Energie primaire 3.6 / 0.38= 9.5 kWh/h
CO2 9.5 x 0.251 = 2.4 kg/h de CO2

Synthèse

Tableau comparatif

Configuration Enveloppe Type  de meuble Condenseur Energie finale consommée chaudière [kWh/h] Energie finale électrique consommée [kWh/h] Energie primaire consommée [kWh/h] Coût de l’énergie [€/h] kg/h de CO2 Rejet de CO2
1 peu isolée ouverts externe 35.6 4.8 48.2 2.3 12.1 +504 %
2 peu isolée ouverts interne 0 12 31.6 1.32 7.9 +329 %
3 peu isolée fermés externe 20 1.4 23.7 1.2 5.9 +246%
4 peu isolée fermés interne 9.3 3.6 17.9 0.8 4.5 +188 %
5 bien isolée fermés interne 0 3.6 9.5 0.4 2.4 0

Choix des meubles frigoriques fermés

La toute première conclusion à tirer est qu’il faut choisir des meubles frigorifiques fermés quel que soit le type de denrée exposé. À ce sujet, au risque de passer pour des doux rêveurs, c’est possible de choisir des meubles tant en froid positif qu’en froid négatif avec des portes sans trop de risque pour que le chiffre d’affaires tombe en chute libre.

Energie finale

Le graphique ci-dessous montre l’évolution des énergies finales que consomment l’installation de froid avec récupération ou sans récupération et le système de chauffage.

Ces consommations énergétiques sont celles que le commerçant peut retrouver à partir de ses factures de chauffage et d’électricité.

Récupération importante par rapport aux besoins de chaleur

Le tableau comparatif précédent permet de tirer des conclusions :

  • Il faut fermer les meubles frigorifiques ouverts.
  • En période froide, même si la performance énergétique des compresseurs est dégradée (COP de 1.66) vu que la température de condensation (le condenseur se trouve à l’intérieur) est élevée, il est intéressant de récupérer l’énergie de condensation. L’optimum se situe naturellement lorsque la chaleur rejetée par les condenseurs équivaut aux déperditions des parois de l’enveloppe du commerce;
  • En plus de récupérer la chaleur, on aura donc intérêt à limiter au maximum les déperditions de l’enveloppe qu’elles soient sous forme :
    • d’une meilleure isolation;
    • d’un meilleur contrôle des infiltrations au niveau des portes d’entrée et des réserves;
    • d’une gestion efficace de la ventilation de l’air hygiénique.

Régime en période chaude

Là où le bât blesse, c’est pendant les périodes chaudes :

Les condenseurs étant incorporés aux meubles frigorifiques ou dans l’enceinte même du magasin, lorsque les déperditions au travers des parois s’inversent (période chaude, apport solaire important, …), il est nécessaire d’évacuer la chaleur des condenseurs à l’extérieur. Dans le cadre d’une installation de récupération de chaleur sur un condenseur à air, il n’est pas aisé de le réaliser.

Pour récupérer la chaleur de condensation, Delhaize, par exemple, a mis au point un système similaire à celui représenté dans les figures suivantes permettant de récupérer la chaleur en période froide pour chauffer l’ambiance.

 Schéma de principe en période froide (récupération); source : Delhaize.

 Schéma de principe en période chaude (pas de récupération); source : Delhaize.

Bilan des énergies primaires

Dans le tableau de synthèse ci-dessus, on parle aussi d’énergie primaire. Ce bilan est moins parlant, car, surtout au niveau de l’énergie électrique, on a souvent tendance à oublier que nos centrales électriques ont aussi un rendement.

Comme précisé dans les hypothèses, le rendement global, selon les sources, est de 55 ou 38 % suivant que l’on compte ou non les centrales nucléaires dans le parc des centrales belges. Ce qui signifie que lorsqu’on consomme 1 kWh d’énergie électrique chez nous les centrales, elles, en consomment 1 / 0,38 = 2,63 kWh sous forme de gaz, de nucléaire, de biomasse, …

Quant à l’énergie primaire consommée par notre chaudière (c’est plus facile), c’est le gaz, le fuel, le m³ de bois consommé.

Le graphique suivant montre cette approche :

Bilan CO2

À partir des énergies primaires, on peut déterminer quelle sera notre production de CO2 :

Remarques

La plupart des cas présentés ci-dessus, sont issus de cas réellement observés. Malheureusement, aucun monitoring des consommations n’est disponible à l’heure actuelle. Il va de soi que le placement d’une batterie de chauffe au dessus de la tête des clients dans l’allée froide n’est pas un bon principe, mais est juste utilisé comme moyen d’interprétation ou de réaction des lecteurs. Ce principe donne les avantages et inconvénients suivants:

(+)

  • simple;
  • modulable;

(-)

  • nécessite des vitesses d’air plus importantes afin d’amener l’air chaud à environ 1.5 m du sol pour assurer un certain confort thermique des clients;
  • augmente l’induction de l’air chaud au niveau du rideau d’air, car le mouvement de l’air dans cette zone est amplifié;

Application au chauffage de l’ambiance du magasin ou des annexes par un condenseur à eau

Beaucoup de techniciens dans l’âme se retrouveront dans les configurations qui suivent sachant que tout un chacun recherche à récupérer un maximum d’énergie sur les consommations des groupes frigorifiques. De manière générale, il n’y a pas de solution miracle, mais des solutions partiellement efficaces.

Configuration 1 : chauffage par air pulsé au pied des meubles

Cette configuration existe dans certains magasins Delhaize et est en cours de monitoring.

Elle se compose essentiellement :

  • d’un ballon de 1 000 litres constituant un condenseur à eau dont le circuit secondaire est branché sur le collecteur principal de la chaufferie. Le circuit primaire est constitué du circuit frigorifique et est en série avec le condenseur à air classique situé sur le toit du magasin;
  • le condenseur à eau, via le collecteur de chauffage, alimente une batterie chaude de la centrale de traitement d’air;
  • la pulsion de l’air chaud s’effectue au niveau du pied du meuble frigorifique, assurant un certain confort au niveau de l’allée froide;
  • la reprise d’air de la centrale de traitement d’air se situe en hauteur;
  • la température d’air de pulsion au pied du meuble frigorifique peut être modulée en fonction de la température de reprise et de la température de l’air neuf nécessaire à la ventilation hygiénique.

En période froide :

  • le condenseur à eau réchauffe l’eau du ballon par la désurchauffe du fluide frigorigène;
  • le condenseur à air assure la condensation du fluide frigorigène et même un certain sous-refroidissement (ce qui permet d’améliorer la performance de la machine frigorifique);
  • la batterie chaude de la CTA (Centrale de Traitement d’Air) réchauffe l’air neuf mélangé à l’air de reprise pour la pulser au pied des meubles frigorifiques. Attention que le fait de pulser cet air à proximité des rideaux d’air des meubles augmente les apports par induction du meuble (dans quelle proportion ? difficile à dire pour l’instant).

En période chaude :

  • en principe, on ne devrait plus réchauffer l’air de pulsion au pied des meubles. En pratique, il se fait que l’ouverture des meubles étant de plus en plus importante, le refroidissement de l’air ambiant est véritablement présent et inconfortable pour les clients (surtout quand on vient faire ses courses en maillot); d’où la tendance actuelle à réchauffer l’air même en été;

« Voilà un bon exemple de destruction d’énergie à grande échelle ! »

  • le condenseur à air assure l’évacuation de la chaleur de condensation.

Schéma

Régime en période froide.

Régime en période chaude.

Configuration 2 : Chauffage par le sol dans les allées froides

Cette configuration est à creuser. Toutes les réalisations ou idées à ce sujet sont les bienvenues.

Elle se composerait essentiellement :

  • d’un ballon constituant un condenseur à eau dont le secondaire est branché sur le collecteur principal de la chaufferie. Le primaire est en série avec le condenseur à air classique situé sur le toit du magasin;
  • le condenseur à eau, via le collecteur de chauffage, alimente un réseau de chauffage au sol au niveau de l’allée froide;
  • d’une chaudière d’appoint raccordée sur le collecteur principal.

En période froide :

  • le condenseur à eau réchauffe l’eau du ballon par la désurchauffe du fluide frigorigène;
  • le condenseur à air assure la condensation du fluide frigorigène et même un certain sous-refroidissement (ce qui permet d’améliorer la performance de la machine frigorifique);
  • le réseau de chauffage au sol assure un chauffage rayonnant dans l’allée froide. Cette configuration peut être intéressante dans le sens où la chaleur rayonnante devrait influencer moins les meubles frigorifiques qui sont principalement sensibles aux apports par induction d’air (mélange convectif entre l’air de l’ambiance et celui du rideau d’air du meuble). La basse température de l’eau de chauffage au sol permettrait de réduire la température de condensation et, par conséquent, d’améliorer le COP de la machine.

En période chaude :

  • le condenseur à air assurerait l’évacuation de la chaleur de condensation.

Schéma

Régime en période froide.

 Régime en période froide.

Intérêt ou pas du chauffage au sol

Parmi les avantages et les inconvénients du chauffage par le sol en association avec les meubles frigorifiques positifs ouverts en position verticale, on pointera principalement :

(+)

  • Le chauffage au sol apporte de la chaleur principalement par rayonnement (70 à 80 %) mais aussi par convection. Or en froid positif, les principaux apports qui influencent prioritairement le bilan thermique et énergétique du meuble sont les apports par induction (mélange de l’air ambiant avec celui du rideau d’air froid). De plus, l’échange entre deux parois étant maximal lorsque celles-ci sont parallèles, les apports de chaleur dus au chauffage au sol seraient plus faibles vu que les surfaces sont orthogonales;
  • le confort devrait être meilleur;
  • les températures de condensation, pour ce type de chauffage, pourraient être basses et donc améliorer la performance de la machine frigorifique;

(-)

  • La mise en œuvre d’un chauffage au sol est coûteuse;
  • Comme les magasins demandent une certaine flexibilité dans l’agencement des meubles frigorifiques, le chauffage au sol est un frein par rapport à cette flexibilité. Cependant, à la conception, il est possible par une bonne programmation de déterminer les emplacements dans les zones de vente où les meubles n’ont pratiquement aucune chance de bouger. De plus, il faut aussi tenir compte que les évacuations des condensats de dégivrage des meubles ainsi que les conduites liquides et gaz du circuit frigorifique sont souvent, eux aussi, figés voire encastrés dans le sol.

Application au préchauffage de l’eau chaude sanitaire

L’idée est ici de profiter d’un besoin de chauffage d’un fluide à basse température (la température de l’eau de ville varie entre 5° en hiver et 15°C en été. Mais le système ne fonctionnera bien que lorsque la puissance de récupération nécessaire est supérieure à la puissance fournie par le condenseur. Autrement dit, il faut que les besoins d’eau sanitaire soient très importants par rapport à la puissance de la machine frigorifique.

Ainsi, dans les commerces  où le froid alimentaire est nécessaire, les besoins d’eau chaude sanitaire peuvent être importants et une récupération de chaleur au condenseur se justifie tout à fait. Mais un ballon de préchauffage est propice au développement de la légionelle.

Il faut donc s’assurer que l’eau séjournera durant un temps suffisamment long dans le dernier ballon : 60°C durant 30 minutes ou 70°C durant 4 minutes, par exemple (en cas de débit de pointe, de l’eau « contaminée » risque de traverser seulement le 2ème ballon).

Configuration 1 : Un échangeur thermique parcouru par le fluide frigorigène est inséré au bas d’un ballon d’eau chaude

Dans le système ci-contre, un simple échangeur thermique (placé en série et en amont du condenseur normal) est inséré au bas d’un ballon d’eau chaude. Par effet de cheminée, la chaleur sera donnée à la zone la plus froide du ballon puis communiquée à l’ensemble du réservoir.

On parle de condenseur-désurchauffeur parce que la désurchauffe des gaz provenant du compresseur aura lieu dans cet échangeur.

La réglementation impose le principe selon lequel il ne doit pas y avoir de contact possible entre le fluide frigorigène et l’eau potable. En cas de perforation de l’enveloppe du fluide, la détérioration éventuelle doit se manifester à l’extérieur du dispositif.

Dans l’échangeur ci-dessus, une double paroi de sécurité est prévue selon DIN 1988.

Configuration 2 : Un ballon intermédiaire à double échange est intégré comme interface

On peut également prévoir un système à double échange :

Deux échangeurs sont intégrés dans un même ballon (1). Le premier échangeur est celui du condenseur de la machine frigorifique, le deuxième est le serpentin de préchauffage de l’eau chaude sanitaire.

Dans ce ballon intermédiaire, il n’y a aucun risque de dépôt calcaire puisque l’eau n’est jamais renouvelée.

En cas de fuite de fluide frigorigène, la pression dans le ballon augmente et une alarme est déclenchée.

Un deuxième condenseur en série est nécessaire pour le cas où le besoin de chauffage de l’eau sanitaire serait insuffisant.

Configuration 3 : en présence d’une boucle de distribution

Le régulateur de température de départ de la boucle utilise l’appoint lorsque le niveau de température du ballon est insuffisant.

Un tel schéma (contrairement au précédent) risque cependant d’être propice au développement de légionelles , puisque le ballon de récupération peut être à une température inférieure à 60°C durant un temps assez long. Il n’est pas à recommander si des douches sont présentes dans l’installation.

Etancheité à l'air

Améliorer l’étanchéité du bâtiment

Etancheité à l'air

 

Un problème : les portes d’entrée

De manière générale, le problème des commerces est l’ouverture et fermeture incessantes des portes par les clients. Bien vite s’installe une habitude de laisser les portes ouvertes en permanence été comme hiver afin de faciliter l’accès à l’intérieur et, tout aussi important pour le commerçant, pour raison de marketing (comme dirait un commerçant béninois : « c’est ouvert, tout est gratuit jusqu’à la caisse !).

Les commerces « no-food »

Photo de façade, l'étanchéité du bâtiment   Photo de façade, l'étanchéité du bâtiment

Pour ce type de commerce, le « syndrôme » de la porte ouverte en permanence risque d’entraîner :

  • En période froide des déperditions importantes de chaleur. Lorsque les portes sont fermées, on peut considérer que les apports internes nécessaires suffisent pratiquement à chauffer l’ambiance. À l’inverse, une porte ouverte en permanence laisse s’échapper la chaleur et, par conséquent augmente les consommations de chauffage.
  • En période chaude, tant les apports de chaleur internes (éclairage, occupant, …) que les apports externes sont présents. Le simple fait de laisser la porte du magasin ouverte suffit à créer une surchauffe à l’intérieur; d’où la motivation des commerçants de s’équiper d’une climatisation.

En période froide

La perte peut être estimée en considérant qu’elle augmente la consommation liée au taux de renouvellement d’air neuf du bâtiment.
Dans ces conditions, la chaleur s’échappe joyeusement ! Le coût généré par cette fuite est variable en fonction de la durée d’ouverture.

À titre de repère, une porte ouverte en permanence de 2 m² dans une enveloppe peut générer un passage d’air à la vitesse moyenne de 1 m/s. Ces 2 m³ qui s’échappent par seconde entraîneraient une consommation hivernale de :

2  [m³/s] x 3 600 [s/h] x 214 [jour/saison chauffe] x 12 [h/jour] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000 = 56 578  [kWh/an]

ou encore 56 578 / 2 = 28 289 [kWh/an.m²]

où :

  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° au minimum par les apports « gratuits »,
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
  • 0,34 Wh/m³.K est la capacité thermique de l’air.

Soit un équivalent de +/- 1 414 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,5 €/litre. En ces périodes de spéculation énergétique, à vous d’adapter le calcul au prix du combustible.

En mi-saison

Lorsque les températures externes sont plus clémentes, l’idée de la porte ouverte prend du sens. En effet, pour éviter le recours à la climatisation, l’ouverture de la porte d’entrée permet de juste compenser les apports internes. Cela dit, ce n’est pas une raison pour ne pas conjointement réduire les apports internes par la mise en place d’un éclairage performant et peu gourmand en énergie.

En période chaude

Pour des températures extérieures caniculaires, l’idéal est de pouvoir « décharger » le commerce par « free cooling » de nuit ou tôt le matin à l’ouverture du magasin. Par contre en pleine journée, que le magasin soit équipé en climatisation ou pas, il est nécessaire de refermer les portes et de réduire, dans des limites tolérables pour la vente, les apports internes.

Les commerces « food »

Il est frappant de voir comme la modernité nous complique la vie alors que la technique devrait-être là pour la simplifier. Il existe malgré tout des commerçants qui font preuve de bon sens sans grand moyen technique. Par exemple, une boucherie pourrait regrouper toutes les astuces nécessaires à la chasse au gaspillage énergétique et basée sur la gestion de sa vitrine amovible.
En effet :

  • En période très froide (par gel), la vitrine pourrait être fermée, sachant qu’il n’y a pas de chauffage à l’intérieur. L’impact énergétique est faible.
  • En période froide, une vitrine amovible pourrait être enlevée. Tout se passe donc comme si le commerce était dans la rue. Cela se justifie dans le sens où les clients sont habillés chaudement et qu’ils ne restent pas suffisamment de temps à l’intérieur de la boucherie pour se dévêtir. Il est vrai que le confort du commerçant ne serait pas assuré, mais on s’avance un peu vite.
  • En période chaude, outre l’auvent naturel des arcades (comme ci-dessous) qui préserve la boucherie des apports solaires directs, le commerçant pourrait refermer sa vitrine pour limiter l’impact de sa climatisation (de par ses vitrines semi-ouvertes) sur ses consommations électriques.

