Thermographie

Améliorer les corps de chauffe

Thermographie

Thermographie de 2 façades.
A gauche avec les radiateurs devant les allèges non isolées
et à droite devant une allège isolée.

Isoler les allèges derrière les radiateurs

La perte de chaleur à travers une paroi extérieure est multipliée par 2 si elle se trouve derrière un radiateur. On a donc intérêt à augmenter l’isolation de cette partie de paroi. Si la place le permet (il faut laisser un espace de 3 cm entre le radiateur et la paroi), il est recommandé de coller sur la face intérieure une plaque isolante de 2 cm d’épaisseur, recouverte d’une feuille d’aluminium.

Exemple.

Reprenons l’exemple suivant :

Avec la présence du radiateur, une allège composée d’un mur plein de 24 cm (ancienne construction) perd sur la saison de chauffe (pour 1 m² de paroi) :

2,6 [W/m²K] x 1 [m²] x (24 [°C] – 6 [°C]) x 5 800 [h/an] / 0,7
= 388 [kWh/an] ou 39 [litres fuel ou m³ gaz/an]

où :

  • 2,6 [W/m²K] = le coefficient de transmission thermique (k ou U) du mur de brique non isolé
  • 24 [°C] = température moyenne intérieure au dos du radiateur durant la saison de chauffe
  • 6 [°C] = température moyenne extérieure durant la saison de chauffe (région de Mons)
  • 5 800 [h/an] = durée de la saison de chauffe
  • 0,7 = le rendement global de l’installation de chauffage existante

Si on place un isolant de 0,5 cm recouvert d’une feuille d’aluminium au dos du radiateur (collé au mur), le coefficient de transmission thermique (k) du mur passe à 1,4 W/m²K et la perte devient :

1,4 [W/m²K] x 1 [m²] x (24 [°C] – 6 [°C]) x 5 800 [h/an] / 0,7 = 208 [kWh/an]

L’économie est donc de 180 kWh/m².an (environ 18 litres de fuel par m² ou 4 €/an), ce qui rentabilise rapidement l’investissement consenti (environ 3 €/m²).

Exemple.

Il est très intéressant de supprimer les allèges vitrées
(surtout ici constituées de simples vitrages) par des panneaux opaques isolants.


Diminuer la température des chauffages à air chaud

Les corps de chauffe favorisant le transfert de chaleur par convection (bouche d’air chaud, convecteur, ventilo-convecteur, aérotherme, …) provoquent une stratification des températures (principalement dans les locaux de grande hauteur) et surchauffent ainsi inutilement la partie haute du local. Cette stratification est d’autant plus importante que la température de l’air et donc de l’eau d’alimentation du système est importante.

On a donc tout intérêt à diminuer au maximum la température de l’eau alimentant les convecteurs ou les batteries d’air chaud. Avec une limite : ne pas créer d’inconfort par courant d’air trop frais.


Dégager les corps de chauffe

Tous les éléments enveloppant un corps de chauffe (tablettes, alcôves décoratives, livres ou vêtements que l’on dépose sur les radiateurs, tentures recouvrant les corps de chauffe) sont des entraves à l’émission de chaleur. En soi, cette entrave ne provoque pas une consommation complémentaire mais risque de conduire à un inconfort.

Évaluer

Pour en savoir plus sur l’inconfort lié aux émetteurs.

Si cet inconfort pousse les gestionnaires à augmenter la température de l’eau de l’installation et peut-être à surchauffer certaines zones du bâtiment, cela va évidemment à l’encontre de l’efficacité énergétique.

Mais où se trouve le corps de chauffe…?

On a donc toujours intérêt à éliminer tous les obstacles présents sur les corps de chauffe.

L’émission d’un radiateur ne sera guère altérée si les dimensions des niches suivantes sont respectées :

Dimension minimales à respecter pour les cache-radiateurs :
3 [cm] < a1 < 5 [cm]
a2 > 2 [cm]
10 [cm] < b1 = c1
b2 = c3 = p et
6 [cm] < b2 = c3 = p < 12 [cm]
c2 = h


Placer des déstratificateurs

Dans les ateliers de grandes hauteurs, des ventilateurs de déstratification peuvent être placés pour renvoyer l’air chaud vers le bas et homogénéiser la température du local.

Ouille, ça est haut, chef !

–> le chauffage des radiateurs monte en toiture…

…d’où l’usage d’un ventilateur de déstratification.

Régulation du chauffage

Améliorer la régulation [chauffage central]

Régulation du chauffage

Tout simplement, réguler les installations qui ne le sont pas

Trop d’installations anciennes ne possèdent encore aucune régulation : la température de l’eau dans la chaudière ou la position des vannes mélangeuses est modifiée manuellement en fonction de la saison. Il n’y a aucun réglage de la température ambiante, si ce n’est par l’ouverture des fenêtres.

Cette situation est évidemment inacceptable.

Si on part de rien, l’idéal serait de concevoir une régulation complète telle qu’on pourrait l’imaginer pour une nouvelle installation. Il faudra cependant être attentif au type de la ou des chaudières installées. Par exemple, peuvent-elles travailler à basse température ou encore fonctionner à débit nul ?

Concevoir

Pour en savoir plus sur les critères de choix du principe de régulation.

Une installation de régulation peut aussi être réhabilitée : remplacement des moteurs de vanne, remplacement des régulateurs, remplacement des sondes, ….

Études de cas 

La rénovation du Collège St Paul à Godinnes.

Le gain

Comme pour toutes les améliorations qui sont décrites ci-après, il est difficile de chiffrer précisément le gain énergétique qui résultera d’un remplacement complet de la régulation.

Cela dépend de la gravité réelle de la situation de départ (quelle est la température régnant réellement dans les différentes zones du bâtiment ?) et du degré de finesse de la nouvelle régulation.

Voici cependant un chiffre réaliste que l’on rencontre couramment dans la littérature et qui se base sur des situations vécues.

Le placement d’une régulation correcte sur une installation non régulée (c’est-à-dire sans ralenti nocturne et sans contrôle précis de la température intérieure) permet :

>> 30 % d’économie sur la facture annuelle de combustible.

Concevoir

Régulation des installations de chauffage.

Améliorer le ralenti nocturne

La pratique d’un ralenti nocturne par abaissement de la température d’eau est la technique de ralenti la moins efficace (et pourtant la plus couramment utilisée).

Évaluer

Pour évaluer l’efficacité énergétique du ralenti nocturne.

Il est intéressant de modifier le ralenti existant en adjoignant au régulateur existant un thermostat d’ambiance complémentaire placé dans un local témoin et associé à une horloge.

Le système

Lorsque l’horloge passe en horaire de nuit, l’installation est complètement coupée par action directe :

  • Soit sur la chaudière. Dans ce cas, la chaudière redescend en température.
  • Soit sur les vannes mélangeuses. Celles-ci se ferment et la chaudière est maintenue sur sa consigne.

Si la température intérieure mesurée par le thermostat d’ambiance passe sous la consigne de nuit (par exemple 16° en semaine et 14° le week-end), soit la chaudière se remet en marche, soit les vannes s’ouvrent pour maintenir cette consigne.

Exemple.

Si l’installation est équipée d’un régulateur analogique ne pouvant être compensé par une sonde de température intérieure, le schéma de principe de la nouvelle régulation peut être semblable à :

Au passage à l’horaire de nuit, le thermostat d’ambiance mesurera une température intérieure supérieure à sa consigne, son contact s’ouvrira, déconnectant la sonde extérieure. Pour le régulateur, cela équivaut à une mesure, par la sonde extérieure, d’une température infinie. Donc, soit la chaudière va se couper, soit les vannes mélangeuses vont se fermer.
Si durant la coupure, la température intérieure descend en dessous de la température de consigne du thermostat d’ambiance (par exemple 16°C), le contact du thermostat se ferme reconnectant la sonde extérieure. Le régulateur central se remet alors à fonctionner comme auparavant (en principe sur sa courbe de chauffe de nuit). Au passage à l’horaire de jour, la sonde extérieure se reconnecte et le régulateur central reprend sa fonction.

Si, d’origine, le régulateur peut être compensé par sonde intérieure, la sonde de compensation peut aussi bien servir au réglage de la courbe de chauffe de jour qu’à la coupure de nuit.

Ce sera également le cas si l’installation est équipée d’un régulateur digital. Toutes ces fonctions sont vraisemblablement déjà intégrées dans le régulateur. Il faut examiner avec le fabricant du régulateur ou l’installateur la possibilité d’adjoindre un thermostat d’ambiance de nuit dans le programme existant.

On peut également envisager une deuxième façon de travailler, légèrement moins performante. Il s’agit de placer une deuxième sonde extérieure, associée à une horloge. Si la température extérieure de nuit ne descend pas en dessous d’une certaine valeur à régler (par exemple 5°C), l’installation est complètement coupée. Si la température extérieure descend en dessous de cette valeur, le ralenti se fait par abaissement de la courbe de chauffe comme auparavant.

Une troisième possibilité, qui ne demande aucun investissement est d’abaisser au maximum la courbe de chauffe de nuit. Ainsi, durant la majeure partie de la saison de chauffe, la température d’eau demandée la nuit est inférieure à 20°C, ce qui équivaut à forcer la fermeture complète des vannes.
L’inconvénient de ces deux dernières solutions est l’absence de contrôle de la température ambiante nocturne.

Calculs

Pour visualiser l’abaissement de courbe minimal à régler sur votre régulateur.

Le gain

Il est difficile de chiffrer précisément l’économie réalisable en modifiant le mode de ralenti nocturne. Cela dépend d’une série de paramètres qui influencent le bilan thermique :

Exemple.

(Source : Guide pour la pratique de l’Intermittence du chauffage dans le tertiaire à occupation discontinue, ADEME, 1989)

Trois bâtiments, respectivement de 500 (1 niveau), 2 000 (2 niveaux) et 4 000 m² (4 niveaux) sont chauffés 10 h par jour et 5 jours par semaine.

Le niveau de surpuissance de l’installation de chauffage est assez élevé puisqu’il atteint 2 fois les déperditions (calculées avec un taux de ventilation réduit).

Trois niveaux d’isolation ont été repris :

  • peu isolé : simples vitrages, murs non isolés,
  • très isolé : doubles vitrages, murs avec 8 cm d’isolant,
  • bien isolé : niveau intermédiaire entre les 2 précédents.

Trois modes de coupure sont proposés :

Économie par rapport au fonctionnement continu
Mode de ralenti Isolation 500 m² 2 000 m² 4 000 m²

Abaissement de température d’eau

peu isolé 12,5 % 11,4 % 10,8 %
bien isolé 11,7 % 10,9 % 10,3 %
très isolé 10,2 % 9,5 % 8,3 %

Coupure (horloge)

faible inertie
(150 kg/m²)
peu isolé 37,7 % 31,9 % 29,5 %
bien isolé 33,8 % 29,6 % 26,6 %
très isolé 26,5 % 22,6 % 17,0 %
forte inertie
(400 kg/m²)
peu isolé 37,5 % 28,0 % 25,0 %
bien isolé 30,6 % 25,2 % 22,0 %
très isolé 21,9 % 18,2 % 13,7 %

Optimiseur

faible inertie
(150 kg/m²)
peu isolé 38,5 % 33,4 % 31,2 %
bien isolé 35,0 % 31,4 % 28,7 %
très isolé 28,6 % 25,1 % 20,1 %
forte inertie
(400 kg/m²)
peu isolé 38,2 % 31,2 % 28,6 %
bien isolé 33,4 % 28,7 % 25,8 %
très isolé 25,6 % 22,2 % 17,6 %

Prenons un ancien bâtiment lourd (fort inerte) et peu isolé, de 2 000 m². Ce bâtiment consomme 45 000 litres de fuel par an. Le gain possible en passant d’un abaissement nocturne à une coupure complète s’élève à :

45 000 [litres/an] x 28 [%] / (100 [%] – 11,4 [%]) = 14 221 [litres/an]

Pour tenir compte de l’éventuelle faible reproductibilité des pourcentages d’économie repris ci-dessus, on peut examiner le problème sous l’angle de la rentabilité de l’investissement.

Les modifications de régulation proposées pour passer d’un abaissement à une coupure nocturne ont un coût voisin de 750 € (à confirmer par devis, au cas par cas).

Avec un prix du fuel de 0,2116 €/litre et un temps de retour souhaité de 2 ans, cela représente une économie escomptée de :

750 [€] / 2 [ans] / 0,2116 [€/litre] = 1 772 [litres/an]

ou 1 772 [litres/an] / 45 000 [litres/an] = 4 [%]

Ceci est tout à fait faisable au vu des chiffres théoriques d’économie.

Améliorer le ralenti nocturne est donc rentable. Dès lors, il ne sert à rien d’affiner les calculs, n’hésitons pas à agir !

Les précautions

Si le thermostat d’ambiance agit directement sur la chaudière

Dans ce premier cas, il faut que la chaudière existante puisse retomber complètement en température et ensuite fonctionner à température réduite (car commandée par le thermostat d’ambiance de nuit) sans risquer l’apparition de condensation et de corrosion. Ce devrait être le cas si la courbe de chauffe agissait déjà sur la température de la chaudière.

Les anciennes chaudières en fonte ne posent pour cela, aucun problème. Ce n’est pas le cas pour les anciennes chaudières en acier qui, elles, sont sensibles à la corrosion.

Anciennes chaudières en fonte.

Il est évident que les chaudières modernes très basse température s’accommodent très bien de ce type de régulation.

Si un doute subsiste sur les capacités la chaudière à résister à ce mode de fonctionnement, le plus simple est d’interroger le fabricant de la chaudière ou son fournisseur : « est-ce que le brûleur de la chaudière dont je dispose peut être commandée par un thermostat d’ambiance, sachant que cela impliquera par moment un fonctionnement à très basse température ».

Notons qu’il faut être plus attentif avec les chaudières fonctionnant au fuel du fait de l’acidité plus importante des condensats qui peuvent apparaître.

En ce qui concerne le gaz, signalons également que l’ARGB, recommande que toutes les chaudières gaz atmosphériques soient coupées lorsqu’il n’y a plus de besoin de chauffage : les légères condensations des fumées qui résultent de la remontée en température s’évaporent rapidement.

Une exception cependant à cette règle : il faut faire attention avec les anciennes chaudières atmosphériques pour lesquelles de la condensation risque de tomber sur les rampes du brûleur et provoquer une mauvaise combustion et l’apparition d’imbrûlés.

Si le thermostat d’ambiance agit sur les vannes mélangeuses

Si la chaudière ne peut pas travailler en basse température, ce qui est le cas de beaucoup d’anciennes chaudières en acier, la coupure doit s’effectuer au niveau des vannes mélangeuses. Au passage à l’horaire de nuit, les vannes se ferment. Si la température intérieure descend en dessous de la température de consigne du thermostat, les vannes s’ouvrent pour maintenir cette consigne.

Au moment de la relance, le régulateur repasse dans son mode de fonctionnement normal, basé sur la courbe de chauffe de jour ou sur dans un premier temps, sur une température d’eau supérieure si le régulateur possède un mode « accéléré ».

Il faudra cependant être attentif à ne pas créer de choc thermique dans la chaudière au moment de la relance. En effet, si les vannes restent fermées toute la nuit, la température de l’eau dans les corps de chauffe et les conduites va chuter aux environs de 20°C. Lorsque les vannes s’ouvrent en grand, c’est le volume d’eau des circuits qui « déboule », à une température de 20°C, vers la chaudière qui, elle, est restée chaude.

En période de coupure, les vannes mélangeuses sont fermées et la chaudière est maintenue en température.

À l’ouverture des vannes, un train d’eau froide est envoyé vers la chaudière chaude.

Le risque encouru est double :

  • Tout d’abord, pour les chaudières en fonte, l’arrivée de l’eau froide en contact avec la fonte chaude risque de provoquer un choc thermique, une fatigue de la fonte et à terme une rupture de la chaudière.

 

  • Ensuite la chaudière va se remplir d’eau froide qu’elle devra remonter en température. Pendant une courte période, la chaudière fonctionnera à une température d’eau risquant de provoquer une importante condensation des fumées et donc de la corrosion dans la chaudière, surtout pour les anciennes chaudières en acier fonctionnant au fuel (les condensats issus de la combustion de ce dernier sont plus acides).

Deux solutions sont possibles pour prévenir ces problèmes :

  • Prévoir une ouverture progressive des vannes mélangeuses. Dans ce cas, l’eau froide se mélangera progressivement à l’eau chaude, ce qui évitera une chute brutale de la température.
Exemples : en pratique.

La fonction d’ouverture progressive des vannes mélangeuses est généralement intégrée dans les nouveaux régulateurs. En cas de doute, la confirmation peut être demandée au chauffagiste et/ou au fabricant.

Dans le cas d’un ancien régulateur, on peut équiper l’installation d’un régulateur qui commandera la fermeture progressive des vannes si la température de retour chute trop bas.

Un régulateur impulsionnel à 3 points réagit à la température d’eau de retour vers la (les) chaudière(s). Si la température de retour chute en dessous de la consigne, le régulateur envoie un impulsion de fermeture à (aux) vanne(s) mélangeuse(s) et vice-versa.