Photo d'arcades, l'étanchéité du bâtiment

Dans l’absolu et de manière un peu utopique, si l’on considère que sous nos latitudes, la température moyenne annuelle est de 6°C, le fait d’ouvrir son magasin sur l’extérieur en permanence permet de n’avoir qu’à refroidir l’ambiance du magasin de quelques degrés pour arriver à la température de conservation des denrées.
Attention toutefois que ce type de démarche devrait être appliquée au cas par cas sachant que des critères autres que ceux énergétiques et de confort interviennent, par exemple la sécurité, la pollution, …


Des solutions pour les grandes et moyennes surfaces type « food »

Pour pallier partiellement à cette débauche d’énergie, l’étanchéité des ouvertures contrôlées, tant du côté des entrées clients que du côté des accès aux réserves et des portes de service, est importantes.
Les améliorations possibles sont :

  • les sas d’entrée (investissements de l’ordre de 11 000 €);
  • les tourniquets (investissements de l’ordre de 25 000 €);
  • la mise en surpression des zones de vente par rapport à l’extérieur. Elle évite la formation de courant d’air incontrôlé entre plusieurs zones;

Photo de sas d'entrée, l'étanchéité du bâtiment   Photo de tourniquet, l'étanchéité du bâtiment  Photo de sas d'entrée, l'étanchéité du bâtiment

Le placement d’un rideau d’air aux entrées et sorties principales depuis toujours fait couler beaucoup d’encre. Nous manquons à l’heure actuelle d’études objectives concernant l’efficacité d’un rideau d’air. Si vous en connaissez, elles seraient les bienvenues dans Énergie+. Une des pistes serait peut-être le rideau d’air alimenté par la récupération de la chaleur de désurchauffe ou de condensation des machines frigorifiques.


Des solutions pour les commerces de détail type « food »

Le problème est le même que pour les grandes surfaces à la différence près qu’il y a très rarement de la place en suffisance pour prévoir des sas de grandes dimensions
Les améliorations possibles sont :

  • le placement de portes étanches;
  • la mise en place d’un mini sas avec portes automatiques.

Photo de portes étanches, l'étanchéité du bâtiment   Photo de mini sas, l'étanchéité du bâtiment

Tout comme les grandes et moyennes surfaces, le placement d’un rideau d’air aux entrées et sorties principales depuis toujours fait couler beaucoup d’encre. Nous manquons à l’heure actuelle d’études objectives concernant l’efficacité d’un rideau d’air. Si vous en connaissez, elles seraient les bienvenues dans Énergie+. Une des pistes serait peut-être le rideau d’air alimenté par la récupération de la chaleur de désurchauffe ou de condensation des machines frigorifiques.

Diminuer les consommations énergétiques des meubles frigorifiques

Diminuer les consommations énergétiques des meubles frigorifiques


La solution radicale

Une ou des solutions radicales ?

Il en existe une ou plusieurs ! Le problème est qu’elles sont évidentes mais semblent bloquer les commerçants et les responsables « marketing » des grandes et moyennes surfaces. Peu importe les moyens et techniques mis en œuvre, mais il suffit de confiner ou enfermer le froid dans une boîte isolée pour améliorer directement l’efficacité énergétique du froid alimentaire. Certains magasins (ils se reconnaîtront) appliquent ce principe depuis déjà longtemps, d’autres se lancent timidement.

Solutions locales

Fermeture des meubles frigorifiques négatifs horizontaux

Photo meubles frigorifiques négatifs horizontaux fermés - 01.   Photo meubles frigorifiques négatifs horizontaux fermés - 02.   Photo meubles frigorifiques négatifs horizontaux fermés - 03.

Le placement de fermeture simple en plexiglas sur les gondoles négatives montre une solution rapidement rentable car elle permet de réduire les consommations énergétiques de l’ordre de 30 à 40 %. C’est cette solution qui a été retenue par une chaîne de distribution belge sans observer de baisse significative du chiffre d’affaire.

Fermeture des meubles frigorifiques positifs verticaux

C’est là que les anciens Belges s’empoignèrent car le client roi doit pouvoir apprécier les denrées sans contrainte d’ouverture et de fermeture de porte. La question qui se pose immédiatement est de savoir pourquoi une méthode qui semble marcher avec le froid négatif ne fonctionne pas pour le froid positif. Est-ce une question :

  • d’éducation à la consommation : on comprend que le froid négatif doit être confiné parce que les crèmes glacées fondent s’il n’y a pas de confinement du froid et que le froid positif peut être assimilé à la climatisation où les fenêtres peuvent rester ouvertes;
  • d’investissement : le nombre de mètres linéaires de ce type de meubles frigorifiques étant important cela peut éventuellement rebuter les gérants de se lancer;

C’est une des questions du 21ème siècle en suspend.

  

Source : Magasin alimentation Bioshanti.

Une des solutions intéressantes dans un magasin biologique d’une commune bruxelloise est le placement de lamelles en matière plastique quasi transparentes. Cette technique, selon le gérant du magasin n’a pas l’air de freiner l’achat de denrées. Pour être tout à fait objectif, il est hésitant à protéger l’ensemble de ces meubles par ce type de confinement.

Si on considère que ces lamelles arrivent au même degré de protection que les rideaux de nuit, on peut considérer que les réductions de consommations énergétiques peuvent atteindre aussi 30 à 40 %.

Exemple.

En analysant le graphique suivant issu d’une simulation (TRNSYS) de 50 mètres linéaires de meubles frigorifiques ouverts et verticaux maintenant aux frais des produits laitiers, on constate qu’en retirant les 7 000 [W] d’apport interne dû à l’éclairage, le simple fait de placer des rideaux de nuit, on réduit de l’ordre de 40 % la demande en puissance de l’évaporateur à la machine de froid.

Graphique simulation (TRNSYS).

Si l’on considère que les protections de jour peuvent être assimilées à celle de nuit au niveau de la performance, on peut effectivement réduire au maximum de 40 % (dans ce cas-ci) les consommations énergétiques de l’installation de froid alimentaire sachant que la nuit il n’y a pas d’ouvertures et fermetures incessantes des lamelles synthétiques.

Solutions globales

Confinement des produits frais dans une enceinte bien isolée

Photo enceinte bien isolée - 01.   Photo enceinte bien isolée - 02.

Meuble frigorifique ouvert et confinement et isolation légère (double vitrage).

Confinement et isolation importante (enceinte opaque).

Là où on arrive à l’optimum énergétique et thermique, c’est lorsque les produits frais sont confinés dans des espaces réfrigérés et isolés des zones de vente classique. En terme de confort, naturellement, ce n’est pas l’idéal bien que finalement ce n’est qu’une question d’organisation (prévoir une petite laine en été ne pose pas beaucoup de problème). Les pionniers dans ce domaine sont bien connus et adoptent ce principe depuis des années voire plus d’une décennie. on peut dire que ce concept est passé dans les mœurs aujourd’hui.

Confinement des produits frais dans une enceinte légèrement isolée et vitrée

Un autre concept a vu le jour il n’y a pas longtemps. Dans un premier temps, on pourrait dire que la solution est mauvaise. A bien y regarder, elle se situe juste entre :

  • les meubles frigorifiques ouverts qui absorbent un maximum de chaleur de l’ambiance de vente globale au point que même en période chaude dans certains commerces on soit obligé de chauffer;
  • et l’enceinte fermée et isolée du reste de l’ambiance globale de vente.

Ce concept serait-il le bon vieux compromis à la Belge ?

(+)

  • confinement des denrées dans une enceinte séparée du reste des surfaces de vente réduisant ainsi le risque de devoir chauffer ces surfaces par apport de froid trop important comme on l’observe pour l’instant avec la prolifération des meubles frigorifiques ouverts;
  • la « cage » de verre est une approche marketing intéressante. Bien qu’il y fasse froid, l’impression d’inconfort est moins présente que dans une ambiance totalement occulte;
  • si l’on pousse le concept plus loin, on pourrait envisager de placer l’éclairage en dehors de l’espace en verre et, par conséquent, de réduire les apports de chaleur produits par les luminaires.

(-)

  • l’isolation du vitrage est relativement faible. On pourrait espérer réaliser un coefficient de transmission thermique U des parois de l’ordre de 1,1 [W/m².K]. À noter qu’une isolation de 6 cm donne, elle, de l’ordre de 0,4 [W/m².K];
  • les ouvertures auraient pu être des lamelles verticales ou des portes automatiques, mais pas des rideaux d’air mettant en jeu des consommations électriques supplémentaires au niveau des ventilateurs.

Optimisation du rideau d’air

On ne le dira jamais assez, le rideau d’air est le point faible des meubles frigorifiques ouverts. A lui seul, par induction de l’air ambiant de la zone de vente, il représente de l’ordre des 2/3 de la puissance frigorifique nécessaire. De l’optimisation du rideau d’air dépend les consommations énergétiques des groupes frigorifiques.

Apports de chaleur par induction

Taux d’induction

L’apport de chaleur par induction dépend de beaucoup de facteurs. L’apport de chaleur par induction Pind est donné par la relation suivante :

 Pind  = ma x (hambiance – hinterne) x 1000 [W] (1)

où :

Pind  = Xrideau_air x mrideau_air x (hambiance – hinterne) x 1000 [W] (2)

Où :

  • Xrideau_air : taux d’induction du rideau d’air. Celui-ci représente l’efficacité du rideau d’air et est défini comme le rapport m/ mrideau_air où :

    • ma = débit massique d’air de l’ambiance externe entrainé et induit par le rideau d’air en [kg/s];
    • mrideau_air = débit massique du rideau d’air en [kg/s];
  • (hambiance – hinterne) : différence d’enthalpie entre l’ambiance externe et interne au meuble en [kJ/kg].

Si l’on veut optimiser les consommations dues à l’induction par le rideau d’air, il est nécessaire de réduire la masse ma de l’air de l’ambiance induite par le rideau d’air (1). La quantification de la masse ma est très difficile à préciser.

La formule (2) permet de mettre en évidence le taux d’induction Xrideau_air comme étant la quantité d’air ambiant entrainé dans le flux du rideau d’air.

L’exemple suivant permet de mettre en valeur l’utilité de déterminer le taux d’induction

Exemple.

En prenant un rideau d’air d’un meuble frigorifique vertical ouvert, la littérature nous apprend que le taux d’induction peut être exprimé par la relation suivante :

Xrideau_air = h2 – h1 / ((ha – h2) – (h2 – h1))

Où :

  • h1 : enthalpie à la buse de soufflage [kJ/kg];
  • h2 : enthalpie à la bouche de reprise[kJ/kg];
  • ha : enthalpie de l’ambiance de la zone de vente [kJ/kg].

Hypothèse

  • ha = 55 [kJ/kg];
  • h1 est +ou- constant et faible.

Calculs

L’équation ci-dessus peut être exprimée plus simplement par :

Xrideau_air = h2  / (ha – 2h2)

Pour différentes valeurs de h2 variant de 5 à 20 [kJ/kg], le taux d’induction varie et est représenté sur le graphique suivant :

D’après les équations (1) et (2), l’induction d’air extérieur :

ma = Xrideau_air x  mrideau_air

ou

ma = h2  / (ha – 2h2) x  mrideau_air

Conclusions

Pour que les apports dus à l’induction soient faibles, il faut que :

  • le débit du rideau d’air mrideau_air soit faible;
  • le transfert de chaleur de l’ambiance vers la bouche de reprise soit faible. On y arrive en réduisant au maximum la turbulence du rideau d’air.

En analysant cet exemple, on serait tenté d’en conclure que la présence du rideau d’air ne sert à rien. En fait, le rideau d’air étant nécessaire pour maintenir le froid dans le meuble, un débit minimum est nécessaire. De plus, le rideau d’air sert aussi à refroidir le meuble. L’air par son passage sur l’évaporateur est refroidi. Or, plus le débit d’air sur l’évaporateur est important plus l’échange thermique est grand. Il y a donc un optimum à trouver !

Des études extrêmement sophistiquées réalisées par les fabricants permettent d’établir un optimum afin de tenir compte à la fois :

  • de la nécessite de maintenir les denrées froides et de confiner le froid dans le meuble;
  • de l’optimisation de l’induction afin de limiter les apports externes venant de la zone de vente.

Suivant l’application et la géométrie du meuble, il existe toujours un débit d’air et une vitesse d’air optimaux au niveau du rideau.

Déformation du rideau d’air

L’effet « bilame » est connu pour affecter et déformer les rideaux d’air verticaux ou faiblement inclinés. Les différences de températures de part et d’autre du rideau d’air provoquent une différence de densité de l’air au niveau des faces intérieures et extérieures. Pour autant que la vitesse du rideau d’air devienne insuffisante, la différence de densité de l’air sur la profondeur du rideau génère des forces transversales de déformation du rideau. On observe que le rideau se déforme vers l’intérieur du meuble allant jusqu’à le briser.

Schéma "bilame" sur rideau d'air.

Briser le rideau d’air équivaut à augmenter les apports externes et, par conséquent dégrader le bilan thermique et énergétique. Cet effet peut être réduit par :

  • l’utilisation de meuble de type « cascade »;
  • le positionnement correct des étagères en fonction du profil du rideau d’air;
  • l’optimisation du chargement des denrées (pas de trou et pas de meuble vide);
  • une vitesse d’air suffisante qui va naturellement affecter le bilan thermique et énergétique du meuble (donc attention à trouver l’optimum;
  • l’utilisation d’un double rideau d’air.

    

Soufflage arrière de type « cascade » et double rideau d’air.

Les vitesses d’air recommandées pour les rideaux d’air

Comme on l’a vu ci-dessus, les échanges de chaleur entre l’ambiance des zones de vente et les denrées doivent être réduites au maximum. L’augmentation de la vitesse du rideau d’air devrait les limiter mais un débit trop important entraine une recrudescence des apports par induction, une augmentation des consommations des ventilateurs et, par conséquent, des apports internes des moteurs des ventilateurs. On conseille en pratique de limiter les vitesses des rideaux d’air :

  • pour les meubles horizontaux, à 0,5 m/s;
  • pour les meubles verticaux, entre 0,6 et 0,7 m/s.

Diminuer les apports par rayonnement

Apports de chaleur par rayonnement

Les apports de chaleur par rayonnement peuvent être importants notamment lorsque l’application est négative. Dans ce cas, ils peuvent représenter de l’ordre de 40 % du total des apports internes et externes. Ils sont essentiellement produits par le rayonnement dans l’infrarouge lointain des surfaces « chaudes » faisant face à l’ouverture des meubles dont la température des faces internes et des emballages des denrées est froide (application positive : température de 0° à 8°C) voire très froide (application négative : température de -18 ° à -35°C).

On évalue l’apport de chaleur par rayonnement Pray par la relation suivante :

Pray = hro x Aouverture (Tparoi – T i) x φ1 x φ2 [W]

où :

  • A ouverture : surface d’ouverture du meuble en [m²];
  • (tparoi – ti) : l’écart de température entre l’intérieur du meuble et la température des parois vues par l’ouverture du meuble en [K];
  • hro : coefficient équivalent d’échange par rayonnement hro de deux corps noir parallèles en [W/m².K];
  • φ1 : facteur de correction d’émission mutuelle entre deux corps gris (thermiquement) de surface parallèle;
  • φ2 : facteur d’angle associé à φ1 lorsque les surfaces ne sont pas parallèles.

Dans une situation existante, des améliorations sont possibles en jouant sur le choix des parois faisant face à l’ouverture des meubles. En effet, chaque matériau possédant un coefficient d’émissivité, le placement entre les parois et l’ouverture du meuble d’une paroi à basse émissivité, permet de réduire de manière substantielle les apports par rayonnement.

Par exemple, les matériaux polis, notamment les métaux, ont vis-à-vis du rayonnement infrarouge (IR) des coefficients d’émissivité assez faibles; ce qui veut dire qu’ils ne réémettent pas ou peu le rayonnement visible et infrarouge proche et qu’ils réfléchissent le rayonnement infrarouge lointain (matériaux de construction dans notre cas).

L’émissivité des tôles d’aluminium ou d’alliages à base d’aluminium est de l’ordre de 0,1 à 0,15 pour les longueurs d’onde allant du visible à l’infrarouge.

Spectre visible et Infrarouge proche.

Dans l’infrarouge lointain, le même type d’aluminium passe d’une émissivité 0,1 à 0,8 et a tendance à se comporter comme un corps noir et par conséquent à réémettre le rayonnement.

Les meubles horizontaux

Réduction des apports

Les meubles horizontaux, de par leur position par rapport aux parois du magasin, sont des cibles privilégiées pour réduire les apports par rayonnement. En effet, en grande partie, ce sont les plafonds qui interagissent avec ce type de meubles.

L’emploi d’un « baldaquin » de forme concave au-dessus des gondoles à froid négatif et dont la face inférieure est recouverte d’un aluminium de type poli miroir non anodisé, peut, dans certains cas et selon le type de meuble, réduire la température des denrées positionnées en surface de l’ordre de 3 à 5 °C.

Gondole avec baldaquin.

Différentes configurations de gondole.

Et le confort ?

Pour les meubles frigorifiques horizontaux, de par la position des clients par rapport à l’ouverture, le fait ou non de placer des baldaquins ne modifie pas tellement le confort.

Les meubles verticaux

Les ouvertures des meubles verticaux quant à elles subissent les agressions par rayonnement venant des plafonds, des murs ou des rayons leur faisant face et dont les températures sont plus chaudes.

Réduction des apports

Un moyen simple de réduire les apports par rayonnement est de positionner (s’il y en a beaucoup) les meubles frigorifiques en face à face. Cette solution simple permet d’éliminer partiellement l’effet d’émissivité mutuelle vu que les températures des parois internes des meubles sont plus ou moins égales.

Allée froide en convection naturelle.

Tunnel froid.

Allée froide en convection forcée.

Et le confort ?

Ce type de composition des meubles est souvent appelé « allée froide » pour la simple raison qu’elles sont inconfortables ». En effet l’introduction d’un corps à 36 °C entre deux parois dont la température de surface est de l’ordre de 0°C implique que le corps chaud échange par rayonnement sa chaleur et, par conséquent, l’impression de froid est grande.

Performances des réflecteurs

Des essais ont été réalisés afin de déterminer la pertinence de ce type d’action. La comparaison est réalisée en prenant un meuble frigorifique horizontal possédant les caractéristiques suivantes :

  • convection forcée;
  • chargée d’une seule couche de paquets d’essais en emballage carton de couleur blanche.

Essai en laboratoire

Dans un local obscur, maintenu dans des conditions d’ambiance à 25°C pour un taux d’humidité de 60 %, et équipé d’un plafond type « corps noir », on effectue un monitoring des températures de chaque paquet test. En régime stable, la moyenne des températures atteint – 15°C.

Dans les mêmes conditions d’ambiance, on place une paroi en aluminium poli entre le meuble et le plafond. La moyenne de la distribution des températures des paquets tests donne – 19°C.

On observe donc un abaissement des températures de l’ordre de 4°C. Les apports par rayonnement sont donc réduits et, par conséquent, les consommations énergétiques à l’évaporateur.

Pour être certain que ce ne soit pas un phénomène de réduction d’apports convectifs, toute chose restant égale, la tôle d’aluminium est peinte en blanc. On constate que les températures remontent aux alentours des – 15°C; la réduction d’apport est donc uniquement radiative.

Essai en magasin

La mise en place d’un baldaquin au dessus du même meuble donne un abaissement des températures de l’ordre de 3 à 5°C.

La variation des températures résulte de la manipulation et des déplacements fréquents des denrées par les clients ainsi que des opérations de dégivrages.


Placer ou optimiser les protections de nuit

Les rideaux de nuit, comme le montre le tableau ci-dessous donnent des résultats très intéressants au niveau de la réduction des apports externes par induction au travers du rideau d’air.

Il ne faut quand même pas oublier que pendant minimum 12 heures par jour (après la fermeture du magasin), cette protection, si elle existe, réduit de manière importante les apports par induction et aussi par rayonnement au meuble.

Type de meuble Type d’application Période de jour période de nuit Réduction des consommations énergétiques
Horizontal négative rideau d’air rideau de nuit 8 à 15 %
couvercle simple 15 à 30 %
couvercle isolé 25 à 45 %
Vertical positif rideau d’air rideau de nuit 12 à 30 %
porte vitrée
négatif porte vitrée porte vitrée 25 à 30 %

Meubles verticaux

Dans le cas où les protections de nuit n’existent pas, leur placement s’impose. Attention toutefois qu’il faut se renseigner de la faisabilité du placement auprès du constructeur. En effet, la configuration du meuble ne le permet pas toujours, car il faut que le rideau de nuit se trouve à l’extérieur par rapport au rideau d’air.

Photo rideaux de nuit.

L’optimisation des rideaux de nuit manuels peut passer par l’automatisation des ouvertures et fermetures. Pour autant que cela soit possible (au cas par cas), l’automatisation permet au personnel de ne plus se soucier de la gestion. Un oubli une nuit implique que les apports par induction et rayonnement continuent à influencer le meuble au niveau de ces consommations, même si les apports nocturnes diminuent (ralenti de nuit, apports réduits par l’absence d’occupant, d’éclairage de vente, …).

Attention aussi que l’automatisation rend le personnel moins responsable. En effet dans certains commerces, vu que le personnel ne voit plus la descente des rideaux de nuit, on se rend compte au matin (ou pas du tout) que certains rideaux ne sont pas descendus à fond par la présence de porte-prix dans l’axe du rideau par exemple.

Meubles Horizontaux

Avec les meubles horizontaux, les possibilités de fermeture des ouvertures en période nocturne sont diverses. On épinglera les fermetures coulissantes qui peuvent être utiles de jour comme de nuit.

Photo fermetures coulissantes sur meuble horizontaux.


Optimiser ou supprimer l’éclairage des tablettes

Problème ?

On sait que les consommations énergétiques dues à l’éclairage sont payées deux fois et même plus :

  • une première fois à travers les consommations électriques nécessaires pour mettre en valeur visuellement les denrées;
  • une seconde fois parce que les lampes réchauffent l’ambiance interne du meuble se traduisant par une consommation électrique supplémentaire au niveau des groupes de froid;
  • un peu plus même pour la simple raison que l’efficacité du tube en ambiance froide est réduite au moins de 40 %. Pour les accrocs de l’éclairage, ils seraient, au vu de l’effet médiocre de l’éclairage des étagères, de renforcer la puissance installée pour compenser le manque d’efficacité des lampes.

   Photo éclairage meubles horizontaux - 01.   Photo éclairage meubles verticaux - 01.   Photo éclairage étal.

Emplacement de l’éclairage

L’emplacement de l’éclairage est sûrement la clef du problème. Un test a été réalisé dans une grande surface. L’idée était de couper l’éclairage des tablettes et de ne plus se servir, comme source lumineuse, que des tubes fluorescents en dehors de la partie réfrigérée du meuble. Cette initiative a pour avantage de :

  • réduire la puissance installée des luminaires;
  • réduire les apports internes défavorables au bilan thermique et frigorifique du meuble;
  • augmenter l’efficacité des lampes puisqu’elles travaillent à température plus élevée.

Ceci est d’autant plus remarquable, que le magasin n’a pas enregistré de baisse du chiffre d’affaires pendant le test.

Gestion de l’éclairage

Simplement, une horloge peut assurer la coupure des luminaires pendant les heures de fermeture du magasin. On pourrait aussi arriver à un degré de sophistication en utilisant un superviseur (GTC ou Gestion Technique Centralisée) donnant des alarmes lorsque l’éclairage n’est pas éteint.

Photo écran de Gestion Technique Centralisée.


Adapter la vitesse des ventilateurs

On serait tenté de le faire ! En fonction de l’évolution des apports, réduire ou pas la vitesse des ventilateurs est tentant. Il faut rester prudent sachant que le rideau d’air doit sa stabilité au débit donné par les ventilateurs. Les moyens pour contrôler cette stabilité à notre connaissance n’existent pas et donc il n’y a pas moyen de réguler le débit par rapport à l’efficacité du rideau d’air.

Améliorer la maintenance de l’installation frigorifique

Mise au point de la production de froid : GB Aywaille.

Machine frigorifique

Température à la Basse Pression : T°(BP)

La mesure directe de la température d’évaporation est très difficile. On réalise plutôt la lecture de la basse pression BP au manomètre, que l’on traduit la température d’évaporation en fonction du type de fluide utilisé.

Pour connaître la température d’évaporation à partir de la mesure de la basse pression, voici une table de correspondance entre la température et la pression relative mesurée à l’aspiration de la machine frigorifique pour quelques fluides frigorigènes :

Température Pression relative [bar]

[°C]

R22 R134A R404A

R407c

– 30 0,64 0.08 1,07 1,36
– 20 1,43 0,31 2,05 1,79
– 18 1,62 0,43 2,30 2,02
– 16 1,83 0,56 2,56 2,25
– 14 2,05 0,69 2,82 2,50
– 12 2,28 0,84 3,09 2,77
– 10 2,52 0,99 3,39 3,05
– 8 2,78 1,15 3,69 3,34
– 6 3,05 1,33 4,01 3,65
– 4 3,33 1,51 4,36 3,98
– 2 3,63 1,71 4,63 4,32
0 3,95 1,91 5,09 4,68
2 4,28 2,13 5,59 5,06
4 4,63 2,36 5,89 5,46

Détente directe

En détente directe, pour un évaporateur à air, si l’écart entre T°évaporation et la T°air sortie évaporateur > 6 à 10 K, il y a encrassement ou prise en glace permanente et donc chute de rendement. Il est donc nécessaire de procéder à un nettoyage ou un dégivrage.
Si l’écart subsiste après l’opération de maintenance, il faut envisager l’extension de la surface de l’évaporateur.

Détente indirecte par boucle frigoporteur

En détente indirecte, pour un évaporateur à eau glycolée par exemple, si l’écart entre T°évaporation et la T°eau sortie évaporateur > 4 à 6 K, il y a encrassement et donc chute de rendement. Si l’écart subsiste après le nettoyage (en général, un détartrage à l’acide), il faut envisager l’extension de la surface de l’évaporateur.

Quelques réflexions …

La mesure / lecture de la température  peut être effectuée sur le circuit secondaire par thermomètre digital au niveau de doigts de gant par exemple.

On rappelle ici que l’augmentation, si possible, du point de consigne de la température du fluide caloporteur augmente le rendement.

Mesure prise à l’emplacement du thermomètre à aiguille
dont la précision est parfois sujette à caution…

La mesure des températures de départ et de retour de l’eau glycolée est une indication intéressante. En effet, si, à puissance maximale, l’écart est inférieur à 5 K, le débit d’eau peut être réduit (économie électrique + diminution du risque d’érosion).

Intensité absorbée par le compresseur

A puissance nominale, mesurées sur chaque phase, les valeurs du courant à la pince ampèremétrique doivent être peu différentes et proches ou inférieures à celles de la plaque signalétique. On peut forcer le régime de la machine frigorifique pendant cette mesure (en abaissant la demande à l’évaporateur, par exemple).

Quelques réflexions …

L’idéal dans ce domaine est toujours de comparer d’une année à l’autre… Donc il faut noter les valeurs mesurées.

Il vaut en général mieux de ne pas faire confiance aux ampèremètres présents sur la machine.

Pour des compresseurs à plusieurs étages, si l’on passe d’un premier à un second étage et que le courant ne bouge pas, c’est qu’il y a des clapets cassés.

Pression et température de condensation à la Haute Pression : T°(HP)

Action …

La mesure directe de la température de condensation, comme celle d’évaporation, est très difficile. On réalise plutôt la lecture de la haute pression HP au manomètre, que l’on traduit en température de condensation en fonction du type de fluide utilisé. À l’heure actuelle, la double indication (pression-température) est souvent inscrite sur le manomètre pour différents fluides frigorigènes souvent employés.

Température Pression relative [bar]

[°C]

R22 R134A R404A

R407c

16 7,10 4,01 8,80 8,27
18 7,58 4,34 9,3 8,81
20 8,08 4,68 10 9,38
25 9,42 5,61 11,6 10,91
30 10,91 6,66 13,3 12,60
35 12,55 7,82 15,2 14,46
40 14,35 9,11 17,3 16,50
45 16,33 10,53 19,6 18,75
50 18,49 12,10 22 21,20
55 20,84 13,83 24,8 23,87
60 23,40 15,73 26,78
65 26,17 17,80 29,94

Quelques réflexions …

La valeur de la pression varie suivant le système, sauf compresseur à vis : HP-BP = 10 bar.

La variation de la Haute Pression (le plus bas possible, suivant la technologie de fabrication) réduit la consommation électrique.

Ecart de température entre le condenseur et le fluide refroidissant : T°(HP)

Action …

Mesurer l’écart entre la température de condensation et la température du fluide refroidissant. Pour un condenseur air, l’écart entre la température de condensation et la température de l’air à l’entrée doit être de l’ordre de 12 à 15 K à pleine charge. A charge partielle, le delta T° doit diminuer proportionnellement.

Quelques réflexions …

Si ces écarts sont dépassés malgré un détartrage régulier, c’est que le condenseur est trop petit. Or toute augmentation de 1° de cet écart entraîne 3% de consommation en plus.

Pour connaître la température de condensation, lire la haute pression, et se référer tableau de correspondance température/pression du fluide frigorigène (Exemple pour le R22, R134a et R407, …).

Sous-refroidissement

Action …

Mesurer la température de ligne liquide (T°liq), à l’entrée du détendeur, au moyen d’un thermomètre de contact, puis la comparer à la température de condensation T°(HP), en déduite de la valeur de la Haute Pression.

Quelques réflexions …

Sauf pour les détendeurs à capillaire, le sous-refroidissement (qui est la différence T°(HP) – T°(liq)) doit se situer entre 5 et 7 K.

Une augmentation du sous-refroidissement augmente la puissance frigorifique de la machine frigorifique et son efficacité énergétique. Le travail du compresseur reste en effet constant alors que la plage d’évaporation s’accroît. Concrètement, pour une situation type donnée, on a observé 0,8% d’accroissement du COP par degré d’augmentation du sous-refroidissement pour du R-22 et 1%/K pour du R-134a (source : Le froid efficace dans l’industrie – Ademe- France). Si une faible valeur est rencontrée, c’est l’indication :

  • soit d’un manque de fluide frigorigène (fuite ?),
  • soit d’un encrassement du condenseur (mauvaise condensation, donc peu de liquide ?).

S’il s’agit d’un détendeur à capillaire (petites installations du type climatiseur), le sous-refroidissement doit être plus faible car à l’arrêt, il y aura égalisation des pressions Haute et Basse; donc du liquide pénétrera dans l’évaporateur; donc risque de coup de liquide au démarrage si la quantité est trop importante.

Surchauffe

Action …

Mesurer température d’aspiration (T°asp) au moyen d’un thermomètre de contact.

Quelques réflexions …

Pour les détendeurs thermostatiques, la différence entre la T°évaporation(BP) et T°aspiration à l’entrée du compresseur = 6 K à 8 K.

Pour les détendeurs électroniques, la différence entre la T° BP et T° asp = 3 K.

Une réduction de la surchauffe permet une augmentation de la puissance frigorifique, mais :

  • une surchauffe trop faible peut provoquer des coups de liquide au compresseur,
  • une surchauffe trop forte entraîne une usure prématurée des compresseurs par élévation de leur température de refoulement.

Température de refoulement

Action …

Mesurer la température à la sortie du compresseur.

Quelques réflexions …

La température dépend du fluide (pour un condenseur à air : 60 … 70°C). Il est bon d’avoir les données du fabricant.

Si la température de refoulement en sortie de compresseur est élevée, c’est peut être qu’il y a présence d’incondensables (air, eau). Il y a alors risque de dégrader rapidement l’huile…

Test : si la machine est à l’arrêt, le condenseur se met entièrement à la température extérieure (condenseur à air). En mesurant à ce moment la pression, elle doit correspondre à la valeur théorique correspondant à la température du fluide. Si elle est plus élevée, c’est le signe qu’il y a des incondensables dans le circuit (par exemple, un nettoyage à l’azote qui n’aurait pas été bien tiré au vide).

Autres tests

Aspect extérieur des compresseurs et organes associés

Traces de condensation (isolation défectueuse ou pas d’isolation).

A protéger si risque de corrosion avec fuites (eau ou frigorigène) – Éviter les risques de rejet de rouille à l’égout public, etc.

Corps d’évaporateur

Dégradation éventuelle de l’isolation (passage de vapeur d’eau) + absence de corrosion de la surface.

Risque de perforation à long terme avec perte de fluide frigorigène.

Clapets cassés ?

Il s’agit de 2 tests comparatifs à réaliser d’année en année :

  • La mesure du temps de « pump down ». C’est le temps en seconde entre l’arrêt de la vanne magnétique avant le détendeur et l’arrêt du compresseur sur la Basse Pression. Si ce temps s’allonge, c’est l’indication qu’il y a des fuites aux clapets.

 

  • La mesure du temps pour que les pressions s’équilibrent à l’arrêt de la machine. Si les clapets sont cassés, la Haute Pression descend très vite.

Type de frigorigène

Vérification du type de fluide utilisé : CFC , HCFC, HFC, autre …? R 11, 12, R 502 (CFC) interdits / R 22 (HCFC) interdit en 2015 ou avant.

Circuit du frigorigène

Absence de fuites (pas de traces d’huile au sol, corrosion de brasures, etc). Défaut d’étanchéité soupape, perte de fluide à l’atmosphère, dégradation remplacer la soupape si risque de rupture de la couche d’ozone si CFC, HFCF + frais de remplissage.

Bombe aérosol et détecteur électronique.

pH du fluide frigorigène

Couleur de l’indicateur d’humidité sur ligne liquide / test d’acidité sur échantillon d’huile. Si pH acide, vérifier l’étanchéité du circuit, réparer les fuites, changer l’huile, remplacer la cartouche du déshydrateur (ou en installer une) et tirer au vide (de préférence avec de l’azote « R »).

Résistance de carter

Durant l’arrêt des compresseurs à pistons, la température de carter doit être env. 40 °C. En fonctionnement, le carter ne doit pas être froid, il ne doit pas condenser et encore moins givrer. On admet qu’il doit avoir à peu près la température ambiante du local. S’il est trop froid, un réglage s’impose par le frigoriste. Si le carter n’est pas chauffé, risque de grippage au démarrage du compresseur, avec destruction du bobinage du moteur.

Compteurs d’heures (h) compresseurs ou groupe frigo

Existence du compteur (sinon à placer), vérification du fonctionnement + relevés. Période ± 3 000 h/an , valeur courante de 1 250 h à 1 800 h en non modulant.

Compteurs de démarrage (d) compresseurs

Existence du compteur (sinon à placer), vérification du fonctionnement + relevés. Si le total est supérieur à 6 000/mois, vérifier la régulation.

Dimensionnement du groupe frigorifique

Calculer le cycle moyen (h/d) c-à-d quotient des deux valeurs ci-avant. Cela ne fonctionne pas sur les appareils modulants (compresseur à vis, par exemple). Si la valeur est inférieure à 10 minutes, la puissance est à réduire dans la mesure du possible ou la régulation de mise en cascade est mal réglée (voir technologie appliquée).