Raccordement électrique du régulateur 3 points : si la température de l’eau des circuits secondaires est supérieure à la consigne de leur courbe de chauffe ou si la température de retour vers les chaudières est trop basse, une impulsion est envoyée aux moteurs des vannes mélangeuses qui se ferment d’un cran. L’ouverture des vannes n’est possible que si, simultanément, la température des circuits secondaires est trop basse et la température de retour vers les chaudières est suffisante.

On peut aussi imaginer dans le cas d’une installation existante, un système plus simple où un simple thermostat limiteur court-circuite la commande d’ouverture de la vanne si la température de retour chute en dessous du minimum requis. Cette solution ne permet pas de refermer les vannes en cas de dépassement trop important.


Un thermostat limiteur se met en série avec la commande d’ouverture de la vanne 3 voies.

La troisième solution est de décaler dans le temps le moment de la relance de chaque circuit, ce qui permet un mélange progressif de l’eau froide de l’installation à l’eau chaude. La difficulté de cette solution étant qu’en cas de changement de gestionnaire, on oublie le pourquoi du décalage des horloges les unes par rapport aux autres. L’autre inconvénient est que l’on ne contrôle pas exactement la température de retour.

  • Prévoir, dans les circuits primaires en boucle ouverte, un circulateur de recyclage sur les chaudières qui renvoie une partie de l’eau chaude vers la chaudière lorsque la température de retour vers celle-ci est trop basse (en dessous de 55°C). Cette solution n’est cependant pas de idéale et ne fonctionne pas pour les installations déjà équipées d’une pompe de recyclage. En effet, il faut recycler un débit équivalent au débit de l’ensemble des circuits secondaires si l’on veut obtenir une température de 55°C en mélangeant de l’eau à 20°C avec de l’eau à 90°C. Or les pompes de recyclage sont couramment dimensionnées pour recycler 1/3 du débit nominal de la chaudière.

Évaluer 

Attention cependant, le dimensionnement de cette pompe de recyclage n’est pas arbitraire et un mauvais choix peut conduire à un fonctionnement erroné de l’installation. Pour en savoir plus sur les problèmes possibles.

Calculs 

 

Exemple de calcul d’une pompe de recyclage.

 

Attention, cependant, ajouter des sondes et des régulateurs sur une ancienne installation complexifie cette dernière. Cela implique d’une part une information de l’exploitant sur le nouveau fonctionnement de l’installation et d’autre part, de consigner par écrit, le mode d’emploi de celle-ci. Ce dernier point est important car les années passant ou si le personnel change, on ne saura plus à quoi servent les régulateurs et les sondes et l’installation ne sera plus gérée.

Tenant compte de cela, il vaut parfois mieux remplacer l’entièreté des anciens régulateurs par un équipement moderne permettant les différentes fonctions décrites ci-dessus.

Placement d’un optimiseur sur une installation existante

La technique de ralenti la plus performante, d’un point de vue énergétique, est l' »optimiseur« .

Il faut cependant être prudent lorsque l’on désire améliorer sa régulation en plaçant un tel équipement. En effet, celui-ci ne sera performant que s’il équipe une installation ne présentant pas de désordre hydraulique.

Exemples.

lorsque l’on dispose de pompes à vitesse variable, il est conseillé de rétrograder de vitesse durant la nuit. Cependant si l’optimiseur ne gère pas lui-même le changement de vitesse, il ne pourra jamais calculer correctement le moment de la relance puisque les caractéristiques du système ne sont pas constantes.

Ceci peut conduire à une anticipation de la relance telle qu’il n’existe plus de ralenti de nuit, bien que le responsable du bâtiment le croit effectif.

La présence d’incompatibilités hydrauliques entre les circuits peut empêcher certaines parties de bâtiment ou le bâtiment tout entier d’atteindre sa température de consigne de jour.

Ici aussi, l’optimiseur va anticiper la relance croyant erronément le moment de la relance en cause, jusqu’à ce que le ralenti disparaisse.

Dans ces deux exemples, on aura tendance à incriminer l’optimiseur, alors que la cause du désordre est hydraulique.

Concevoir

Gestion de l’intermittence.

Améliorer le réglage des courbes de chauffe

Un mauvais réglage de courbe de chauffe sera source soit d’un manque de chaleur, soit d’une surchauffe (donc d’une surconsommation).
Chaque bâtiment doit avoir une courbe de chauffe unique, fonction :

  • des caractéristiques des émetteurs,
  • de la température intérieure souhaitée,
  • des caractéristiques thermiques du bâtiment.

Trouver cette courbe n’est pas évident. Il faut procéder, en hiver et en mi-saison, à des ajustements en fonction des plaintes des occupants. Ces ajustements et leur résultat doivent être consignés jusqu’à ce que la bonne courbe soit trouvée.

On l’aura compris, il ne s’agit de « tourner les manettes », au hasard, dès qu’une plainte apparaît, sans prendre note de ce que l’on a fait. Ce n’est pas non plus au chauffagiste à régler cette courbe mais bien à une personne vivant dans le bâtiment et pouvant collationner les réactions des occupants à chaque modification du réglage.

Or, bien souvent on entend : « c’est le chauffagiste qui a réglé le régulateur et nous interdit d’y toucher ! ».

Calculs

Tracer la courbe de chauffe programmée sur le régulateur.

Techniques

Pour comprendre le réglage complet d’un régulateur avec courbe de chauffe.

Régulateur climatique analogique avec possibilité de correction par sonde de compensation.

Sur certains régulateurs climatiques, il est possible de raccorder un thermostat d’ambiance de compensation. Celui-ci mesurant la température intérieure dans un local témoin, ajuste automatiquement la température d’eau de départ par rapport à la courbe de chauffe réglée. Ce thermostat peut également servir de thermostat de coupure en régime de nuit. Cette « compensation » permet de résoudre le problème du réglage fin de la courbe de chauffe.

Elle pose cependant certains problèmes :

  • Son efficacité est liée au choix correct du local témoin, pour peu qu’il soit possible. C’est pourquoi une sonde de compensation ne peut pas être placée si le circuit dessert des locaux d’orientation différente ou avec des gains internes différents.

 

  • Elle ne fonctionne correctement que si la courbe de chauffe est déjà presque bien réglée. En effet, la plage de compensation est volontairement réduite pour éviter l’influence de comportements inadéquats des occupants du local témoin (ouverture des fenêtres, « occultation du thermostat », …).

Concevoir

Régulation des circuits de distribution.

Placer des vannes thermostatiques

Vanne thermostatique.

Attention, les vannes thermostatiques ne sont pas la « panacée universelle », et ne permettent pas de résoudre toutes les situations de confort et de surconsommation.

Il est important d’en comprendre le  fonctionnement pour en cerner l’utilité.

En résumé, une vanne thermostatique permet de limiter la puissance d’un corps de chauffe dans des locaux où les apports de chaleur (ensoleillement, occupation importante, bureautique, éclairage, …) sont supérieurs aux autres, variables et conduisent à des problèmes de surchauffe locale.

Exemple.

Par exemple, il faut préparer de l’eau pour l’ensemble des radiateurs de classes. Si dans un local 8 élèves sont présents, il doit faire bon. Si dans le local voisin 25 élèves sont présents, la température risque de s’élever rapidement (25 élèves x 100 Watts/élève = 2 500 Watts, soit l’équivalent d’un radiateur moyen chauffé à 80° !). Il est impératif de couper le chauffage dans ce local. On arriverait aux mêmes conclusions avec l’apport solaire par de larges baies vitrées.

Et c’est là qu’intervient la vanne thermostatique, comme régulatrice finale des apports.

Attention : elle ne peut agir que dans le sens de la réduction ! Aussi, il sera utile d’ajuster la régulation centrale sur les locaux les plus exigeants (locaux de coin, locaux sous la toiture, …).

Il existe sur le marché, des vannes qui peuvent s’adapter à la plupart des publics :

  • locaux où les occupants sont capables de gérer eux-mêmes le réglage des vannes (bureaux individuels, de 2 .. 3 personnes),
  • locaux où les occupants ne se sentent pas responsable du réglage (classes),
  • locaux où les vannes peuvent subir des détériorations (salles de sport, lieux publics, ….).

Il ne faut donc pas systématiquement rejeter cette solution sous prétexte que le public ne saura pas la gérer. Si un doute subsiste quant à la résistance mécanique par rapport au public visé, un essai peut être mené avec une ou deux vannes, avant de se lancer dans l’installation complète.

Il est clair que si on opte pour les vannes les plus simples dont le réglage est laissé à l’occupant, une information de ce dernier sera nécessaire, pour que le résultat escompté soit atteint.

Gérer

Pour télécharger des affiches de sensibilisation des occupants à l’utilisation des vannes thermostatiques.

Le gain

Ici aussi, il est impossible de chiffrer précisément le gain énergétique que l’on peut escompter du placement de vannes thermostatiques, ne fut-ce que parce qu’il est impossible de chiffrer précisément la situation de départ.

On peut cependant, par un rapide calcul, estimer l’intérêt de cette amélioration.

Exemple.

Ordre de grandeur : un degré de trop dans un local = 7 .. 8 % de surconsommation !

Prenons un immeuble de bureau de 1 000 m² dont la consommation annuelle est de 15 000 litres de fuel par an.
Dans la salle de réunion de 60 m², occupée 6 h/jour, 250 jours par an, il fait systématiquement 22°C au lieu de 20°C.
Quel est l’ordre de grandeur de l’économie que l’on peut réaliser en plaçant des vannes thermostatiques dans cette salle ?

« A la grosse louche » :

> Consommation de combustible imputable à la salle :

15 000 [litres/an] / 1 000 [m²] x 60 [m²] = 900 [litres/an]

> Estimation du pourcentage d’économie lié au placement de la vanne : réduction de 2 K en journée et de 1 K la nuit et le week-end (après la coupure du chauffage, la température intérieure reste plus chaude la nuit, suite à l’augmentation de la température intérieure le jour). Prenons 1,5 K en moyenne.

Économie réalisable par des vannes thermostatiques : 900 [litres/an] x 8 [%/K] x 1,5 [K] = 108 [litres/an] ou 32 [€/an] (à 0,30 [€/litre fuel]).

Économie à laquelle il faut rajouter l’amélioration du confort.

Le coût d’une vanne est de l’ordre de 12,5 .. 25 € pour une vanne thermostatique traditionnelle ou 25 .. 37,5 € pour une vanne « incassable ». Hors placement.

Le temps de retour réel dépend du nombre de radiateurs à équiper dans le local !

Précautions

Le placement de vannes thermostatiques dans un bâtiment demande certaines précautions.

Placement d’une soupape différentielle

Lorsqu’une vanne thermostatique se ferme, le débit d’eau est arrêté dans la branche qui va vers le radiateur. C’est comme lorsqu’un enfant bouche de son pouce l’embouchure du jet d’une fontaine, … les autres jets sortent plus fort ! En fait, c’est la pression qui monte dans le réseau et tous les autres radiateurs voient leur débit augmenter. Toutes les autres vannes vont se fermer un peu plus…

Imaginons que vers midi quelques vannes soient encore ouvertes : elles reçoivent toute la pression de la pompe, elles ne s’ouvrent que d’une fraction de millimètre… et se mettent à siffler !

Une vanne thermostatique ne doit pas sentir si sa voisine vient de se fermer. Il est donc utile de stabiliser la pression du réseau. C’est le rôle de la soupape à pression différentielle. Placée après le circulateur, elle lâche la pression lorsque les vannes se ferment. En quelque sorte, elle « déverse le trop plein vers le retour ».

Placement d’une soupape différentielle sur le départ du circuit pour compenser la fermeture des vannes thermostatiques.

Encore faut-il pouvoir calibrer le niveau de pression maintenu entre le départ et le retour… Si l’installation est nouvelle, le bureau d’études connaît la pression nominale nécessaire. Si l’installation est ancienne, on ne pourra y aller que par essai successif en diminuant progressivement la pression. La pression manométrique du milieu de la courbe du circulateur (voir catalogue du fournisseur) est également une indication.

Une solution d’aujourd’hui : le circulateur à vitesse variable

Courbes caractéristiques d’un circulateur à 3 vitesses.

Force est de constater que la solution de la vanne à pression différentielle n’est pas très élégante ! Créer une pression à la pompe et la lâcher juste après, sur le plan énergétique, c’est un peu pousser sur l’accélérateur et le frein en même temps !

Actuellement, il est possible d’installer  un circulateur à vitesse variable : la vitesse est régulée de telle façon que la pression du réseau reste constante. Si seulement quelques vannes sont ouvertes, il tournera à vitesse réduite. L’achat d’un circulateur avec régulateur de vitesse intégré est rapidement amorti durant l’exploitation car la consommation évolue en fonction du cube de la vitesse: une vitesse réduite de moitié, c’est une consommation électrique divisée par 8 !

Améliorer

Pour en savoir plus sur le placement de circulateurs à vitesse variable.

Vannes thermostatiques et thermostat d’ambiance

Un local abritant un thermostat d’ambiance ne peut jamais comporter de vanne thermostatique.

En effet, si la consigne du thermostat d’ambiance est plus élevée que la consigne des vannes, le thermostat ne sera jamais satisfait puisque les vannes thermostatiques se fermeront avant.

Dans le cas d’une installation dans laquelle le thermostat agit directement sur le brûleur, cette demande entraînera le fonctionnement permanent du brûleur jusqu’à ce que la température de la chaudière atteigne sa limite haute. En résumé, la chaudière fonctionnera en permanence à haute température, ce qui est énergétiquement moins efficace.

Si le thermostat agit sur une vanne mélangeuse, celle-ci restera en permanence en position ouverte, alimentant les circuits à température maximale.

Dans les deux cas, il peut en résulter une surconsommation et des surchauffes dans les autres locaux.

À l’inverse, si la consigne du thermostat est plus basse que la température de consigne des vannes thermostatiques, ces dernières resteront en permanence ouvertes en grand et deviennent donc inutiles.

En résumé, si un thermostat d’ambiance et des vannes thermostatiques sont présents dans un même local, ces dernières doivent en permanence être ouvertes au maximum pour permettre au thermostat de jouer son rôle pleinement.

Vannes thermostatiques et circuits corrodés

« Les vannes thermostatiques se bloquent souvent ! »

Voici un des arguments repris par les détracteurs des vannes thermostatiques.

En effet, le faible degré d’ouverture d’une vanne thermostatique (max : 2 mm), les rend sensibles aux dépôts de calcaire ou aux boues de l’installation. Leur application dans une installation existante présentant ces problèmes est donc délicate.

Ce n’est cependant pas pour cela qu’il faut rejeter d’office la solution des vannes thermostatiques. Mais au préalable, les problèmes d’entartrage et de corrosion doivent être combattus. Notons que cela devrait se faire, quels que soient les projets d’amélioration, car c’est l’ensemble de l’installation qui est en péril, y compris les chaudières :

  • suppression des fuites,
  • vérification ou modification du système d’expansion,
  • désembouage,
  • analyse et traitement d’eau,
  • ….

Améliorer 

Pour en savoir plus sur la surveillance d’une installation pour prévenir la corrosion et l’entartrage.

Vannes thermostatiques bloquées en début de saison de chauffe

Il faut éviter de laisser une vanne complètement fermée durant une longue période (c’est valable aussi bien pour une vanne thermostatique que pour une vanne manuelle), par exemple durant tout l’été.

En effet, la pression exercée sur le clapet de fermeture est telle que la vanne risque de rester « collée » lorsque l’on désirera l’ouvrir à nouveau.

Il est donc conseillé de toujours maintenir une certaine consigne à la vanne, par exemple en la réglant sur la position « antigel ». Dans ce cas, en été, elle se fermera, mais avec une pression nettement moindre que si elle est fermée manuellement.

Concevoir

Pour en savoir plus sur le choix d’une vanne thermostatique.

Concevoir

Régulation locale.

Réguler l’installation par zones homogènes

Situation fréquente : les besoins des locaux ne coïncident pas avec le découpage du réseau hydraulique !
Disposer de circuits hydrauliques distincts est indiqué lorsque :

  • Certains locaux profitent de beaucoup d’apports de chaleur gratuits (ensoleillement,…).
  • Certains locaux doivent être chauffés en dehors des heures d’occupation normale (salle de sport ou internat dans une école, salle de réunion, conciergerie, …).
  • Certains locaux ne doivent pas être chauffés en permanence durant la journée (salle de conférence, réfectoire, bibliothèque,…).

Que faire pour améliorer la situation si le bâtiment ne dispose que d’un seul circuit de chauffage ?

Situation 1 : certains locaux profitent d’apports gratuits importants

Les façades Nord et Sud sont alimentées par de l’eau à la même température. Des surchauffes apparaissent dans les locaux Sud dès l’apparition du soleil… mais les locaux Nord restent demandeurs. La régulation dite « de la fenêtre ouverte » est adoptée par les occupants du Sud !