Niveaux

Ils sont surveillés plus que mesurés. Ce sont :

  • le niveau de frigorigène dans la bouteille accumulatrice de liquide, dans les séparateurs basse ou moyenne pression,
  • le niveau d’huile dans le système d’alimentation en huile de compresseurs en parallèle,
  • le niveau d’eau dans le bac de rétention d’eau de la tour de refroidissement ou du condenseur « évaporatif ».

On contrôlera également :

La qualité de passage du fluide frigorigène dans le voyant liquide : il ne doit pas y avoir de bulles. S’il y a des bulles, cela traduit, dans la plupart des installations, un manque de fluide et donc probablement une fuite.

La présence d’humidité dans le circuit frigorifique modifie la couleur dans le voyant (dry = sec, wet = humide).

La présence d’humidité peut gravement endommager le groupe froid, notamment par la corrosion des vernis sur les enroulements.

Une fuite de fluide provoque un fonctionnement prolongé du compresseur (mais à puissance moindre) et des ventilateurs du condenseur. Le rendement est donc dégradé. Dans les 2 cas, un dépannage rapide par le frigoriste est nécessaire.

Quels paramètres enregistrer ?

Lorsqu’une régulation numérique est mise en place, la question des points de mesure à relever pour la maintenance se pose. Reprenons ici les recommandations citées dans l’ouvrage Le froid efficace dans l’industrie publié par l’Ademe. Elle est donnée à titre de check-list car encore faut-il disposer du temps pour analyser les résultats…!

Pressions

  • pressions du frigorigène : d’évaporation, de condensation, intermédiaire (dans le cas d’un cycle biétagé),
  • pressions différentielles d’huile des compresseurs,
  • pressions de refoulement des diverses pompes : de frigorigène (circuit noyé), de frigoporteur, d’eau, etc.

Températures

  • Du frigorigène : à l’entrée des compresseurs, à la sortie de ceux-ci, à la sortie de la bouteille accumulatrice de liquide, à l’entrée des régleurs, à la sortie des évaporateurs, etc.
  • Des milieux refroidis :
    • températures des chambres froides des cuisines collectives,
    • températures de bacs à liquides refroidis,
    • températures d’entrée et de sortie de l’évaporateur de la boucle d’eau glacée
  • Des milieux de refroidissement : températures d’entrée et de sortie d’eau du condenseur, température de l’air entrant dans un condenseur à air, etc.
  • Du carter du compresseur

Débits

La mesure du débit du fluide frigorigène est peu courante, et c’est souvent dommage, les quelques mesures pratiquées le sont sur l’eau. Le coût relativement faible des capteurs est certainement une explication.

États logiques

  • état de marche ou d’arrêt d’un compresseur,
  • état d’ouverture ou de fermeture d’un robinet électromagnétique ou d’une vanne motorisée,
  • fonctionnement ou non du dégivrage de tel évaporateur, etc.

États analogiques (ou numériques)

  • position, exprimée en fraction de charge, du tiroir de réglage d’un compresseur à vis,
  • degré d’ouverture d’un robinet motorisé, d’un détendeur,
  • nombre de cylindres en fonction dans un compresseur, etc.

Puissances ou consommations électriques

  • de machines sur lesquelles on fait porter l’attention, par exemple pour en optimaliser le fonctionnement : compresseurs, pompes, ventilateurs, etc.

Temps

  • temps de marche d’une machine en vue de l’homogénéisation du temps de fonctionnement de machines en parallèle, etc.

Exemples d’utilisation de ces mesures

  1. La connaissance des pressions et des températures d’entrée et de sortie d’un compresseur sont des indicateurs de son bon fonctionnement. Les valeurs nominales devraient toujours se trouver à proximité de l’équipement, car si la température de refoulement est plus élevée, il y a un risque que les clapets ne soient plus étanches, ce qui nécessite une intervention.
  2. À partir des températures et du débit d’eau traversant le condenseur à eau, on peut déduire la quantité d’énergie échangée. En y ajoutant la température de condensation du fluide frigorigène, on peut connaître le coefficient d’échange thermique du condenseur et le comparer à sa valeur initiale. Si elle décroît fortement, ce sera l’indication d’un entartrage ou de présence de boues à éliminer par un nettoyage de l’échangeur.

Aéro-refroidisseurs ou condenseurs à air

 

Nettoyage des batteries

Dans les condenseurs refroidis à l’air, le principal problème est le nettoyage des batteries, car le genre de construction de ces appareils ne prévoit presque jamais de filtres anti-poussières.

Il est donc nécessaire de dépoussiérer et enlever régulièrement les feuilles mortes et autres déchets, faute de quoi, le débit d’air diminuant, les qualités d’échange diminuent aussi, ce qui entraîne une diminution de la puissance frigorifique et une augmentation de la puissance électrique absorbée. Le serpentin peut être nettoyé à l’aide d’un compresseur à air ou à eau à basse pression (travail à réaliser de préférence par un frigoriste car les ailettes sont peu résistantes mécaniquement).

Une augmentation de 5 K de la température de condensation (suite à l’encrassement) entraîne une augmentation de consommation électrique de 10 à 15 %.

Corrosion

L’habillage de l’équipement contre la corrosion est à protéger pour retarder la mise au rebut et ainsi limiter la production de déchets.

Régulation

Vérifier la bonne régulation de la pression de condensation (enclenchement de la cascade de ventilateurs, pour contribuer à abaisser le plus possible la pression de condensation).


Déclenchements du compresseur par forte température extérieure

Si le compresseur déclenche de temps en temps par période de forte chaleur, c’est suite au pressostat HP (Haute Pression) : la condensation se fait à un trop haut niveau de pression.

Le frigoriste risque malheureusement de diagnostiquer une insuffisance de puissance de l’installation (ce qui est exact) et de proposer un remplacement par un compresseur plus puissant. Mais la nouvelle installation sera alors surpuissante toute l’année…

Si le fabricant l’autorise, il vaut mieux augmenter le seuil de pression de déclenchement du compresseur. La machine frigorifique pourra alors continuer à fonctionner, tout en donnant temporairement une puissance frigorifique plus faible que sa valeur nominale dans des conditions extrêmes de température. Attention toutefois qu’en froid alimentaire il est primordial de respecter les températures de conservation; ce qui signifie que le déclenchement HP ne doit pas se manifester pour des températures classiques en période chaude sous nos latitudes.

On étudiera également si ce n’est pas le condenseur qui est sous-dimensionné par rapport au compresseur : une augmentation de surface de condensation améliorera le rendement toute l’année. Cette situation n’est tolérable que peut de temps sachant qu’une puissance froid insuffisante pendant un laps de temps prolongé entraine la perte des denrées.

Lors d’une panne d’une cascade de compresseurs, on pourra soit redémarrer l’installation avec un seul compresseur (bénéficiant de l’ensemble de la surface du condenseur, il verra la température de condensation fortement diminuer), soit arroser le condenseur…!


Nuisances acoustiques

Si la nuisance sonore est surtout importante aux basses fréquences, il est possible que les machines tournantes (ventilateur du condenseur, moteur du compresseur,…) soient mal équilibrées.

Ce défaut s’accentue avec l’usure des équipements.

Deux solutions pour améliorer la situation :

Ambiances froides

Améliorer le confort thermique des ambiances froides

Ambiances froides

Fermer les ouvertures des meubles ouverts

Cela paraît tellement évident !

Le seul « hic » c’est que pratiquement une grosse majorité des commerçants et fabricants ont une démarche inverse, à savoir plus les ouvertures sont grandes, plus les produits sont accessibles aux consommateurs (question de marketing de vente dit-on !). Le confort naturellement s’en ressent vu que les échanges thermiques s’effectuent dans les deux sens :

  • par induction et convection, le rideau d’air échangé « rejette » une partie du froid créé à l’intérieur du meuble. Ce qui signifie que la température de l’air à proximité des meubles ouverts descend jusqu’à des valeurs de l’ordre de 16°C à 1,5 m du sol et bien moins à hauteur du sol si le rideau d’air est perturbé et se déforme au point que la bouche de reprise ne puisse assurer son rôle de récupération du flux du rideau d’air;

 

  • par rayonnement des parois froides intérieures au meuble et le corps humain.

Les meubles verticaux ouverts

Ce sont principalement ces meubles qui sont responsables de tous les problèmes que rencontrent les commerces alimentaires. Problèmes :

  • d’apports thermiques externes (l’ambiance du magasin interagit avec le meuble principalement par son ouverture. Le bilan énergétique pour maintenir les températures adéquates des denrées devient catastrophique tant au niveau environnemental que financier;

 

  • de confort vu l’importance des surfaces d’échange mises en jeu tant au niveau de l’induction que du rayonnement.

La surface d’exposition du meuble représente bien la surface d’échange :

  • du rideau d’air par induction;

 

  • vue par les clients au niveau du rayonnement.

Chauffer les allées froides

Après ce qui vient d’être dit plus haut, difficile à croire que la seule issue possible à l’inconfort des « allées froides » est leur chauffage.

Pourtant, on observe dans les commerces de grandes surfaces que les techniciens tentent de trouver des solutions pour réduire l’inconfort en chauffant l’air ambiant surtout en période chaude, ce qui est un paradoxe !

Si vous êtes convaincu que vous allez  perdre votre clientèle en fermant les ouvertures des meubles ouverts, alors tenter de placer un chauffage qui puisse vous garantir un confort relatif tout en limitant les dégâts énergétiques.

L’idée de beaucoup de spécialistes qui « planchent » sur le sujet est de tenter de récupérer la chaleur rejetée par les condenseurs des machines frigorifiques plutôt que de la répandre à l’extérieur.

Concevoir

Pour en savoir plus sur la récupération de chaleur.

Dans les démarches, on retrouve principalement la mise en place de chauffage :

  • de l’air de haut en bas vers les allées froides par des aérothermes ou par des bouches de pulsion de centrale de traitement d’air. Sans entrer dans les détails, ce type de chauffage apporte un confort relatif tout en augmentant :
    • les apports externes par le mélange de l’air chaud avec le rideau d’air des meubles;
    • les consommations des ventilateurs soufflant l’air vers le bas, surtout dans les espaces de vente de grande hauteur;
    • les consommations des machines frigorifiques puisque, dans le cas où on récupère la chaleur fournie par le condenseur, la température de condensation doit être de l’ordre de 50-70°C; ce qui dégrade la performance (COPfroid) du compresseur;

  • de l’air de bas en haut, ou du pied des meubles vers les allées froides comme le montre le schéma ci-dessous. Ce type de chauffage « devrait donner » intuitivement un meilleur résultat énergétique sachant que naturellement l’air chaud monte. Il est juste nécessaire de le mettre en mouvement sans trop de consommation du ventilateur et que la température peut être plus faible et donc contribuer à réduire les températures de condensation en cas de récupération de la chaleur du condenseur;

  • du sol par la récupération de la chaleur des condenseurs des machines frigorifiques. Ce système « pourrait avoir » des avantages :
    • en terme de confort, le chauffage au sol devrait apporter un plus par radiation;
    • en terme énergétique, puisque la température de condensation serait de l’ordre de 30 à 45°C et donc favorable au maintien de consommation électrique acceptable au niveau du compresseur.

Attention que l’on a très peu de recul par rapport au confort et à l’énergie mise en jeu au niveau de ces systèmes. Une valeur de puissance spécifique de plancher chauffant que l’on rencontre régulièrement est de l’ordre de 100 [W/m²]; ce qui reste relativement faible par rapport à d’autres systèmes de chauffage.

Si vous avez expérimenté ce genre de système, Énergie+ vous serait mille fois reconnaissant de nous faire part de votre expérience.


Cas particulier des ateliers

Dans les ateliers de boucherie, traiteur, …, les durées de travail peuvent être importantes. Il est dès lors nécessaire de pallier au manque de confort qui règne dans ces zones (des températures de maximum 12°C sont exigées pour garantir le maintien de la chaine de froid) par l’adaptation :

  • de l’habillement du personnel;
  • des vitesses d’air des systèmes de climatisation basse température.

Adaptation de l’habillement du personnel et des temps de pose

La récupération d’un certain confort de travail dans ce type d’ambiance passe naturellement par la mise à disposition de vêtements de travail adéquats afin d’éviter les premiers symptômes de refroidissement du corps.

L’indice d’isolation vestimentaire IREQ (Required Clothing Insulation Index) permet de choisir des vêtements adaptés au froid en assurant au corps un bon équilibre thermique. Il est admis que cet indice doit être satisfait lorsque la température est inférieure à 10°C. Un IREQ couramment rencontré est 2,6.

Aussi, l’évaluation de la « température cutanée du dos de la main » permet d’établir un seuil en dessous duquel la dextérité des mains se réduit; c’est le cas en dessous de 24°C. Dès cet instant, il est nécessaire d’adapter son temps de travail exposé et de choisir un type de gant adapté à la tâche.

Évaluer

Pour en savoir plus sur la récupération de chaleur.

Adaptation de la vitesse d’air des systèmes de climatisation à basse température

On admet couramment que la vitesse de déplacement de l’air ne puisse dépasser 0,2 m/s pour ne pas rendre le travail en milieu froid plus pénible encore.
L’utilisation des gaines textiles ou « manchons textiles » est un moyen intéressant d’allier basse température d’air avec vitesse d’air faible.

Manchon textile (source Prodeus).

(+)

  • L’homogénéité de la diffusion sur tout le réseau de gaines textiles apporte un confort thermique indéniable et permet d’éviter :
    • les courants d’air (vitesse de déplacement de l’air faible < 0,2 m/s);
    • les poches d’air froid ou d’air chaud caractéristique des installations offrant un piètre mélange de l’air diffusé avec l’air ambiant de par une mauvaise circulation d’air;
    • les risques de zones mortes existants sur les systèmes classiques.
  • la facilité d’installation dans une zone existante;
  • la facilité d’entretien (hygiène accrue);

(-)

  • leur coût d’achat plus élevé;

Le degré de confort et de l’uniformité est essentiellement fonction :

  • de la vitesse de diffusion ou le débit surfacique [m³/m² de tissu / heure];
  • et le T (différence de température entre la température ambiante et la température de soufflage).

Plus le T est élevé, plus il faudra assurer un débit surfacique faible.

À titre d’exemple, pour un  T de 4 °C, une vitesse de diffusion maximale de 0,1 m/s donnera des résultats satisfaisants.

De plus, lorsque la hauteur du local augmente, le T augmente aussi. Il faudra donc être vigilant sur le dimensionnement des gaines textiles, afin d’obtenir un débit surfacique aussi bas que possible.

Le site XPAIR ouverture d'une nouvelle fenêtre ! (http://www.xpair.com) explique plus en détail ce type de système de diffusion d’air à basse vitesse.

Remplacer le fluide frigorigène d’une installation existante [Froid alimentaire]

Remplacer le fluide frigorigène d'une installation existante


Les différentes règlementations ont peu à peu interdit l’utilisation des fluides frigorigènes de type CFC et HCFC (même recyclés).

Le passage vers un HFC (hydrofluorocarbures) peut être assez coûteux et implique généralement un changement de certains composants de l’installation (compresseur et détendeur notamment), ainsi qu’un changement de toute l’huile contenue dans l’installation. On recommande donc de faire appel à une société spécialisée qui réalisera une étude précise en fonction de l’installation en présence. Il faudra tenir compte d’une potentielle diminution de puissance frigorifique (et donc du rendement de l’installation) lors de cette étude de faisabilité. On veillera aussi à anticiper les renforcements réglementaires. La réglementation européenne (dite F-gaz) prévoit en effet un retrait progressif des HFC du marché. On aura donc tout intérêt à utiliser un fluide qui ne sera pas trop rapidement retiré du marché !

L’ancien fluide sera récupéré et ensuite détruit ou recyclé, par une société habilitée qui délivrera une attestation.

L’alternative au remplacement du fluide est la réalisation d’une nouvelle installation directement conçue pour des fluides frigorigènes naturels ou à faible pouvoir de réchauffement global (PRG ou Global Warming Potentiel en anglais (GWP)).

Diminuer les charges thermiques externes aux meubles

Diminuer les charges thermiques externes aux meubles


L’apport des occupants

Est-ce un problème ?

L’homme apporte chaleur sensible (par notre corps à 37°C) et chaleur latente (par notre production de vapeur d’eau en respiration et transpiration).

Ces valeurs varient en fonction de la température ambiante.

En période froide

En hiver, le client déambulant dans un magasin dont l’ambiance est à 21°C, fournit de l’ordre de 115 Watts de chaleur gratuite au local. La valeur de 115 Watts est élevée par rapport au fait, qu’en période froide, les clients viennent de l’extérieur qui est plus froid. En réalité, si l’on veut aller au fond des choses, l’inertie des vêtements fait en sorte que pendant un certain temps les clients ont tendance à :

  • refroidir l’ambiance de la zone de vente plutôt que de la réchauffer;
  • retarder la production d’eau par transpiration.

Par ailleurs, le corps humain disperse aussi théoriquement 110 g/h d’eau dans l’atmosphère. Cet apport d’eau :

  • ne modifie pratiquement pas la température du magasin vu que les déperditions au travers des parois sont importantes en hiver;
  • contribue à humidifier l’ambiance qui parfois peut être sèche en période froide. Toutefois, attention de ne pas condenser cet apport d’eau au niveau des évaporateurs des meubles frigorifiques, des chambres froides, …

En période chaude

Par contre, en été, la vapeur d’eau délivrée augmente (105 gr/h à 26°C) et sera condensée sur la batterie froide de l’évaporateur, par exemple.

La chaleur de condensation correspondante devra être comptabilisée dans le bilan thermique de la machine frigorifique.

Peut-on diminuer ces consommations ?