Trois améliorations sont possibles :

  • Soit le placement de vannes thermostatiques sur tous les radiateurs au Sud.
  • Soit le placement sur le circuit de distribution de vannes de zones : ce sont des vannes 2 voies modulantes, commandées par une sonde d’ambiance située dans un local témoin.

Vannes 2 ou 3 voies motorisées.

  • Soit une modification du réseau de tuyauteries de telle sorte que chaque façade dispose de sa propre vanne trois voies.

Solution

Avantages

Inconvénients

Vannes thermostatiques Gestion individuelle avec prise en compte des situations particulières de chaque local. Chaque radiateur doit être équipé d’une vanne. Collaboration nécessaire des occupants (tentures, manteaux, … recouvrant les vannes).
Vannes de zones Peu de vannes à installer si le nombre de circuits à gérer est faible. Multiplication des vannes si le bâtiment est équipé de nombreuses colonnes montantes. Difficulté de choix du ou des locaux de référence. Pas de prise en compte des situations particulières (locaux avec beaucoup d’occupants, matériel de bureautique,…). Nécessité d’une collaboration des occupants du local de référence (ne pas ouvrir les fenêtres, ne pas changer la consigne, ne pas cacher la sonde par une affiche !).
Un nouveau circuit par façade Indépendance des zones. Travaux lourds. Pas de prise en compte des apports gratuits dus aux occupants (par exemple, si une classe est remplie, le chauffage doit pratiquement s’arrêter).

Une demande de prix à un installateur permettra de trancher entre les solutions.

Exemple.

Le chauffage est distribué par plateau

Situation de départ

> Solution : vannes thermostatiques sur tous les radiateurs sud

 

Situation de départ

> Solution : nouveau circuit sud au départ de la chaudière ou du collecteur

Le chauffage est distribué par colonnes montantes

Situation de départ

> Solutions :

  • vannes 2 voies modulantes sur chaque colonne montante de la façade sud avec un ou plusieurs locaux témoins,
  • nouveau collecteur reprenant toutes les colonnes de la façade sud,
  • vannes thermostatiques sur tous les radiateurs sud.

Situation 2 : certains locaux doivent être chauffés en dehors des heures d’occupation générales

Un exemple serait la présence, dans une école d’un internat ou d’une conciergerie qui imposerait un chauffage permanent de l’ensemble des bâtiments. A nouveau, deux solutions coexistent :

  1. La création de branches distinctes pour alimenter des zones aux besoins si différents.
  2. La séparation totale des circuits, avec le placement d’une petite chaudière spécifique pour la conciergerie ou l’ internat.
Exemple. L’évaluation de l’économie engendrée peut être évaluée grossièrement comme suit : admettons que l’école représente 80 % de la surface chauffée. La réalisation d’une intermittence de son chauffage entraînera 30 % d’économie. L’économie sur la consommation existante représente donc 30 % de 80 %, soit 24 % du total.

La deuxième solution est plus coûteuse mais la petite chaudière, avec son meilleur rendement de fonctionnement, apportera une économie supplémentaire.

Études de cas

Évaluation des installations de chauffage d’un centre d’hébergement.

Parfois, une réorganisation des horaires ou des lieux d’activités permet d’éviter de gros investissements.

Exemple. Par exemple, pourquoi ne pas essayer d’organiser la réunion hebdomadaire du club de Scrabble dans l’aile de bâtiment de toute façon chauffée pour les internes ?

Situation 3 : certains locaux ne doivent pas être chauffés en permanence durant la journée

Exemple. Imaginons, dans une école, deux zones thermiques situées sur un même circuit : la bibliothèque qui est dans l’aile des classes primaires. Elle n’est utilisée que deux fois par semaine sur le temps de midi, or la surface chauffée n’est pas négligeable …

Il faut analyser le type de raccordement des radiateurs.

> Cas 1 : tous les radiateurs du local sont situés sur une même conduite, en série et en bout de circuit

Dans ce cas, une simple vanne deux voies peut se placer sur la conduite départ vers les radiateurs. Elle est commandée par un thermostat présent dans un local témoin, thermostat comprenant une programmation horaire des températures. Dans l’exemple, deux heures avant l’ouverture de la bibliothèque, la vanne s’ouvrirait pour réchauffer le local. Une température minimale hors activité serait prévue pour éviter tout risque de gel. Si les radiateurs des classes primaires sont équipés de vannes thermostatiques, les radiateurs de la bibliothèque pourront rester avec leurs vannes ordinaires, toutes ouvertes, la régulation étant assurée par la vanne deux voies. Le coût du matériel à placer s’élève à environ 300 €.

> Cas 2 : les radiateurs du local sont situés sur des conduites distinctes

Dans ce cas une action peut être menée sur chaque vanne thermostatique,

  • Soit en plaçant des vannes thermostatiques programmables indépendantes. Leur prix de revient est de 100 € plus élevé que les vannes traditionnelles. Il faut également penser que les vannes thermostatiques sont fragiles (par rapport aux vannes institutionnelles) et qu’une personne de confiance doit être responsable de la programmation. Cela colle donc très bien pour la bibliothèque, beaucoup moins pour le local des scouts, malgré qu’il soit lui aussi à usage périodique.

Vanne thermostatique programmable : la tête est « trompée » par l’alimentation d’une résistance chauffante électrique. Lorsque le chauffage doit être coupé, la résistance chauffe le corps sensible de la vanne, celle-ci croit qu’il fait chaud dans le local et bloque l’alimentation du radiateur en fonction d’une horloge.

  • Soit en plaçant sur chaque alimentation de radiateur, une vanne servomoteur tout ou rien, régulée par un thermostat d’ambiance unique pour toutes les vannes. Si le régulateur revient à 200 €, le prix d’un servomoteur est d’environ 50 €. Si la bibliothèque dispose de 4 radiateurs répartis sur des circuits différents, le supplément de régulation est de 200 + 50 x 4 = 400 €.

 

Découvrez ces 2 exemples de régulation du chauffage : le Collège Saint Paul de Godinne et le Lycée « La retraire » à Bruxelles.

Technicien chauffage

Améliorer les chaudières

Technicien chauffage

Améliorer le réglage de la combustion

Le réglage correct du débit d’air comburant est une donnée essentielle pour optimaliser le rendement de combustion du brûleur. La pratique montre qu’un léger excès d’air est nécessaire pour atteindre le rendement maximum. Il faut donc trouver cet optimum en réglant le registre d’air tout en mesurant le rendement et en surveillant l’apparition d’imbrûlés.

Attention, le volume d’oxygène contenu dans l’air diminue en hiver. C’est pourquoi les responsables de chaufferie ont tendance à régler les brûleurs à air pulsé avec des excès d’air plus élevés, de manière à éviter la formation d’imbrûlés quelle que soit la saison, ce, au détriment des performances de la combustion.

C’est aussi, ce qui peut justifier que, pour les installations d’une certaine puissance, plusieurs réglages annuels soient effectués.

Réglage d’un brûleur avec analyse en direct des fumées.

Gérer

Pour en savoir plus sur l’intérêt de procéder à plusieurs réglages par an.


Améliorer l’évacuation des fumées

Réguler le tirage

Un tirage de la cheminée trop important (> 15 .. 20 Pa) a des incidences sur le rendement de combustion de la chaudière :

  • augmentation de la vitesse des fumées et augmentation de la température de celles-ci;
  • augmentation de l’excès d’air (notamment parasite) et diminution de la teneur en CO2 des fumées.

Un tirage trop faible (< 10 PA) ou fluctuant sera source d’imbrûlés.

Pour remédier a ces problèmes, il faut bien souvent équiper la buse d’évacuation des fumées d’un régulateur de tirage ou, s’il est déjà présent, procéder à un nouveau réglage.

Régulateur de tirage.

Notons que la présence d’un régulateur de tirage limite également les problèmes de condensation dans la cheminée :

  • Les fumées sont diluées par de l’air frais. La teneur en vapeur d’eau du mélange diminue par rapport aux fumées pures. La température à partir de laquelle cette vapeur d’eau va se condenser va donc s’abaisser.

 

  • La température du mélange aspiré par la cheminée diminuant, l’échange de chaleur entre les parois de la cheminée et les fumées diminue et donc proportionnellement, les fumées se refroidissent moins.

 

  • Le débit total véhiculé par la cheminée augmentant, à échange vers les parois égal, la chute de température de mélange sera plus faible.

 

  • À l’arrêt de la chaudière, dans les grandes cheminées, le tirage sera tel que le régulateur de tirage conservera une certaine ouverture, créant un courant d’air permanent asséchant la cheminée.

Isoler la buse de raccordement à la cheminée

Isoler la buse de raccordement entre la chaudière et la cheminée ralentit le refroidissement des fumées et donc les risques de condensation des fumées dans la cheminée.