À vrai dire oui, le seul véritable effet bénéfique qui risque de contenter tout le monde est d’isoler les meubles frigorifiques par des parois ad hoc et de fermer les ouvertures par des portes ou par des systèmes ingénieux comme le montre la figure ci-dessous. C’est vrai qu’il faut rester conscient que les portes, les couvercles, les ventelles, … peuvent représenter un frein à la vente. Néanmoins, via une sensibilisation bien orchestrée, la fermeture des meubles frigorifiques ouverts, le renforcement des isolations des meubles fermés peuvent devenir un outil de marketing important.

Source : magasin Bioshanti Bruxelles.

En période froide

Bien que tout apport de chaleur au meuble frigorifique lui soit néfaste, en période froide et pour un confort correct à sa proximité, l’apport des personnes est bénéfique pour l’installation de chauffage.

En période chaude

En période chaude, il est difficile d’empêcher les gens de transpirer ! Quoique…

Il faudrait suggérer au commerçant qu’il conseille à ses clients une petite sieste salutaire pour diminuer le métabolisme et donc cette coûteuse charge thermique pour l’évaporateur et in fine pour la machine frigorifique  !


L’apport des équipements environnants

Est-ce un problème ?

Toute charge électrique (éclairage, caisse électronique, four de boulangerie, …) dans une zone équipée de meubles frigorifiques est payée plus d’une fois : une fois pour effectuer le travail attendu plus une partie pour évacuer ce travail qui s’est transformé en énergie calorifique.

Exemple.

20 lampes de 60 Watts éclairant des meubles linéaires vont entièrement convertir l’énergie qu’elles utilisent en chaleur. Il faudra donc évacuer partiellement 1 200 W, ou 1,2  kW de chaleur au niveau de l’évaporateur du meuble frigorifique… !

Meubles frigorifiques ouverts

Les apports de chaleur des équipements externes aux meubles se transmettent :

  • par induction continue au travers du rideau d’air (température plus élevée de l’air ambiant);
  • par conduction continue au travers des parois (différence des températures de part et d’autre des parois plus élevées);
  • par radiation directe de la composante infrarouge IR de la source de chaleur.

Meubles frigorifiques fermés

Les apports de chaleur des équipements externes aux meubles se transmettent :

  • par induction lors de l’ouverture des portes
  • par conduction continue au travers des parois pour les meubles frigorifiques fermés.

Production frigorifique

La chaleur transmise par les équipements externes aux meubles frigorifiques doit être évacuée par l’évaporateur. Via le cycle frigorifique de la production de froid cette chaleur se retrouve évacuée à l’extérieur par le condenseur.

Peut-on diminuer ces consommations ?

Dans les magasins existants, on s’arrangera pour :

  • éloigner le plus possible les sources de chaleur pouvant influencer les meubles frigorifiques.
Exemple.

Le classique des classiques est la rôtissoire de poulet que les bouchers disposent à l’extérieur de manière à ne pas réchauffer l’ambiance où se trouvent les comptoirs frigorifiques ouverts.

En période chaude

Cette méthode éprouvée est énergétiquement intéressante puisque, d’une part la source de chaleur est en dehors de la zone climatisée, d’autre part la rôtissoire risque de consommer moins si elle est placée en plein soleil.

En période froide

Par contre, cette méthode est moins intéressante. Idéalement, il faudrait que :

  • la boucherie soit ouverte sur l’extérieur (eh oui ! cela existe toujours, mais rarement) afin de profiter de la température extérieure pour refroidir les comptoirs frigorifiques naturellement;
  • la rôtissoire soit placée dans une partie de la boucherie nécessitant de la chaleur (ce qui est plus dur à trouver) ou du moins que la chaleur soit évacuée vers une partie du commerce en demande de chaud.
  • remplacer les sources d’éclairage à basse efficacité énergétique (incandescence, halogène, …) par des plus efficaces.

Évaluer

Pour évaluer la qualité de l’éclairage existant et examiner les améliorations possibles.

La rentabilité des interventions sur ces équipements est améliorée par l’économie complémentaire faite sur le coût d’exploitation des installations de froid alimentaire.

Bilan frigorifique d’une chambre froide

Bilan frigorifique d'une chambre froide


 

Le bilan frigorifique

Etablir un bilan frigorifique, c’est faire l’inventaire des quantités de chaleur à extraire de l’intérieur d’une chambre froide, pour maintenir constante la température à cœur des produits.

Les apports de chaleur se font par :

  • la conduction au travers des parois : Q1,
  • l’introduction de produits à température ambiante extérieure : Q2,
  • larespiration des fruits et légumes Q3,
  • le renouvellement d’air : Q4,
  • l’activité des travailleurs : Q5,
  • le système d’éclairage : Q6,
  • la ventilation mécanique : Q7.

Ces quantités de chaleur sont calculées sur 24 h.

Une autre base de temps correspondant à la « journée de travail » (Exemple : 8 heures, 10 heures, …) peut être considérée. C’est pendant cette période que les machines sont particulièrement sollicitées.
La puissance moyenne sur 24 h (ou sur une journée de travail) est la somme de ces apports de chaleur sur 24 h (ou sur la journée de travail) [kWh] divisée par 24 [h] (ou par le nombre d’heures de la journée de travail).

Mais la puissance moyenne n’est pas représentative de la puissance nécessaire au refroidissement lors d’un réapprovisionnement. La puissance nécessaire varie en fonction du temps et la puissance maximale est demandée à l’évaporateur en début de processus (c’est alors que les Δt sont les plus importants).

Ainsi, au début du processus de refroidissement, la puissance disponible n’est pas suffisante.

Il est très difficile de calculer la puissance réellement nécessaire car il s’agit d’un calcul dynamique. Le calcul statique est d’autant plus éloigné de la réalité qu’on travaille dans des régimes non stationnaires (par exemple : quand il y a beaucoup d’entrées de chaleur sous formes d’air, de marchandises, etc.).

On a donc coutume de majorer la puissance frigorifique moyenne par un coefficient de 24/20 (chambre froide négative) ou de 24/16 (chambre froide positive) pour se rapprocher de la puissance maximale réelle nécessaire.

Le coefficient de majoration de 24/20 ou 24/16 peut très bien être insuffisant dans certains cas. La descente de température des denrées n’est alors pas aussi rapide qu’on le croit.

C’est une des raisons pour lesquelles les aliments ne doivent pas être surgelés à l’intérieur de la chambre froide mais dans une cellule de congélation rapide.

La puissance frigorifique de l’évaporateur est donc la somme des différentes quantités de chaleur dont il est question ci-dessus divisée par 24 h majorée par un coefficient de 24/20 pour les chambres froides négatives et de 24/16 pour les chambres froides positives.

Remarquons que ce coefficient est aussi indicatif du nombre d’heure de fonctionnement quotidien du groupe compresseur : avec une base de temps de 24 h, le nombre d’heures de fonctionnement quotidien du groupe compresseur est d’environ 16 h pour une chambre froide positive et de 20 h pour une chambre froide négative.

Le coefficient de majoration permet donc à la machine de s’arrêter de temps en temps; ce qui est indispensable, notamment pour le dégivrage.

P = Q1 + Q2 + Q3 + Q4 + Q5 + Q6 +Q7 [kWh] / 16 (ou 20) [h],

Pour un bilan calculé sur 24 h.

Si on choisit une base de temps plus courte qu’une journée de 24 heures, une majoration de 24/16 (ou de 24/20) risque d’être exagérée.

Nous proposons les coefficients de majoration suivants :

Chambre froide positive : 50 % (1 – (24 h / 16 h)) x (nombre d’heures de la journée de travail / 24 h)
Exemple.

  • Pour une journée de travail de 14 h le coefficient de majoration est de 29 % (soit 4,06 heures d’arrêts cumulés),
  • Pour une journée de travail de 10 h le coefficient de majoration est de 21 % (soit 2,1 heures d’arrêts cumulés).

Chambre froide négative : 20 % (1 – (24 h / 20 h)) x (nombre d’heures de la journée de travail / 24 h).

Il reste à vérifier que les temps d’arrêts cumulés permettent les temps de dégivrages.

Remarque : Le calcul du bilan frigorifique est donc bien un calcul qui doit se faire de manière itérative : le bilan dépend du dégivrage mais le dégivrage dépend de la machine qui dépend du bilan …

Dans le cas de dégivrages, il est évident que le remplissage de l’évaporateur par de la glace va se passer surtout pendant la période d’utilisation intensive, puisque c’est à ce moment qu’on entre et sort souvent de la chambre.

Remarque : dans le cas de la courbe de puissance de l’exemple du graphique, il est clair qu’il faudrait avoir une machine à puissance variable pour éviter de trop fréquents arrêts (ON/OFF) en dehors de la période d’utilisation intensive.

De plus, pendant que la machine est à l’arrêt, l’évaporateur ne contrôle plus l’humidité relative de l’ambiance intérieure qui peut dériver en dehors des limites acceptables à ce sujet en fonction des marchandises entreposées.


Quantité de chaleur journalière passant par conduction au travers des paroi

Q1 = [Σ(S x k x δt)] x 24 h / 1 000

Où :

  • Q1 = quantité de chaleur journalière passant par conduction au travers des parois (kWh).
  • S = surfaces extérieures totales (parois verticales + plafond et sol) (m²).
  • k = coefficient de transmission thermique des parois en W/m².K.
  • δt = différence entre la température extérieure et la température de stockage (K). Si la température ambiante extérieure n’est pas connue, on considère une température de 25 °C.

Les produits (S x k x δt) concernent des parois qui ont des coefficients différents et/ou qui supportent des δt différents (parce que les parois de la chambre ne sont pas nécessairement toutes contre des ambiances aux mêmes températures partout).


Quantité de chaleur journalière par introduction de marchandises à température ambiante extérieure : Q2 ou Q2′

En froid positif

Q2 = P1 x Cs x δt / 1 000

Où :

  • Q2 = quantité de chaleur par introduction de marchandises à température ambiante extérieure (en kWh).
  • P1 = poids des denrées lors d’une nouvelle livraison (kg).
  • Cs = chaleur spécifique des denrées (Wh/kgK).
  • δt = différence entre la température à l’arrivée des denrées et leur température de stockage (K).

Remarque.
Le calcul ci-dessus suppose que le refroidissement des denrées se fait sur 24 h (ou sur la durée de « la journée de travail » considérée).
Le gestionnaire peut, selon le type de denrées et les exigences d’hygiène à atteindre, demander une autre base de temps plus longue (ex.: le nombre de jours qui séparent deux livraisons) ou plus courte (quelques heures).

En froid négatif

Si l’on introduit des marchandises qui ne sont pas à température de la chambre froide négative,

Q2′ = [(P1 x Cs x δt) + (P1 x Cl) + (P1 x Cs’ x δt’)] / 1 000

Où :

  • Q2′ = quantité de chaleur par introduction de marchandises à température ambiante extérieure (en kWh).
  • P1 = poids des denrées lors d’une nouvelle livraison (kg).
  • Cs = chaleur spécifique au-dessus de 0°C des denrées (Wh/kgK).
  • Cl = chaleur latente nécessaire au changement d’état du constituant liquide des denrées (passage à l’état solide) (Wh/kg).
  • Cs’ = chaleur spécifique en-dessous de 0°C des denrées (Wh/kgK).
  • δt = différence entre la température à l’arrivée des denrées et 0°C (K).
  • δt’ = différence entre 0°C et la température négative de stockage (- 18K).

Néanmoins, tout comme en liaison froide négative (où la température de plats entiers est abaissée jusqu’à -18°C), il est recommandé de ne pas dépasser un temps maximum pour la descente en température. Il ne s’agit pas d’une obligation, mais d’une bonne pratique de fabrication qui est recommandée si l’on veut refroidir des aliments en toute sécurité et si on veut prouver que des procédures de sécurité sont appliquées conformément à l’arrêté royal relatif à l’hygiène des denrées alimentaires.

Dès lors, la puissance nécessaire pour la chambre froide négative serait très importante. Ainsi, si les aliments arrivent non surgelés, il faut utiliser une cellule de refroidissement rapide pour descendre les aliments en température et ensuite les introduire dans la chambre froide.

Dès lors, on se contente de calculer la quantité de chaleur par introduction de marchandises congelées qui sont remontées en température de quelques degrés durant le transport et/ou la manutention.

On peut s’inspirer de l’art. 5 de l’A.R. du 5 décembre 1990 relatif aux produits surgelés qui indique, pour les produits surgelés à cœur (<18°C), d’une fluctuation autorisée vers le haut de 3°C max.

Dans ce cas,

Q2′ = (P1 x Cs’ x δt’) / 1 000

Où :

  • Q2′ = quantité de chaleur par introduction de marchandises congelées légèrement remontées en température (en kWh).
  • Cs’ = chaleur spécifique des denrées en-dessous de 0°C (Wh/kgK).
  • δt’ = différence entre la température à l’arrivée des denrées et la température négative de stockage (- 18°C), soit max. 3°C.

Remarque.
Tout comme en froid positif, le calcul ci-dessus suppose que le refroidissement des denrées se fait sur 24 h (ou sur la durée de « la journée de travail » considérée). Le gestionnaire peut, selon le type de denrées et les exigences d’hygiène à atteindre, demander une autre base de temps.

(*) : « HACCP pour PME et artisans – Auteurs Catherine Quittet et Helen Nelis – Réalise par L’Unité de Technologie des IAA a la Faculté universitaire des Sciences agronomiques de Gembloux, Le Laboratorium voor Levensmiddelentechnologie de la KU Leuven en collaboration avec l’Inspection générale des denrées alimentaires, l’Institut d’expertise vétérinaire, le service d’Inspection du Ministère de l’Agriculture Finance par le SSTC. » – pg. 45 : « produits surgelés à cœur (<18°C) : de brèves fluctuations vers le haut de 3°C maximum sont autorisées pendant le transport et pendant la distribution locale.


Quantité de chaleur journalière produite par la respiration des fruits et légumes : Q3

Les fruits et légumes sont des organismes vivants qui respirent. Ils dégagent donc de la chaleur. On considère une chaleur dégagée moyenne de 1,4 Wh/kg/24 heures.

Q3 = P x 1,4 / 1 000

Où :

  • Q3 = quantité de chaleur journalière produite par la respiration des fruits et légumes (kWh).
  • P = poids des denrées de la chambre froide (kg).

Quantité de chaleur journalière par renouvellement d’air : Q4

Il s’agit de la chaleur provenant des entrées d’air par infiltration et par ouverture de la porte.

Q4 = V x Δh x φ x n / 1 000

Où :

  • Q4 = Quantité de chaleur journalière par renouvellement d’air (kWh).
  • V = volume de la chambre froide (en m3).
  • Δh = différence d’enthalpie entre l’ambiance dans la chambre froide et l’ambiance extérieure (Wh/kg).
  • j= densité de l’air = 1,2 kg/m³.
  • n = nombre de renouvellements de l’air sur 24 h.

Pour les chambres froides munies d’un sas, on tient compte d’une température ambiante extérieure intermédiaire. Exemple : 10 °C.

Δh est déterminée par le diagrammes de Mollier. L’humidité relative de la chambre froide peut être considérée égale à 90 %. L’humidité relative de l’air extérieur dépend du projet (ex. : 50 %).

Les calculs de (Δh x φ) ont été réalisés pour certaines valeurs dans le tableau ci-dessous :

Δh x φ (Wh/m3)

Température intérieure (°C)

Température et humidité relative de l’air extérieur

+ 5 °C / 80 % + 10 °C / 70 % + 25 °C / 60 % + 30 °C / 60 % + 38 °C / 60 %
+13
8,7
14
24,9
+10
10,8
16,3
27,3
+9
11,5
17
28,3
+8
12,2
17,7
28,8
+7
12,8
18,5
29,5
+6
1,6
13,5
19,2
30,4
+5
2,3
14,1
20
31,2
+4
3
14,8
20,6
31,6
+3
3,7
15,4
21,2
32,2
+2
1,4
4,3
16
21,7
32,9
+1
2,1
4,9
16,7
22,6
33,6
0
2,7
5,5
17,4
23,3
34,3
-1
3,3
6
18,1
23,8
34,9
-2
3,8
6,6
18,7
24,4
35,6
-15
10,8
13,6
26,3
32
44
-18
12
15,1
28
33,7
45,8
-20
13,4
16,2
29,2
34,9
47,2
-23
14,9
17,7
30,8
36,6
49,1
-25
16
18,7
32
37,7
50,2
-28
17,3
20,2
33,6
39,4
52,3
-30
18,3
21,3
35
40,6
53,5
-33
19,7
22,7
36,5
42,1
55,1
-35
20,7
23,8
37,8
43,3
56,3
-40
23
28,4
40,6
46,1
59,1

Le nombre de renouvellements de l’air sur 24 h est difficile à déterminer. Il dépend de l’appareil et de la fréquence d’ouverture des portes. Des fabricants ont établi des tableaux qui résultent d’analyses statistiques.

Nous avons regroupé ci-dessous les chiffres provenant de deux sources différentes; l’une est « Le Traité d’Ingénierie Hôtelière », l’autre est un fabricant. (La double source de ce tableau explique certains « sauts ». Néanmoins, les chiffres des deux sources sont très similaires).

n : nombre de renouvellement d’air en 24 h (/)

Volume intérieur (m³)

Chambre froide à température positive

Chambre froide à température négative

2
42
38
3
42
36
4
40
34
5
38
32
6
36
30
7
34
27
8
33
27
9
31
26
10
30
24
11
28
23
12
27
22
13
26
21
14
25
20
15
24
20
16
23
19
17
22
18
18
22
18
19
21
17
20
20
16
22
19
15
24
18
15
26
18
14
28
17
14
30
17
13
35
15
12
50
13
75
11
100
9
150
6,7
200
6
300
4,5
400
3,8
500
3,3
700
2,9
800
2,6
1 000
2,2
1 500
1,8
2 000
1,6
2 500
1,4
3 000
1,2

On peut également utiliser la formule suivante :

n = 70 / (V)1/2, pour les chambres positives

n = 85 / (V)1/2, pour les chambres négatives

Remarque importante.
La manière de calculer Q4 (la quantité de chaleur journalière par renouvellement d’air) ci-dessus est indicative. Elle est basée sur des analyses statistiques pour le nombre de renouvellements de l’air sur 24 h et sur des valeurs forfaitaires d’humidité relative de l’air extérieur (selon la température).