En soi l’isolation de la buse n’améliore pas le rendement mais indirectement lorsqu’un problème de condensation apparaît dans la cheminée, le réflexe du technicien est malheureusement parfois de bloquer en position ouverte, le clapet d’admission d’air du brûleur et, par conséquent, le rendement s’en ressent. Il vaudrait beaucoup mieux placer un régulateur de tirage et isoler la buse de raccordement.

Exemple :

Pour une surface de buse de 6 m², et une température de fumée à la sortie de la chaudière de 160°C, la température au niveau de la souche de cheminée sera de 120°C, soit une chute de température de 40°C.

Cette chute de température peut être réduite à 5°C si la buse de raccordement est isolée avec une épaisseur de 5 cm de laine minérale.


Modifier la régulation du brûleur

Il est fréquent de rencontrer des brûleurs performants (anciens ou récents) dont les avantages ne sont pas exploités réellement.

Les deux exemples les plus flagrants sont :

Visualisation du positionnement du volet d’air motorisé d’un brûleur 2 allures :
on peut y constater la fermeture à l’arrêt et le passage de première en deuxième allure.

Faire corriger ces deux points par un technicien spécialisé permet d’importantes économies.

Fermeture du volet d’air motorisé à l’arrêt

La fermeture du volet d’air implique que l’alimentation électrique de son servomoteur ne soit pas coupée à l’arrêt du brûleur. Il faut donc que le chauffagiste corrige le raccordement électrique de ce dernier pour qu’il corresponde aux prescriptions du fabricant.

Bornier de raccordement électrique d’un brûleur et servomoteur permettant la fermeture du clapet d’air à l’arrêt. Sur les brûleurs domestiques (moins de 40 kW), celui-ci n’est qu’en option.

Le gain qui en résulte peut être important si on estime que l’on supprime les pertes par balayage, grâce à cette amélioration.

Évaluer

Évaluer les pertes par balayage.

Notons que certains installateurs préfèrent forcer l’ouverture permanente du clapet d’air pour maintenir un balayage dans la cheminée et éviter les problèmes de condensation.

Ce raisonnement est à proscrire parce qu’il engendre, comme on l’a vu, des pertes importantes pour la chaudière. Si des problèmes de condensation se présentent, c’est au niveau de la cheminée qu’il faut agir, en revoyant son dimensionnement ou en ouvrant la trappe de ramonage ou le régulateur de tirage.

Concevoir

Concevoir une cheminée.

Régulation des brûleurs en cascade

Par facilité et économie d’investissement, certains brûleurs 2 allures sont raccordés sans réelle régulation en cascade.

Pour être régulé en cascade, un brûleur 2 allures a en général besoin soit de 2 aquastats (sur le départ ou sur le retour), chacun de ceux-ci commandant une allure, soit de relais temporisés, soit d’un régulateur de cascade (module de gestion de cascade travaillant au départ d’une sonde de départ).

Armoire de gestion de cascade précâblée incluant les relais temporisés.

Si le brûleur n’est commandé que par un aquastat et que la commande de la première allure est « pontée » (comme disent les fabricants de brûleurs), celui-ci se comportera comme un brûleur démarrant en petite allure et enclenchant d’office la grande allure rapidement. Le brûleur fonctionne donc la plupart du temps à pleine puissance et on perd l’intérêt de disposer d’un matériel capable d’adapter sa puissance aux besoins, à savoir l’augmentation du temps de fonctionnement du brûleur, la diminution des pertes à l’arrêt et l’augmentation du rendement de combustion).

Concevoir 

Intérêt d’un brûleur 2 allures ou modulant

Pour exploiter correctement un brûleur deux allures et réduire ainsi les pertes et émissions polluantes, il faut compléter la régulation existante par des relais temporisés ou un module de gestion de cascade. Celui-ci permet de gérer en fonction des besoins de puissance, le fonctionnement en cascade de plusieurs chaudières équipées de brûleurs à deux allures.

Attention, les fabricants de chaudières recommandent souvent la puissance minimale en dessous de laquelle la première allure du brûleur ne peut pas descendre sous peine de voir apparaître des condensations dans la chaudière. Cette puissance est généralement de l’ordre de 60 % (voire 80 %) de la puissance nominale de la chaudière. La puissance développée par le brûleur en première allure doit donc absolument être vérifiée, comparée aux exigences du fabricant et augmentée si nécessaire.

Études de cas 

Audit d’une installation de chauffage.

Améliorer la régulation en cascade des chaudières

Réguler en cascade des chaudières fonctionnant en parallèle

Réguler des chaudières en cascade a deux intérêts :

  • Limiter les pertes à l’arrêt des chaudières dont la puissance n’est pas nécessaire pour couvrir les besoins. Autrement dit, isoler hydrauliquement les chaudières mises à l’arrêt, évite le maintien en température de la chaudière.

 

  • Limiter la puissance mise en œuvre pour augmenter le temps de fonctionnement des brûleurs et limiter les pertes et les émissions polluantes au démarrage et à l’arrêt du brûleur (comme pour la régulation en cascade des brûleurs 2 allures).
Exemple :

Ces deux chaudières de 350 kW sont équipées d’un brûleur 2 allures mais qui en réalité travaille toujours à pleine puissance.

Les deux chaudières fonctionnent en parallèle et sont maintenues en température durant toute la saison de chauffe (5 800 h/an).

Leur surdimensionnement par rapport aux besoins maximaux est de l’ordre de 20 %. Le rendement utile des chaudières est estimé à 90,3 % (rendement de combustion mesuré : 91 %).

Les brûleurs sont équipés d’un volet d’air motorisé mais qui est maintenu en permanence ouvert. Le coefficient de perte à l’arrêt qui en résulte est estimé à 2 % (0,5 % pour les pertes vers l’ambiance et 1,5 % de pertes par balayage).

Le rendement saisonnier de l’installation est estimé à 85,5 % et la consommation annuelle est de 123 800 litres de fuel par an.

Examinons le gain possible en améliorant la régulation en cascade de brûleurs et des chaudières.

Pour effectuer le calcul dans votre propre situation et évaluer le potentiel d’amélioration,

Calculs

sur base du climat moyen de Uccle, !

Calculs

sur base du climat moyen de St Hubert,  !

La première action à envisager est de supprimer le balayage d’air dans la chaudière à l’arrêt en modifiant le raccordement électrique des brûleurs. Le coefficient de perte à l’arrêt passe ainsi de 2 % à 0,5 %.

Le rendement saisonnier atteindrait alors la valeur de 89 %, soit un gain de :

123 800 [litres/an] x (1 – 85,5 [%] / 89 [%]) = 4 868 [litres/an]

À partir de ce moment, les autres actions ont moins d’intérêt.

Si on régule en cascade les 2 allures des brûleurs, le rendement monte à 91,3 %, soit un gain complémentaire de :

(123 800 [litres/an] – 4 868 [litres/an]) x (1 – 89 [%] / 91,3 [%]) = 2 996 [litres/an]

Grâce à la diminution des temps d’attente des chaudières et l’amélioration du rendement de combustion en petite allure (on estime que le rendement de combustion augmente de 2 % en 1ère allure). On ne tient pas compte ici de la diminution de l’encrassement de la chaudière parallèle à la diminution du nombre de démarrages, gain non chiffrable.

Enfin, si on régule l’ensemble de l’installation en cascade avec isolation hydraulique de la chaudière à l’arrêt, le rendement saisonnier serait de 91,8 %, soit un gain complémentaire de :

(123 800 [litres/an] – 4 868 [litres/an] – 2 996 [litres/an]) x (1 – 91,3 [%] / 91,8 [%]) = 631 [litres/an]

grâce à la suppression des pertes à l’arrêt de la chaudière non nécessaire.

Gain total : 4 868 [litres/an] + 2 996 [litres/an] + 631 [litres/an] = 8 495 [litres/an] ou 1 797 [€/an] à 0,2116 [€/litre]

Si la technologie des anciens brûleurs est telle qu’il n’est pas possible de supprimer les pertes par balayage, sans changer de brûleur, le gain réalisé régulant en cascade les allures des brûleurs et en réalisant une véritable cascade de chaudières serait différent.

On passerait d’un rendement de 85,5 % à un rendement de 88,5 % en modifiant la régulation des brûleurs, puis à un rendement de 90,4 % par une régulation complète de l’ensemble avec isolation hydraulique de la chaudière à l’arrêt.

Les gains successifs seraient de :

123 800 [litres/an] x (1 – 85,5 [%] / 88,5 [%]) = 4 196 [litres/an]

(123 800 [litres/an] – 4 196 [litres/an]) x (1 – 88,5 [%] / 90,4 [%]) = 2 514 [litres/an]

Gain total : 4 196 [litres/an] + 2 514 [litres/an] = 6 710 [litres/an] ou 1 420 [€/an] à 0,2116 [€/litre]

À titre de comparaison, le devis remis pour le module de gestion de cascade de cette installation était de 1 375 € HTVA.

Améliorer la régulation en cascade existante

La régulation en cascade des chaudières n’a un sens que si les chaudières mises à l’arrêt sont déconnectées du réseau hydraulique au moyen d’une vanne motorisée. Cette précaution n’est cependant pas suffisante pour éviter que toutes les chaudières ne restent à haute température toute l’année. Il faut, en plus, être attentif à ce que la cascade respecte deux principes minimaux :

  • Interdiction de fonctionnement d’une chaudière en fonction de la température extérieure. Cette fonction permet de ne pas appeler systématiquement toutes les chaudières au moment des remontées en température et d’éviter des démarrages de trop courte durée en mi-saison. Par exemple, si à chaque relance, toutes les chaudières sont mises en route, les chaudières devenues inutiles en journée mettront un temps certain à se refroidir.

 

  • Une temporisation suffisante à l’enclenchement des chaudières pour éviter les démarrages intempestifs et inutiles de toutes les chaudières, quelle que soit la saison.

Couper manuellement une chaudière inutile dans une installation surdimensionnée

Bien souvent, les anciennes installations sont fortement surdimensionnées. Pour s’en convaincre, il suffit d’écouter un bon nombre de responsables techniques qui précisent qu’une des chaudières de leur installation ne se met jamais en route. Dans ce cas, il peut être simple de couper carrément une des chaudières au moyen d’une vanne manuelle. Cette chaudière ne serait alors remise en route que par de grands froids exceptionnels.

Évaluer

Pour évaluer l’importance du surdimensionnement des chaudières.
Exemple :

Dans une installation de 2 chaudières de 500 KW, une des chaudières est inutile.

Les pertes à l’arrêt de cette chaudière sont estimées à 2 %. En mettant à l’arrêt la chaudière inutile au moyen dune vanne d’isolement manuelle, on peut gagner (avec un rendement utile de la chaudière de 86 %) :

2 [%] x 500 [kW] x 5 800 [heures/an] / 0,86 = 67 442 [kWh/an] ou 6 744 [litres de fuel ou m³ de gaz par an]

Précautions

  • Pour éviter la corrosion de la chaudière mise à l’arrêt, il est conseillé de la laisser « sous eau » et de prévoir une passivation de l’eau de l’installation après analyse. Une telle analyse, qui par ailleurs ne peut être que bénéfique pour l’ensemble de l’installation, peut par exemple, être réalisée par le CSTC.

 

  • La « déconnection hydraulique » d’une chaudière inutile va entraîner une diminution du débit d’eau dans le circuit primaire. Cela peut poser un problème de confort dans le cas d’un circuit primaire bouclé. Pour éviter ce problème, il faudra vérifier que la température de la ou des chaudières restées en fonctionnement soit suffisamment supérieure à la température demandée aux circuits secondaires (ce qui est généralement le cas avec des anciennes chaudières maintenues sur leur aquastat).

 

  • Attention, si une chaudière est mise longtemps à l’arrêt, il est possible que des oiseaux nichent ou simplement tombent dans la cheminée, bouchant cette dernière. Il faut y être attentif lors de la remise en route.

 

  • Il faudra respecter les prescriptions garantissant le bon fonctionnement de la régulation en cascade.

Évaluer

Pour en savoir plus sur les problèmes hydrauliques susceptibles d’apparaître avec les circuits primaires bouclés.

Diminuer la puissance du brûleur

Lorsqu’une chaudière est manifestement surdimensionnée, il n’est pas utile de lui adjoindre un brûleur 2 allures. Autant diminuer, de façon permanente, la puissance en modifiant les caractéristiques du brûleur (à l’exception des brûleurs gaz atmosphériques) :

  • pour les chaudières fuel : en modifiant les caractéristiques du gicleur (débit du gicleur/ pression de pompe),
  • pour les chaudières gaz : en diminuant la pression de gaz.

Attention, les fabricants de chaudières recommandent souvent la puissance minimale en dessous de laquelle la puissance du brûleur ne peut pas descendre sous peine de voir apparaître des condensations dans la chaudière (lors des relances, lorsque la température de l’eau diminue, …). Cette puissance est généralement de l’ordre de 60 % (voire 80 % pour certaines chaudières) de la puissance nominale de la chaudière.

Cette contrainte montre la limitation de cette amélioration. En effet, si on diminue trop la puissance du brûleur, on risque de mettre en péril la chaudière (corrosion par l’acide, principalement avec le fuel).

Si la chaudière est manifestement surdimensionnée, mieux vaut rechercher une solution plus globale et envisager le remplacement de la chaudière.

Évaluer

Pour évaluer l’importance du surdimensionnement des chaudières.

Remplacer le brûleur

Certains anciens brûleurs pulsés (gaz ou fuel) ne permettent plus un réglage correct de la combustion et l’obtention d’un rendement de production suffisant. Cela est notamment dû au fait que l’usure mécanique des pièces qui ne permet plus un dosage correct entre l’air et le combustible.

Évaluer

Évaluer les paramètres de la combustion.

Il en résulte une production d’imbrûlés plus importante, un encrassement et donc une perte de rendement plus rapide. Cela peut aller jusqu’à l’arrêt du brûleur trop encrassé.

L’âge du brûleur est également source de pannes plus fréquentes des différents organes qui à elles seules justifient le remplacement.

Nouveau brûleur et vieille chaudière ?

Est-il judicieux de remplacer uniquement le brûleur dune chaudière obsolète ?

Non, si la chaudière est manifestement au bout du rouleau et que son surdimensionnement est manifeste. Dans ce cas, il faut envisager le remplacement de l’ensemble.
Oui, si on prend en considération le gain énergétique que l’on peut déjà réaliser par cette action et si on s’assure de pouvoir récupérer le nouveau brûleur en cas de remplacement futur de la chaudière.

Beaucoup de gestionnaires se posent la question de la durée de vie restante d’une ancienne chaudière. Il est impossible de donner une réponse précise à cette question. Cela dépend du mode de fonctionnement de la chaudière depuis son installation. Par exemple, la fonte « enregistre » les contraintes qu’elle a subies durant toute sa vie. Fragilisée, elle « lâchera » un jour. On ne peut dire quand, car on ne peut chiffrer ces contraintes.

Evidemment, des taches flagrantes de corrosion interne sont un signe de détérioration future.

C’est pourquoi, plus que de miser sur la « survie » ou la « mort future » dune chaudière, il faut programmer son remplacement par souci d’économie d’énergie ou dans le cadre du programme d’investissement lié à la maintenance du bâtiment.

Améliorer

Remplacer la chaudière.

Le gain

Gain sur le rendement de combustion

Les nouveaux brûleurs assurent une meilleure combustion que les anciens, notamment avec une production moindre de NOx. Cependant, si la chaudière ne change pas, la qualité de l’échange entre les fumées et l’eau reste identique.

De plus, chaque chaudière est développée pour un nombre limité de brûleurs, de manière à optimaliser l’échange de chaleur. En plaçant un nouveau brûleur sur une vieille chaudière, on peut, dès lors, conserver des températures de fumée assez élevées.

On n’obtient donc pas une amélioration du rendement de combustion aussi importante que si on remplaçait l’ensemble de l’installation.

En première approximation, on peut miser sur une augmentation du rendement de combustion de 1 .. 2 points.

Par exemple, pour une chaudière ayant un rendement de combustion de 88 %, on peut espérer que le remplacement du brûleur permette d’atteindre un rendement de 90 %.

Gain sur les pertes par balayage

Le gain réalisé en plaçant un nouveau brûleur se situe également au niveau de la suppression de pertes par balayage de la chaudière.

En effet, les nouveaux brûleurs possèdent la plupart du temps un clapet d’air qui se referme lorsque le brûleur est mis à l’arrêt. Ce clapet a pour effet de supprimer le courant d’air qui parcourt la chaudière lorsque le brûleur est arrêté.

Les pertes par balayage que ce courant d’air engendre sont souvent de l’ordre de 1 .. 1,5 % de la puissance installée.

Comme on l’a vu ci-dessus, il faut cependant faire attention, si le nouveau brûleur est équipé d’un clapet d’air motorisé (la présence d’un servomoteur pour manœuvrer le clapet d’air est indiquée dans la documentation technique du brûleur). En effet, il arrive (souvent) que le mode de régulation appliqué à la chaudière ne permette pas au clapet de se refermer à l’arrêt du brûleur.