Calcul Pour accéder à un tableau Excel permettant (entre autres) de calculer la quantité de chaleur journalière par renouvellement d’air correspondant mieux à votre situation !

Quantité de chaleur journalière dégagée par le personnel travaillant dans la chambre froide : Q5

Q5 = q x t x n / 1 000

Où :

  • Q5 = quantité de chaleur journalière dégagée par le personnel travaillant dans la chambre froide (kWh).
  • q = chaleur dégagée par personne et par heure (en Wh/h = W).
  • t = durée de la présence dans la chambre froide (h).
  • n = nombre de personnes dans la chambre froide.
Température de la chambre froide Chaleur dégagée par personne et par heure : q (W)
Travail dur Travail moyen Travail léger
+10°C
372
244
186
+7°C
372
250
198
+4°C
372
256
209
+2°C
372
267
221
0°C
372
273
233
-7°C
384
314
279
-12°C
395
337
291
-18°C
407
372
326
-23°C
419
407
349

Quantité de chaleur journalière dégagée par l’éclairage : Q6

Le niveau d’éclairement moyen à atteindre dans les lieux de stockage est de 125 à 250  lux.
Les fabricants prévoient, en général, une puissance de 10 W/m².

Q6 = 10 x t x S / 1 000 (kWh)

Où :

  • Q6 = quantité de chaleur journalière dégagée par l’éclairage (kWh).
  • t = durée de la présence humaine dans la chambre froide (h).
  • S = surface intérieure de la chambre froide (m²).

Sans précision propre au projet, on peut évaluer la présence humaine journalière dans les chambres froides à 15 occupations de 1,5 minutes maximum, soit 22,5 minutes.


Quantité de chaleur journalière dégagée par les ventilateurs de l’évaporateur : Q7

On tient compte d’une puissance de 30 W/m² de chambre froide.

Q7 = 30 x S x 24 h / 1 000

Où :

  • Q7 = quantité de chaleur journalière dégagée par les ventilateurs de l’évaporateur (kWh).
  • S = surface intérieure de la chambre froide (m²).

On suppose que le moteur du ventilateur tourne en permanence. En effet, pendant la période de dégivrage, la quantité de chaleur dégagée par celui-ci est supposée être équivalente à la chaleur dégagée par le moteur de l’évaporateur.

Remarque.
Dans ce bilan thermique, le dégivrage est introduit d’une manière simpliste, en tenant compte que la chaleur du dégivrage équivaut à celle des ventilateurs, qui sont arrêtés.

Les puissances de dégivrage sont des puissances importantes qui doivent faire fondre le givre, faire monter la température du bloc métallique de l’évaporateur; et il y a encore le chauffage du bac de récolte et de la canalisation d’évacuation.

Le dégivrage est un élément relativement indépendant de la puissance de la machine, il dépend surtout de la fréquence des ouvertures de portes et de l’humidité perdue par les denrées entreposées.

Calcul Pour accéder à un tableau excel permettant (entre autres) de calculer la quantité de chaleur journalière dégagée par dégivrage correspondant mieux à votre situation (pour autant que le dégivrage se fasse par résistance chauffante).

Autres quantités de chaleur

Selon la présence ou non de postes ci-dessous et de leur importance, il faut encore tenir compte des apports de chaleur suivants :

Le cordon chauffant de la porte

Sur une chambre négative, ce cordon empêche la formation de glace qui souderait les joints sur le dormant (avec le risque de déformer la porte).

Apport par la ventilation

Si la ventilation est nécessaire pour le travail en chambre froide (si les ouvertures de porte ne suffisent pas à fournir de l’air frais en suffisance), il faut prévoir la puissance nécessaire pour refroidir l’air à introduire dans la chambre (en première approximation : débit en kg/h x différence d’enthalpie en kJ/kg).

Apports par rayonnement

Dans des cas particuliers, les parois des chambres sont parfois exposées à des rayonnements calorifiques importants, provenant d’appareils à haute température dans leur environnement proche.

Apport en cas de mises en régime fréquentes

Si la chambre froide n’est pas gardée à température constante, il faudra tenir compte de l’énergie stockée dans les capacités thermiques des parois de la chambre.


Exemple : Calcul du bilan frigorifique d’une chambre froide de fruits et légumes d’un restaurant d’entreprise

Données

Un restaurant sert 500 repas par jour / 5 jours par semaine.

L’approvisionnement se fait 1 fois par semaine. Par sécurité, on prévoit une chambre froide qui permet de stocker 1 jour de plus.

La chambre froide doit assurer une température de max. 6°C.

On prévoit 400 g de fruits et légumes par repas.

Le coefficient de transmission thermique des parois est de 0,355W/m²K, celui du sol est de 1,74 W/m²K.

On considère une température ambiante extérieure de 25°C.

La base de temps est prise égale à 24 h. Il n’y a pas d’apport particulier par rayonnement ni de ventilation supplémentaire à prévoir.

On ne connaît pas l’utilisation exacte de la chambre froide (nombres d’ouvertures journalières, etc); les apports par renouvellement d’air ainsi que par dégivrage ont donc été calculés de manière forfaitaire. Un bilan plus précis devrait être calculé une fois ces paramètres connus.

Bilan frigorifique

Poids des fruits et légumes à stocker :
P = 6 jours x 0,4 kg x 500 personnes = 1 200 kg.

Les dimensions de la chambre sont estimées aux valeurs reprises dans le tableau ci-dessous :

Dimensions intérieures

Dimensions extérieures*

Largeur

2,7 m 2,82 m

Profondeur

2,4 m 2,52 m

Hauteur

2,4 m 2,46 m

Surface

6,48
7,11

Volume

15,55
17,48

* : l’épaisseur des parois est de 6 cm.

Poids des fruits et légumes lors d’une nouvelle livraison : 5  jours x 0,4 kg x 500 personnes = 1 000 kg.

Quantité de chaleur passant par les parois : Q1

Q1 = [Σ(S x k x δt)] x 24  / 1 000

Avec surface parois + plafond : (2,82 x 2,46 x 2) + (2,52 x 2,46 x 2) + 7,11 = 33,38 m²

Q1 = [(33,38 x 0,355 x19) + (7,11 x 1,74 x 19)] x 24 / 1 000 = 11 kWh

Quantité de chaleur par introduction de marchandises à température ambiante extérieure : Q2

Q2 = P1 x Cs x δt / 1 000

Q2 = 1 000 kg x 1,04 Wh/kgK x 19°C / 1 000 = 19,8 kWh

Quantité de chaleur produite par la respiration des fruits et légumes : Q3

Q3 = P x 1,4 / 1 000

Q3 = 1 200 x 1,4 / 1 000

Q3 = 1,7 kWh

Quantité de chaleur journalière par renouvellement d’air : Q4

Q4 = V x Δh x φ x n / 1 000

Q4 = 15,55 x 13,5 x 23,5 / 1 000 = 4,9 kWh

Quantité de chaleur journalière dégagée par le personnel travaillant dans la chambre froide : Q5

Q5 = q x t x n / 1 000

On considère 22,5 minutes de présence d’une personne, soit 0,38 heures. Le travail est de type lourd.

Q5 = 372 x 0,38 x 1 / 1 000 = 0,141 kWh

Quantité de chaleur journalière dégagée par l’éclairage : Q6

Q6 = 10 x t x S / 1 000

on considère 22,5 minutes de présence d’une personne, soit 0,38 heures.

Q6 = 10 x 0,38 x 6,48 / 1 000 = 0,025 kWh

Quantité de chaleur journalière dégagée par les ventilateurs de l’évaporateur : Q7

Q7 = 30 x S x 24 h / 1 000

Q7 = 30 x 6,48 x 24 / 1000 = 4,7 kWh

La puissance frigorifique de l’évaporateur

P = Q1 + Q2 + Q3 + Q4 + Q5 + Q6 +Q7 / 24

P = 11 + 19,8 + 1,7 + 4,9 +0,14 + 0,025 + 4,7 / 24

P = 1,76 kW

Améliorer la machine frigorifique [Froid alimentaire]

Les principes à suivre

Les projets d’amélioration peuvent poursuivre plusieurs objectifs :

  • réduire la consommation d’énergie,
  • limiter la pointe de puissance quart-horaire,
  • améliorer la maintenance de l’installation.

Objectif 1 : réduire la consommation d’énergie de l’installation frigorifique

Prenons l’exemple d’une installation où l’évaporateur refroidit la boucle d’eau glycolée alimentant les meubles frigorifiques de l’espace de vente d’un supermarché. Il est possible d’envisager 3 niveaux d’intervention :

  • les espaces à proximité des meubles frigorifiques;
  • la boucle d’eau glycolée;
  • les machines frigorifiques.

Voisinage des meubles : réduction des apports internes et externes

La mesure la plus évidente consiste à réduire les apports externes et internes, entraînant de facto la mise au repos du compresseur ou la réduction de la puissance frigorifique d’une centrale de froid par la réduction de la demande des évaporateurs au niveau des meubles frigorifiques, des ateliers et des chambres frigorifiques.

Apports externes : rayonnement direct solaire.

Apports internes : four, condenseur des meubles frigorifiques, …

Améliorer

Améliorer l’étanchéité des bâtiments.

Améliorer

Diminuer les charges internes.

Une mesure toute aussi évidente, mais peu respectée actuellement, est la fermeture des meubles frigorifiques ouverts afin de réduire l’impact direct des apports tant internes qu’externes.

Boucle d’eau glycolée : pertes de la distribution

La diminution des pertes en ligne du fluide réfrigérant ou du frigoporteur pour les installations importantes (supermarchés, hypermarchés) constitue un troisième axe de réflexion : isolation des conduites, augmentation de la température de la boucle secondaire sans mettre en puéril le respect des températures de la chaîne de froid. Sur ce dernier point, le respect des températures de conservation est primordial.

  

Isolation des conduites indispensable.

La machine frigorifique : travail du compresseur

Pour diminuer le travail du compresseur, et par conséquent améliorer le rendement volumétrique du compresseur, il faut diminuer le taux de compression, entre la pression d’évaporation (BP) et la pression de condensation (HP). Or la thermodynamique montre que ces pressions de fluide frigorigène ne correspondent pas toujours à des niveaux de température du fluide. Diminuer le travail du compresseur, c’est donc diminuer l’écart de température entre évaporateur et condenseur.

En pratique, on cherchera donc à augmenter la température à l’évaporateur (prévoir une consigne de température la plus haute possible) et à diminuer la température au condenseur (profiter d’un air refroidisseur à plus basse température).

Dans le cadre du froid alimentaire, l’augmentation de la température d’évaporation est sensiblement réduite dans le sens où elle est conditionnée par l’application de conservation des denrées.

Dans la pratique moderne, on tend à réduire au maximum des possibilités techniques des groupes de froid la température de condensation (ou pression de condensation).

3°C en plus à l’évaporateur, c’est 10 % de consommation en moins.

3°C en moins au condenseur, c’est 10 % de consommation en moins.

Rappelons aussi que le rendement volumétrique du compresseur peut s’exprimer par la relation : ηVolume = 1 – (0,05 x τ)

Diagramme log p,h (pression, enthapie) du fluide frigorigène R22.

Dans le graphique qui précède, le rendement volumique est de :

1 – (0,05 x 15/3) = 0,75

avec τ = HP / BP (ou Pk/P0 selon le diagramme).

Limiter le fonctionnement du compresseur à charge réduite, car en dessous de 20 % de sa puissance nominale, le rendement de production de froid d’une machine frigorifique s’écroule :

  • par un fractionnement de la puissance installée;
  • par un entraînement à vitesse variable;

La machine frigorifique : désurchauffe

Il faut adapter la puissance à la demande. Il est également possible de préchauffer l’eau chaude sanitaire ou l’air de ventilation : ce sont les techniques pour récupérer la chaleur évacuée au condenseur.

Objectif 2 : réduire la pointe de courant électrique appelée par l’installation

Tous les tarifs électriques privilégient la consommation d’électricité nocturne. Or, dans les commerces, l’appel de puissance et la consommation électrique s’effectuent en journée lorsque les magasins sont ouverts. On peut donc se douter que la facture risque d’être salée.

Audit

Pour en savoir plus sur le tarif de la facture électrique.

Pour cette raison, une gestion de la charge par délestage ou par déplacement des périodes de fonctionnement doit être étudiée. Par exemple, l’étalement des périodes de dégivrages permet de réduire l’appel de puissance électrique après dégivrage.

Gérer

Pour en savoir plus sur le délestage.

  Gérer

Pour en savoir plus le déplacement des périodes d’utilisation.

Objectif 3 : améliorer la maintenance de l’installation

L’amélioration de la régulation peut également avoir pour objectif de privilégier le bon fonctionnement du matériel, en diminuant ainsi le risque de panne et en améliorant la longévité du matériel. Contrôler la surchauffe, vérifier le sous-refroidissement, mesurer l’intensité électrique  appelée, …

Améliorer

Pour plus d’infos sur les mesures de maintenance à mettre en œuvre.

Un secret dans ce domaine : si l’installation a été bien mise au point initialement, la meilleure solution consiste à mesurer tous les paramètres de l’installation et à les comparer d’année en année. C’est « par rapport à elle-même » que l’on peut au mieux juger la qualité d’une installation frigorifique.


Améliorer la régulation de puissance du compresseur

Vérifier la surpuissance éventuelle

Puissance spécifique utile des évaporateurs

Pour vérifier l’ordre de grandeur de la puissance installée, le ratio souvent rencontré en froid commercial est la puissance spécifique en Watts/mètre de linéaire [W/ml] de l’évaporateur. Rappelons que la puissance spécifique représente la puissance nécessaire à l’évaporateur du meuble frigorifique pour combattre les apports internes et externes par mètre de meubles frigorifiques alignés comme le montre la figure suivante.

 

Pour différents meubles frigorifiques, on peut établir une puissance spécifique qui peut être certifiée par des essais en laboratoire chez ouverture d'une nouvelle fenêtre ! EUROVENT par exemple. Le dimensionnement des évaporateurs et des machines frigorifiques dépendent des bureaux d’étude et des constructeurs de meubles.

Normalement, les évaporateurs des meubles sont dimensionnés pour juste maintenir les denrées à la température requise pour la conservation sans fonction de refroidissement propre. La puissance des évaporateurs devrait juste être suffisante pour s’opposer aux agressions thermiques des apports externes et internes.

Les tableaux suivants montrent les valeurs des puissances spécifiques en fonction des types de meuble.

Meuble à application positive
Famille de meubles Surface d’exposition [m²/ml]

Température de service [°C]

Puissance frigorifique spécifique [kW/ml]
Vitrine service par le personnel en convection naturelle 0,8 2 à 4 0,2 à 0,25
Vitrine service par le personnel en convection forcée 0,25 à 0,28
Comptoir horizontal self-service en convection 0,9 0 à 2 0,4 à 0,43
Meuble vertical self-service en convection forcée 1,3 4 à 6 1,2 à 1,3
Meuble à application négative
Famille de meubles Type de rideau d’air Surface d’exposition [m²/ml] ou [m²/porte] Température de service [°C] Puissance frigorifique spécifique [kW/ml]
Gondole self-service en convection forcée horizontale, asymétrique, laminaire 0,8 -18 à -20 0,42 à 0,45
Vitrine service par le personnel en convection forcée horizontal, asymétrique, laminaire 1,1 -23 à -25 0,63 à 0,67
Meuble vertical self-service en convection verticale, à 3 flux parallèles, turbulents 1,1 -18 à -20 1,9 à 2,1
Meuble vertical self-service en convection forcée portes vitrées, rideau d’air interne turbulent 0,84 -23 à -25 0,8 0,86

Puissance de la production : application positive

A travers différents exemples en froid positif, on tente de déterminer la puissance frigorifique de la production.

Exemple 1

Dans un hypermarché de 12 000 m² de surface de vente, des meubles frigorifiques à application positive forment 136 m de linéaires. Le tableau suivant montre la composition de la centrale qui alimente ces meubles..

Type de compresseur Type de réfrigérant Nombre de compresseurs Capacité [kW] Régime de température [°C]
Semi-hermétique R404A 2 54  

– 12,5 (évaporateur) 

45 (condenseur)

 

2 64
1 63
Total puissance 300

La plupart des meubles frigorifiques sont de type ouvert vertical en self-service. La puissance spécifique est de l’ordre de 1,2 à 1,3 kW voire 1,4 à 1,5 kW pour les comptoirs actuels.

Pour 136 m de meubles, la puissance totale qui risque d’être appelée dans des conditions de température et d’humidité internes de l’ordre de 25°C, 60 % (base EUROVENT) et pour une température de condensation externe de 45°C, est de :

Pévaporateur = 136 [m] x 1,4 [kW]

soit,

Pévaporateur = 190 [kW]

Pour une puissance frigorique nécessaire aux évaporateurs des meubles de 190 [kW], la puissance de la centrale est de l’ordre de 300 [kW]. Le coefficient de surdimensionnement est alors de :

Coefficientdimensionnement = 300 [kW] / 190 [kW]

soit,

Coefficientdimensionnement = 1,6

Exemple 2

Dans un magasin d’alimentation biologique, deux meubles frigorifiques à application positive (fruit et légume) forment 5 m de linéaires. Le tableau suivant montre la composition de la centrale qui alimente ces meubles..

Type de compresseur Type de réfrigérant Nombre de compresseurs Capacité unitaire [kW] Régime de température [°C]
Semi-hermétique R404A 1 12  

– 12,5 (évaporateur) / 

45 (condenseur)

 

On a aussi affaire à des meubles frigorifiques du type ouvert vertical en self-service. La puissance spécifique est de l’ordre de 1,2 à 1,3 kW.

Pour 5  m de meubles, la puissance totale qui risque d’être appelée dans des conditions de température et d’humidité internes de l’ordre de 25°C, 60 % (base EUROVENT) et pour une température de condensation externe de 45°C, est de :

Pévaporateur = 5 [m] x 1,3 [kW]

soit,

Pévaporateur = 6,5 [kW]

Pour une puissance frigorique nécessaire aux évaporateurs des meubles de 6,5 [kW], la puissance de la centrale est de l’ordre de 12 [kW]. Le coefficient de surdimensionnement est alors de :

Coefficientdimensionnement = 12 [kW] / 6,5  [kW]

soit,

Coefficientdimensionnement = 1,84

Les exemples ci-dessus montrent que le coefficient de dimensionnement de la production de froid est de l’ordre de 1,6 fois la puissance frigorifique des évaporateurs des meubles. Cette valeur du coefficient permet de se situer au niveau de la surpuissance des installations. Cette surpuissance tient souvent compte de la nécessité de bénéficier de suffisamment de réserve en cas de panne d’un des compresseurs. En effet, les réglementations étant de plus en plus sévères en terme de respect des températures de conservation, les commerçants demandent en général, d’augmenter la redondance des compresseurs pour palier à toute défectuosité éventuelle. Cette manière de réagir est compréhensible dans le sens où le commerçant n’a pas envie de jeter sa marchandise pour cause de dépassement des températures fixées pendant un temps trop long.

En reprenant l’exemple 1, parmi les 300 [kW] de puissance de la centrale positive, si l’on considère qu’un des cinq compresseurs est redondant pour palier à toute défectuosité d’un des quatre autres, la puissance réelle nécessaire pour alimenter les meubles frigorifiques est de l’ordre de 250 [kW], soit un coefficient de surdimensionnement de 250 / 190 ou 1,3.

Certains constructeurs confirment que la puissance installée de la production frigorifique est majorée de 30 % par rapport à la puissance utile réelle nécessaire au niveau des évaporateurs des meubles.

Dans ce type d’installation, il est donc nécessaire, pour réduire les consommations énergétiques, d’adapter la puissance frigorifique du compresseur à la charge utile des meubles.

Puissance de la production : application négative

Exemple

Dans notre hypermarché de 12 000 m² de surface de vente, des meubles frigorifiques à application négative forment :

  • 48 m de linéaires vitrés verticaux mixtes;
  • 48 m de gondoles horizontales.

Le tableau suivant montre la composition de la centrale qui alimente ces meubles..

Type de compresseur Type de réfrigérant Nombre de compresseurs Capacité unitaire [kW] Régime de température [°C]
Semi-hermétique R404A 3 17  

– 37,5 (évaporateur) / 

40 (condenseur)

 

2 20
Total puissance 90
  • Les 48 m de gondoles horizontales ouvertes ont une puissance spécifique de 860 [W/ml], soit 41,3  [kW] de puissance aux évaporateurs ;
  • Les 48 m de linéaires vitrés ont une puissance spécifique de 450 [W/ml], soit 21,6 [kW] de puissance aux évaporateurs ;

Attention de la puissance de 90 [kW], il faut déduire de l’ordre de 30 [kW] nécessaire pour assurer l’alimentation des chambres froides (300 m³).

Pour une puissance frigorifique nécessaire aux évaporateurs des meubles de l’ordre de 60 [kW], la puissance de la centrale est de l’ordre de 60 [kW]. Le coefficient de surdimensionnement est alors de :

Coefficientdimensionnement = 60 [kW] / 60  [kW]

soit,

Coefficientdimensionnement = 1

La machine frigorifique s’adapte mal aux bas régimes…

Solution ?

Une diminution de 25 % de la puissance frigorifique du groupe ne réduit la puissance électrique absorbée que de 10 % en moyenne ! Il est donc préférable que le compresseur soit découpé en plusieurs niveaux de puissances (par exemple, via un découpage en plusieurs compresseurs).

De plus, l’enclenchement d’un grand groupe peut générer une pointe de puissance électrique importante.

Si l’idéal est la régulation par variation de vitesse du compresseur, la mise hors service de cylindres est une méthode assez répandue parmi les techniques de modulation de la puissance sur une installation existante.

En pratique une vanne magnétique est posée sur la tête de culasse, ce qui rend inopérant un des cylindres qui travaille dans le vide.

Avantage

Pour éviter les pointes de courant de démarrage, il est possible de démarrer à vide le compresseur.

Inconvénients

  • Ce réglage est énergétiquement moins favorable; les cylindres tournant à vide ont pour conséquence que, pour une puissance de réfrigération de 50 %, par exemple, la machine absorbe encore environ 65 % de la puissance d’entraînement.

 

  • La variation de la puissance n’est pas continue (sauts de puissance).

 

  • L’usure de la machine est pratiquement identique à vide ou en charge.

Mais toute intervention sur une installation existante doit avoir l’aval du constructeur (par exemple, un abaissement de vitesse peut modifier dangereusement le régime de lubrification).

Concevoir

Pour plus de détails, consultez le choix de la régulation de la machine frigorifique.

Supprimer la régulation par injection des gaz chauds …

Principe

Le réglage par « injection  » doit être qualifié de « pur anéantissement des gaz chauds d’énergie ». Dans ce cas, la puissance absorbée reste la même lorsque la puissance de réfrigération diminue. De plus, il provoque un échauffement du moteur. Dans la mesure du possible, il faut mettre ce système hors service dans les installations existantes.

La régulation par « injection des gaz chauds » est une aberration, puisque pour maintenir le débit constant dans l’évaporateur, on « fait fonctionner le compresseur sur lui-même ». Mais cette technique évite tout risque de gel dans l’évaporateur.

Comparaison : imaginons une pompe qui vide un réservoir « bas » vers un réservoir « haut ». De peur du risque qu’elle se désamorce si elle n’a plus assez d’eau à pomper, on lui réinjecte de l’eau venant du réservoir « haut ». Ainsi, elle peut continuer à fonctionner sans problème !

L’injection de gaz chauds est rencontrée en climatisation sur des groupes avec un compresseur n’ayant pas de système interne de régulation de puissance, sur des petits « chillers » et des systèmes à détente directe (roof-top, par exemple) : c’est absolument à proscrire. Cette technique est présente sur le terrain puisque voici ce que nous a écrit un installateur frigoriste à ce sujet :

« Il est vrai qu’en terme de régulation le principe est évidemment à proscrire, mais il est très fréquent que nous utilisions l’injection de gaz chauds lorsque nous intervenons chez des clients qui ont très peu soin de leur installation : batteries ou filtres d’évaporateurs pas nettoyés. Ceci afin d’éviter la formation de givre important sur les batteries,… et les problèmes d’écoulement qui s’en suivent. Nous utilisons également l’injection de gaz chauds lorsque nous installons une unité extérieure sur deux unités intérieures et que nous n’avons pas affaire à des compresseurs inverter ou à deux compresseurs dans l’unité extérieure. Ces réalités sont très fréquentes, car le coût d’installation est un critère de choix pour le client final. Nous le mettons toutefois en garde du très mauvais rendement énergétique lorsque seule une unité intérieure sur les deux est utilisée. En prévoyant l’injection de gaz chaud sur ce type d’installation, nous savons que, heureusement, dans la majeure partie du temps d’utilisation de la climatisation, les deux unités intérieures sont utilisées en même temps (chaque circuit d’unité intérieure est muni d’une vanne magnétique). »

Quels sont les indices de l’existence d’une telle régulation ? On aura des soupçons si l’on constate que le compresseur ne s’arrête pratiquement jamais. Et on vérifiera alors s’il y a présence eacute;quipements raccordant la haute pression (sortie compresseur) et la ligne d’aspiration (entrée évaporateur). Ensuite, on appelle le frigoriste !

Alternatives

  • Il faut absolument la remplacer, idéalement par la vraie solution actuelle, la variation de vitesse du compresseur (INVERTER). L’investissement est plus élevé bien sûr, mais l’économie d’énergie résultante permet d’amortir facilement l’investissement.

 

  • Une modulation de puissance par l’usage de solénoïdes pour délester certains cylindres permet des économies substantielles (consulter un frigoriste).

 

  • À défaut, prévoir 2 à 3 plus petites machines en centrale.

Augmenter le seuil de pression de déclenchement du compresseur …

Si le compresseur déclenche régulièrement par période de fortes chaleurs, c’est suite au pressostat HP (Haute Pression) : la condensation se fait à trop haut niveau de pression.

Le frigoriste risque malheureusement de diagnostiquer une insuffisance de puissance de l’installation (ce qui est exact) et de proposer un remplacement par un compresseur plus puissant. Mais la nouvelle installation sera surpuissante toute l’année…

Si le fabricant l’autorise, il vaut mieux augmenter le seuil de pression de déclenchement du compresseur. La machine frigorifique pourra alors continuer à fonctionner, tout en donnant temporairement une puissance frigorifique plus faible que sa valeur nominale. L’inconfort résultant sera limité.

On étudiera également si ce n’est pas le condenseur qui est sous-dimensionné par rapport au compresseur : une augmentation de surface de condensation améliorera le rendement toute l’année.


Une supervision par régulation numérique

 La régulation numérique (ou digitale) est en plein essor ces dernières années.

Cette fois, ce n’est plus le câblage qui va déterminer les séquences, mais bien le programme inclus dans l’automate programmable ou le régulateur du groupe.

Il s’agit en fait une gestion globale du système qui vient se superposer à celle des équipements frigorifiques.

La régulation d’ensemble en sera fortement améliorée :

  • possibilité de modifier les points de consignes, les horaires de fonctionnement, …. à distance,
  • création d’alarme avant que les conséquences ne soient perçues de l’occupant,
  • possibilité de réaliser un délestage du groupe au moment de la pointe ¼ horaire du bâtiment,
  • visualisation meilleure du fonctionnement par mesure des pressions et des températures tout au long du cycle (via l’historique enregistré),
  • estimation des performances, de l’énergie consommée, …
Exemples.

Chez Delhaize, on met en place un délesteur de charge sur les groupes frigorifiques de telle sorte que ceux-ci ne s’enclenchent pas simultanément au démarrage des fours à pain, lorsque le bâtiment est en période de pointe électrique. L’inertie des équipements frigorifiques est telle que l’arrêt de quelques minutes ne pose pas de difficulté majeure. Et l’économie tarifaire est appréciable !

Certains régulateurs peuvent abaisser la température de consigne durant les 2 dernières heures de nuit. Les produits stockés « emmagasinent » du froid, ce qui permet de retarder l’enclenchement au tarif de jour. À noter que ce système augmente légèrement la consommation d’énergie, mais permet des économies financières.


Améliorer le fonctionnement du condenseur

Principe de base : abaisser la température de condensation

Abaisser la température de condensation, c’est abaisser le niveau de pression à la sortie du compresseur, c’est donc diminuer le travail de celui-ci et l’énergie qu’il consomme. On considère qu’abaisser la température de condensation de 1°C génère environ 3 % d’économie.

Abaisser la température de l’air extérieur

L’emplacement du condenseur doit éviter un réchauffement local de l’air. Par exemple, un condenseur placé sur une toiture couverte de roofing noir entraînera une surchauffe locale de l’air de plusieurs degrés en période d’ensoleillement … Le fait de répandre du gravier blanc sur la toiture et sous le condenseur sera favorable.

L’emplacement du condenseur devra éviter un ensoleillement direct de l’échangeur. Si le placement à l’ombre est impossible, le placement d’un système d’ombrage permettra d’abaisser le niveau de température.

Éviter la recirculation de l’air aspiré

Si le condenseur est situé trop près d’une paroi, l’air expulsé par le ventilateur centrifuge risque d’être rebouclé vers l’aspiration : de l’air chaud se mélange à l’air froid, la température de l’air d’aspiration augmente, … de même que la température de condensation.

Comment s’en rendre compte ? En se plaçant entre la paroi et le condenseur lorsque celui-ci est à l’arrêt. Au démarrage du condenseur, on ne peut sentir l’arrivée de chaleur. À défaut, on utilisera la poire à fumée.

Favoriser l’échange de chaleur

Valeur test

Pour un condenseur à eau, si l’écart entre T° condensation et la T°eau sortie condenseur > 6 à 10 K, il y a encrassement et donc chute de rendement. Si le dT° dépasse 15 K, il faut envisager l’extension de la surface du condenseur.

Pour un condenseur à air, l’écart entre la température de condensation et la température de l’air à l’entrée doit être de l’ordre de 15 à 20 K à pleine charge.

A charge partielle, le delta T° doit diminuer proportionnellement.

Remarque : pour connaître la température de condensation, lire la haute pression, et se référer tableau de correspondance température/pression du fluide frigorigène (Exemple pour le R22, R134a et R407c).

On favorise donc l’échange de chaleur au condenseur par :

  • un nettoyage régulier des ailettes (condenseurs à air), tout particulièrement à l’automne, avec la chute des feuilles. Nettoyage à l’air comprimé (si l’épaisseur des ailettes est inférieure à 0,15mm), ou à l’eau à faible pression si présence de boues (attention à la fragilité des ailettes, diriger le jet bien perpendiculairement au condenseur).

 

  • un détartrage régulier des conduites (condenseurs à eau).

Améliorer

Pour plus d’infos sur les mesures de maintenance à mettre en œuvre.

Modifier la régulation du condenseur

Nous devrions avoir des excellents rendements dans nos régions où les canicules sont rares ! La température de condensation devrait être de l’ordre 24 à 32°C. Dans ce cas, lorsque la température de l’air extérieur diminue, la capacité de refroidissement du condenseur augmente.
En théorie, c’est tout bénéfice pour le compresseur qui a moins de mal à travailler ! Et pourtant …

Problème avec les détendeurs thermostatiques

Le constructeur souhaite qu’une différence de pression minimale existe au niveau du détendeur, pour assurer une quantité de débit de fluide frigorifique suffisante dans l’évaporateur. C’est la Haute Pression qui pousse le réfrigérant à travers l’orifice de la vanne du détendeur. Il en résulte, avec une haute pression trop faible, que l’alimentation en réfrigérant est insuffisante, particulièrement au démarrage. Le compresseur aspire, mais il est sous-alimenté.

La basse pression devient aussi insuffisante et le groupe se met en sécurité Basse Pression. Mais comme cette sécurité est à réenclenchement automatique, le groupe « pompe », se fatigue et finalement déclenche par son thermique.

Avec un détendeur thermostatique, il est donc nécessaire de maintenir une Haute Pression suffisamment élevée. Dès lors, le constructeur impose une pression minimale, côté HP, à la sortie du condenseur.
Ce problème est renforcé en hiver… Si l’air est à 0°C, la surface d’échange devient excessive. De plus, on n’aura plus besoin de la pleine puissance frigorifique. De sorte que le condenseur sera largement surdimensionné pendant les périodes froides. S’il fait plus froid dehors, le constructeur va diminuer le débit d’air de refroidissement (en arrêtant l’un ou l’autre ventilateur, par exemple), mais il va maintenir le niveau de pression ! en fait, la régulation des ventilateurs sera réalisée sur base du pressostat HP.

Il y a économie sur le ventilateur… mais pas sur le compresseur !

Première amélioration : travailler avec un ventilateur à vitesse variable ou une cascade de ventilateurs

Condenseur : 4 ventilateurs sur 10 à vitesse régulée électroniquement ( Delhaize).

Supposons que le ventilateur du condenseur fonctionne en tout ou rien, avec l’exigence constructeur de maintenir les 12 bars minimum. Par exemple, il s’enclenche lorsque la pression monte à 16 bars et déclenche lorsque la pression descend à 12 bars. Ceci entraîne des cycles on-off « rapides » (+/- 2 min.) et une « fatigue » du moteur. En plus, la mise en route brutale du ventilateur provoquera une chute soudaine de la pression et de la température de condensation. Ceci provoque à son tour une ré-évaporation du liquide resté à la même température. Les bulles de vapeur provoquées par ce phénomène peuvent perturber le bon fonctionnement du détendeur et donc de l’installation (« flash gaz »).

Si par contre, on utilise un ventilateur à vitesse variable (moteur spécial ou régulateur de vitesse de rotation externe), en plus de la réduction de consommation du ventilateur, on optimisera le fonctionnement du compresseur qui restera régulé à 12 bars (dès que la pression augmente, le ventilateur accélère; et si la charge augmente encore, c’est la pression qui augmente naturellement).

Si le condenseur dispose de plusieurs ventilateurs, on obtient un résultat similaire à partir d’une mise en cascade des ventilateurs, via un pressostat à plusieurs étages. Cette fois, la pression de condensation est stable, ce qui évite la formation de bulles de gaz à l’entrée de l’évaporateur.

Remarque : installer la vitesse variable sur les ventilateurs existants peut demander le remplacement du moteur du ventilateur.

Cas particulier

Comme le condenseur est entièrement à l’extérieur, par très basse température, c’est toute la masse métallique qui est à 0°C, et même, clapets complètement fermés, le réfrigérant se condense à trop faible pression. Il faut dans ce cas rendre inopérants un certain nombre de tubes.

Pour les rendre inopérants, il suffit de remplir d’office certains tubes avec du réfrigérant liquide. Ce réfrigérant liquide sera sous-refroidi, mais la surface d’échange utile du condenseur ayant fortement diminué, il ne pourra en condenser trop. Ce remplissage est obtenu par une vanne à 3 voies fonctionnant automatiquement et branchée sur un réservoir auxiliaire de réfrigérant.

Comme il faut une certaine quantité de liquide pour remplir ces tubes, il y a lieu de prévoir un réservoir et une quantité de réfrigérant suffisamment grande.

Deuxième amélioration : travailler avec un détendeur électronique

Si le détendeur thermostatique travaille généralement avec une température minimale de condensation de 35°C, le détendeur électronique peut travailler avec une température minimale de condensation de 20°C !

Détendeur électronique.

Il est plus cher à l’investissement, mais ce prix est largement récupéré par l’usage de l’installation. Certains constructeurs annonce des temps de retour simple de l’ordre de 2,5 ans.

De plus, la présence d’un détendeur numérique permet d’optimiser la température de condensation en fonction de la charge du compresseur.

Exemple.

Voici la séquence prévue par un constructeur de régulation :

A 100 % de puissance, l’écart « température de condensation – fluide de refroidissement » est choisi à 12 K.

A 0 % de puissance, l’écart est de 4 K :

la consommation du compresseur est diminuée par la baisse de pression de condensation et le ventilateur adaptera sa vitesse de rotation pour maintenir cette consigne. L’écart n’est pas de 0 K, car les ventilateurs tourneraient tout le temps.

Exemple 

si la T°ext = 30°C et Travail compresseur = 25 %, la Tdeg;condensation = 36°C

si la T°ext = 30°C et Travail compresseur = 50 %, la T°condensation = 38°C

si la T°ext = 20°C et Travail compresseur = 25 %, la T°condensation = 26°C

si la T°ext = 10°C et Travail compresseur = 25 %, la T°condensation = … 20°C car c’est la valeur minimale de condensation

Remarque.
Adopter une température minimale de condensation de 20°C suppose que le sous-refroidissement soit suffisamment élevé. A défaut, la moindre perte de charge sur le tracé va provoquer une vaporisation dans le condenseur (« flash-gaz »). C’est parfois un problème rencontré lorsqu’il faut remonter plusieurs mètres avec la tuyauterie.

Pour s’en prémunir, il est possible de sous-refroidir volontairement le liquide par la création d’une zone de sous-refroidissement dans le condenseur (voir figure), ou en plaçant un échangeur à plaques sur le liquide (à la sortie).


Placer des compteurs sur l’installation existante

Placer un compteur horaire sur l’installation en prévision de son remplacement futur !

Toutes les installations sont surdimensionnées. Or un camion consomme toujours plus qu’une camionnette… Si l’on sait en plus que le fonctionnement d’un compresseur à faible charge est toujours difficile, il est vraiment utile de mesurer le fonctionnement moyen actuel.

La mise en place d’une installation de puissance adéquate et d’une régulation performante demande de connaître la puissance effective nécessaire en fonction des saisons. Aussi, on placera un simple compteur horaire sur l’alimentation électrique du compresseur pour connaître le temps de fonctionnement et donc la puissance moyenne demandée. Avec quelques relevés lors des opérations de maintenance, le concepteur pourra mieux choisir la nouvelle machine frigorifique, lors du remplacement de la machine actuelle.

Si l’installation doit vaincre les apports d’une machine spécifique à enclenchement discontinu, la puissance moyenne peut être trompeuse : à certains moments, c’est la puissance totale qui est demandée, et zéro le reste du temps… Mais ce problème est surtout rencontré en secteur industriel. Idéalement, on enregistrera la puissance demandée, en relevant en parallèle la source des apports thermiques.

Prévoir dès le départ la mesure du COP de l’installation

Pour la bonne gestion future d’une grosse installation, on peut imaginer de placer un compteur d’énergie sur l’eau glacée et un compteur électrique sur le compresseur (coût de l’ordre de 5 000 Euros). Il sera alors possible d’imposer un COP moyen annuel minimum à la société de maintenance… en laissant celle-ci se débrouiller pour y arriver.

Un remboursement de la différence peut être prévu comme pénalité en cas de non-respect.


Récupérer l’eau de pluie et des condensats

Principe d’amélioration

Sur le principe des condenseurs évaporatifs, il serait intéressant d’étudier la récupération possible des condensats issus du dégivrage des meubles frigorifiques pour les vaporiser au niveau du condenseur à air.

Condenseur évaporatif  : principe.

Un « truc » vieux comme le monde qu’utilisent tous les frigoristes est l’aspersion des batteries des condenseurs avec de l’eau du réseau afin de diminuer la température de condensation en période caniculaire.

Système D pour abaisser la température de condensation.

Ce procédé a toujours fait sourire les puristes sachant que ce genre de technique de refroidissement :

  • coûte cher. En effet, l’eau utilisée est de l’eau de « ville ». Considérant qu’un litre peut coûter jusqu’à; 2,5 €/m³; (et ce n’est qu’un début), le refroidissement des condenseurs peut s’avérer prohibitif à moyen terme;

 

  • risque d’endommager les ailettes du condenseur vu que l’eau de ville est entartrante. 1 mm d’épaisseur de dépôt de tartre sur les ailettes des condenseurs réduit la puissance des condenseurs de l’ordre de 10 à 20 % (source Baltimore).

L’eau qui serait récupérée à partir des condensats est semblable à de l’eau de pluie qui, dans notre beau pays, tombe déjà souvent sur le condenseur. Cette eau n’est pas incrustante et donc intéressante, moyennant filtration à vaporiser sous les condenseurs lorsque c’est nécessaire.

Refroidissement adiabatique de l’air.

L’évaporation de l’eau nécessite un changement d’état, et donc une quantité de chaleur appelée « chaleur de vaporisation ». Cette énergie est prise sur l’air, … qui se refroidit en s’humidifiant.

Globalement, dans le système « eau + air », rien ne se perd, rien ne se crée. L’énergie totale est conservée : l’énergie de l’air « sec et chaud » est égale à l’énergie de l’air « froid et humide ». On dit que la transformation est « isenthalpique » ou encore « adiabatique« .

Sur le diagramme de l’air humide, l’évolution de l’air suit une isenthalpie. Au maximum, l’air peut atteindre la saturation.

Évaluation de l’amélioration

Un litre d’eau évaporée évacue 2 500 kJ de chaleur.

Pour obtenir le même effet avec le refroidissement de l’eau, on devrait refroidir 60 litres d’eau de 10°C… (sur base d’une capacité calorifique de l’eau de 4,18 [kJ/kg.K]).

Dans le cas qui nous intéresse, si de l’eau de condensats est vaporisée au niveau du condenseur sur de l’air extérieur à 30°C , 40 % HR, la température humide est de 20°C 100 % HR (déplacement isenthalpique sur le diagramme de l’air humide). En réalité la température de l’air n’atteint pas cette valeur; elle sera de l’ordre de 5 °C en-dessous de la température de l’air extérieur de 30°C

Comparons les systèmes en fixant des valeurs moyennes : une température d’air de 30°C 40 % HR, une réduction de la température d’entrée par refroidissement adiabatique de 5°C, un pincement des échangeurs de 6°C :

Entrée condenseur Sortie condenseur T°condens. fluide frigorifique
Condenseur à air normal T° air sec = 30° T° air = 30° T° air = 37° 43°
avec évaporation d’eau T° air sec = 30° T° air = 25° T° air = 32° 38°

Cette approche simplifiée situe l’ordre de grandeur de la température de condensation, et donc l’impact sur la consommation du compresseur. En effet, si l’on prend un cycle de machine frigorifique, on se rend compte que l’abaissement de température de 5°C peut réduire les consommations du compresseur de l’ordre de 10 %.

Débits d’eau nécessaires

Les débits d’eau nécessaires pour refroidir les condenseurs peuvent être importants. L’exemple suivant nous donne une idée des débits d’eau rencontrés lorsque l’on veut pré-refroidir l’air à l’entrée du condenseur afin de faire chuter la température de condensation.

Exemple.

Sur le même principe que le système D souvent utilisé par les frigoristes, un fabricant a mis au point un condenseur adiabatique, à savoir que la température de l’air à l’entrée du condenseur est abaissée par refroidissement adiabatique par l’humidification d’un matelas au travers duquel l’air de refroidissement du condenseur passe.

Condenseur adiabatique (source : Balticare).

Pour une puissance de condensation de l’ordre de 300 kW, ce qui correspond à la puissance utile de condensation pour un supermarché de 2000 m² (150 m de meubles frigorifiques linéaires), de 10 à 40 l/min ou de 600 à  2 400 l/h d’eau sont nécessaires afin d’abaisser la température de l’air d’entrée de 6 à 8°C.

Si l’on considère que 150 m de meubles condensent 150 l/h, le débit d’eau récupéré n’est pas suffisant.

Récupération des condensats des meubles frigorifiques, des chambres froides, …

La quantité de condensats issue du dégivrage des meubles frigorifiques et des chambres de refroidissement peut être importante.

Calculs

Pour en savoir plus la quantité de condensats piégée dans les meubles frigorifiques ouverts.

Cette quantité est évaluée par le calcul à une valeur de 0,65 litre/mètre linéaire de meuble frigorifique ouvert. Cette valeur dans la pratique est plus importante (source des constructeurs) et peut atteindre de l’ordre de 1 litre /ml voire plus pour les congélateurs ouverts (gondole par exemple).

À l’heure actuelle, les condensats sont envoyés directement à l’égout. Pourtant la teneur en énergie de refroidissement est relativement importante puisqu’on dispose d’une eau à une température un peu supérieure à 0°C. Cette eau pourrait très bien être utilisée pour refroidir le condenseur lorsque les températures extérieures dépassent les 24°C par exemple.

Récupération de l’eau de pluie

L’utilisation de l’eau de pluie peut se révéler intéressante vu, qu’en général, les supermarchés disposent de surface de toiture importante. En effet, pour un supermarché de 2 000 m² de surface de vente, on peut arriver à des surfaces de toiture de l’ordre de 3 000 m² comprenant les locaux sociaux, les réserves, les ateliers, …

Exemple.

En Belgique, les précipitations atteignent en moyenne 60 mm d’eau/m².mois. Ce qui veut dire qu’une surface de 3 000 m²; est capable de capter en moyenne de l’ordre de :

volume d’eau horaire = 3 000 [m² x 0.06 [m³/m².mois] / (24 [heures] x  30 [jours]);

volume d’eau horaire = 150 litres 

Toiture de supermarché (source : Delhaize).

C’est un calcul théorique; ce qui implique que, par moment, les précipitations peuvent être très importantes et par d’autres nulles.

Si l’on veut en amélioration pouvoir profiter d’un refroidissement adiabatique avec de l’eau de pluie il est nécessaire d’accumuler l’eau dans une citerne.

En amélioration, pour autant qu’il y ait de la place disponible, ce système pourrait être couplé avec la récupération d’eau de pluie pour les chasses de WC du personnel; à approfondir.

Limiter les apports solaires [Froid alimentaire]

Limiter les apports solaires


Les vitrages

  

Source : bioshanti.

Source : Mutsaart (Delhaize).

Dans les commerces « non-food », un apport solaire au travers des vitrages constitue vite un inconfort thermique sachant qu’en général les apports internes tel que l’éclairage, les caisses, les occupants, … sont importants.
Dans les commerces où le froid alimentaire prend une place prépondérante, le problème se complexifie dans le sens où les apports solaires au travers d’un vitrage est une source :

  • d’inconfort thermique pour la clientèle et le personnel dans les zones où les apports internes sont importants ;
  • d’augmentation des besoins en froid des meubles frigorifiques qu’ils soient ouverts, fermés ou mixtes.

L’idée que l’on pourrait bénéficier des apports solaires pour améliorer le confort thermique des clients à proximité des meubles frigorifiques est un non-sens. En effet, le rayonnement solaire constitue alors un apport direct pour les meubles frigorifiques et augmente nécessairement les consommations énergétiques de la production de froid.

Dans les commerces avec apports internes élevés, il faut limiter les surfaces vitrées comme les vitrines situées au Sud et surtout à l’Ouest.

Prendre la lumière naturelle au Nord (dans la limite des possibilités urbanistiques) est une solution intéressante vu que la prise de lumière se réalise uniquement sur le rayonnement diffus. Par exemple, la prise de lumière en toiture côté Nord sous forme de « shede ».

« Shedes » orientation nord

  

Source : Greenwich (« Sainsbury ») et Mutsaart (Delhaize).

Pour les commerces, cela représente les avantages et les inconvénients suivants:

(+)

  • un plus au niveau du confort visuel ;
  • un éclairage naturel à l’aide du rayonnement diffus restant relativement constant tout au long de l’année ;
  • ces ouvertures peuvent permettre de réduire les consommations énergétiques des installations d’éclairage artificiel moyennant un « dimming » des installations.

(+ ou -)

  • une contrainte architecturale limitée ;
  • des déperditions en chauffage plus importantes. Néanmoins, en considérant une isolation de toiture renforcée et un vitrage de bonne qualité, les déperditions peuvent être réduite au maximum.

Apports solaires directs limités (côté sud), apports de lumière naturelle diffuse favorisé (« shede » de toiture). Un vitrage est un élément de l’enveloppe dont le bilan thermique est particulier.

Ainsi, durant la saison de chauffe :

  • Il perd constamment de la chaleur par transmission vers l’extérieur plus froid.
  • Il gagne de la chaleur, pendant les heures d’ensoleillement, par le rayonnement solaire qui le traverse.

Dans les commerces « non food »

Le bilan sur la saison de chauffe est toujours négatif : plus la surface vitrée est importante, et plus la consommation de chauffage est élevée en hiver. Et ceci, quelle que soit l’orientation. La demande de chaleur du magasin est faible, car il est rapidement « saturé » de chaleur par les charges internes (éclairage, caisse, occupation, …). Et lorsque le rayonnement solaire se produit, il ne contribue pas à diminuer la puissance de chauffage qui est nulle à ce moment, mais apporte un état de surchauffe. De plus, si l’on regarde le bilan annuel, l’augmentation de la surface vitrée ne peut que générer un supplément de consommation en été. Toute augmentation de la surface vitrée entraîne donc une augmentation de la consommation globale du bâtiment.

On en conclut que si le magasin a des apports internes importants, il est raisonnable de se fermer au Sud et à l’Ouest pour s’ouvrir au Nord. On ne garde alors de la composante solaire que la fonction d’éclairage naturel des espaces. A fortiori, si la structure est de faible inertie thermique.

Dans les commerces « food »

Le problème est le même. La fausse idée que les apports internes sont peu importants est tenace. En effet, le fait de multiplier les comptoirs ou meubles frigorifiques ouverts tend à réduire l’impression de chaleur permanente que l’on pourrait rencontrer dans des magasins de mode par exemple. En réalité, les apports sont bien là mais les meubles frigorifiques ouverts jouent le rôle d’énorme climatiseur; la consommation énergétique se reportant sur l’installation de production de froid.

L’idéal est nécessairement axé sur la devise d’Énergie+ :

« L’économie énergétique réside dans l’énergie que l’on ne consomme pas ! »

En d’autres termes, pour consommer moins dans les commerces, il est nécessaire de :

  • fermer les meubles frigorifiques ouverts (d’accord, c’est pas très porteur comme message mais …) ;
  • réduire les apports internes (éclairage performant par exemple);
  • limiter les apports solaires directs.


Pour fixer un ordre de grandeur, voici un extrait de la réglementation thermique française RT 2000 relative à la protection contre l’ensoleillement des bâtiments climatisés autres que les habitations.

Le principe de cette réglementation est de compenser des surfaces de vitrage trop importantes par une protection solaire plus sévère et vice-versa.

Ainsi,

(S Sbaies vert x FSbaies vert x Fma) / (S Sfaçades)
+ 2 x (S Sbaies hor x FSbaies hor) / S Stoit

doit être inférieur à 0,35 (pour le Nord de la France).

où,

  • Sbaies vert et Sbaies hor = surface des baies verticales dans toutes les orientations à l’exception du nord et surface des baies horizontales.
  • FSbaies vert et FSbaies hor= facteur solaire des baies verticales et horizontales.
  • ma = coefficient de masque architectural (= 1 si pas de masque (valeur par défaut), = 0,75 si débord de toit ou auvent orienté du SE au SO de plus de 0,25 x hauteur baie, = 0,7 si auvent orienté du SE au SO de plus de 0,5 x hauteur de baie).
  • façades et Stoit = surface des façades dans toutes les orientations à l’exception du nord et surface de toiture.

Concevoir

Choix des vitrages.

Les protections solaires

On a vu dans la réglementation française, ci-dessus, que les apports solaires dépendent évidemment de la surface du vitrage, mais aussi du facteur de la baie, c’est-à-dire du pourcentage d’énergie solaire qui traverse le vitrage par rapport à l’énergie incidente.

Il existe divers moyens de protéger la baie, par des stores enroulables (principalement extérieurs), par des brise-soleil, par des vitrages réfléchissants, …

Photo protections solaires - 01.   Photo protections solaires - 02.   Photo protections solaires - 03.

Brise-soleil, stores enroulables, vitrages réfléchissants (source Delhaize).

Les protections solaires les plus performantes permettent de diminuer de près de 90 % les apports de chaleur au travers des vitrages. Toute la difficulté du choix consistera à concilier la protection contre les surchauffes et un apport en éclairage naturel suffisant, quelle que soit la saison.

Concevoir

Placer des protections solaires.