Exemple.

Beaucoup d’anciennes chaudières sont maintenues en température par un aquastat. Lorsque la température de consigne est atteinte, le brûleur est mis à l’arrêt par coupure de son alimentation électrique. Or si cette dernière est totalement coupée, le servomoteur du clapet d’air est inopérant et le clapet ne peut se refermer.

Pour éviter cela, il faut être attentif au mode de

raccordement du nouveau brûleur.

Exemple.

Considérons une chaudière de 350 kW de 1981, équipée d’un ancien brûleur sans fermeture à l’arrêt du clapet d’air. La consommation annuelle de cette installation est de 60 000 litres de fuel par an.

Les pertes à l’arrêt de cette chaudière sont estimées à 0,5 % de pertes vers l’ambiance et à 1,5 % de pertes par balayage.

Le rendement de combustion mesuré est de 87 %.

En plaçant un nouveau brûleur, on peut espérer une augmentation du rendement de combustion à 89 % et on supprime les pertes par balayage.

Le rendement saisonnier de production calculé passerait alors de 82,1 % à 87,7 % (si la chaudière ne produit pas d’eau chaude sanitaire en été).

Le gain énergétique s’élève donc à :

60 000 [litres de fuel] x (1 – 82,1 [%] / 87,7 [%]) = 3 831 [litres fuel/an] ou 1 245 [€/an] (à 0,325 €/litre)

pour un coût de : 3 625 € (HTVA).

Pour effectuer le calcul dans votre propre situation et évaluer le potentiel d’amélioration,

Calculs

sur base du climat moyen de Uccle,

cliquez ici !

Calculs

sur base du climat moyen de St Hubert,

cliquez ici !


Colmater et réisoler la chaudière

Voilà le type d’action que l’on peut mener en attendant de préparer le projet de remplacement d’une très ancienne et peu performante chaudière.

Colmater les entrées d’air

Les entrées d’air parasite (entre les éléments d’une chaudière en fonte, au niveau de la porte foyer, ou encore par le regard des anciennes chaudières au charbon converties) sont synonymes :

  • De pertes de rendement de combustion par augmentation parasite de l’excès d’air. Les inétanchéités peuvent être telles que, quel que soit le réglage du brûleur, il est impossible d’atteindre un pourcentage de CO2 suffisant dans les fumées et donc un bon rendement de combustion.

 

Pour remédier à cela, il suffit de colmater les trous au moyen d’un mastic réfractaire, opération qui peut facilement se faire par du personnel interne à l’établissement.

Réisoler la jaquette

Dans beaucoup d’anciennes chaudières, il est possible de démonter l’enveloppe extérieure (la jaquette) et d’insérer sous celle-ci un nouvel isolant ou un isolant complémentaire en laine minérale.

Exemple.

   

Placement de nouveaux panneaux isolants sous la jaquette dune ancienne chaudière.

en passant d’une épaisseur d’isolant de 3 cm (en bon état !) à une épaisseur d’isolant de 5 cm, on diminue de 40 % la perte de chaleur par les parois de la chaudière. Le gain est de 90 % pour les zones de la paroi où l’isolant a disparu.

Soit un gain d’environ 13 litres de fuel par an et par m² de paroi pour une chaudière maintenue à 70°C durant la saison de chauffe pour un coût des matériaux de l’ordre de 5 €/m² (le gain est de 200 litres/m² de paroi, par an pour les parties non isolées au départ).


Diminuer la température de fonctionnement des chaudières

Diminuer la température de fonctionnement des chaudières maintenues en permanence en température élevée permet de réduire leurs pertes à l’arrêt.

Ainsi, en fonction de la saison, ou en permanence si les chaudières sont surdimensionnées, on peut modifier manuellement la température de consigne de l’aquastat de chaudière.

On peut aussi imaginer que la chaudière soit régulée totalement en température glissante en fonction de la température extérieure.

Gain

Les pertes à l’arrêt dépendent de la différence de température entre la chaudière et la chaufferie.

Exemple.

considérons une chaudière de 350 kW de 1981, équipée d’un ancien brûleur sans fermeture à l’arrêt du clapet d’air. La consommation annuelle de cette installation est de 60 000 litres de fuel par an.

Les pertes à l’arrêt de cette chaudière sont estimées à 0,5 % de pertes vers l’ambiance et à 1,5 % de pertes par balayage, la chaudière fonctionnant en permanence à une température moyenne de 80°C.

En diminuant la température de la chaudière de 10°C en moyenne sur la saison de chauffe, on diminue les pertes à l’arrêt dans le rapport (pour une température de chaufferie de 20°C) :

[(70 [°C] – 20 [°C]) / (80 [°C] – 20 [°C])] 1,25 = 0,8

Le gain s’élève à :

(1 – 0,8) x 0,02 x 350 [kW] x 4 000 [h/an] = 5 600 [kWh]/an ou 560 [litres/an]

où 4 000 [h/an] = le temps d’arrêt de la chaudière durant la saison de chauffe pour une chaudière non surdimensionnée.

Si la chaudière était totalement régulée en température glissante la température moyenne sur la saison de chauffe serait de l’ordre de 43°C. Dans ce cas les pertes seraient réduites d’un facteur :

[(43 [°C] – 20 [°C]) / (80 [°C] – 20 [°C])] 1,25 = 0,3

Le gain s’élèverait à :

(1 – 0,3) x 0,02 x 350 [kW] x 4 000 [h/an] = 19 600 [kWh]/an ou 1 960 [litres/an]

Un deuxième gain se situe au niveau des pertes du collecteur primaire, maintenu à la température des chaudières.

Exemple.

Une chaudière alimente un collecteur primaire DN 50 de 20 m (aller-retour), isolé par 4 cm de laine minérale.

Actuellement, le collecteur est maintenu à une température moyenne (aller-retour) de 70°C.

Si le collecteur est alimenté en température glissante sans limite basse, la température moyenne du collecteur durant la saison de chauffe sera d’environ 43°C.

Pour chacun des deux cas, la perte de distribution en chaufferie (température ambiante de 15°C) s’élève à :

Cas de la température fixe : 0,271 [W/m.°C] x 20 [m] x (70 [°C] – 15 [°C]) x 5 800 [heures/an] = 1 729 [kWh/an] ou 173 [litres fuel/an] ou 173 [m³ gaz/an]

Cas de la température glissante : 0,271 [W/m.°C] x 20 [m] x (43 [°C] – 15 [°C]) x 5 800 [heures/an] = 880 [kWh/an] ou 88 [litres fuel/an] ou 88 [m³ gaz/an]

Évaluer

Pour évaluer les pertes du réseau de distribution.

Précautions

Problèmes hydrauliques

Attention, dans certains types de circuits primaires (boucles fermées, bouteilles casse-pression), la régulation en température glissante de la chaudière peut conduire à des problèmes d’inconfort dans certains circuits. Avant de se lancer dans l’investissement d’un régulateur climatique, un essai manuel peut être effectué pour évaluer le risque encouru.

Évaluer 

Pour en savoir plus sur les problèmes d’inconfort liés à l’hydraulique et à la régulation en température glissante des chaudières.

Condensations internes

Toutes les chaudières (nouvelles ou anciennes) ne peuvent travailler avec une basse température d’eau. Certaines risquent de se détériorer du fait des condensations internes de fumées qui peuvent apparaître. Ce problème est encore plus présent pour les chaudières fonctionnant au fuel puisque dans ce cas les condensats sont plus acides.

Les anciennes chaudières en fonte ne posent pour cela, aucun problème étant donné :

  • Le mauvais échange de chaleur au niveau du foyer, qui empêche à la température des fumées de descendre trop bas.
  • L’épaisseur de la fonte qui ne risque guère de percer en cas de corrosion.

Ce n’est pas le cas pour les anciennes chaudières en acier qui, elles, sont sensibles à la corrosion.

Anciennes chaudières en fonte.

Il est évident que les chaudières modernes très basse température s’accommodent très bien de ce type de régulation.

Il faut également faire attention dans le cas des anciennes chaudières avec des rampes gaz (brûleurs gaz atmosphériques) sur lesquelles de l’eau de condensation des fumées risque de couler, causant de la corrosion et une production importante de suie.

Si un doute subsiste sur les capacités de la chaudière à résister à ce mode de fonctionnement, le plus simple est d’interroger le fabricant de la chaudière ou son fournisseur : « est-ce que la chaudière dont je dispose peut être régulée en température glissante, sachant que cela impliquera par moment un fonctionnement à très basse température ».

Le maintien en température élevée des anciennes chaudières est également parfois inévitable en présence dune production d’eau chaude sanitaire combinée à la chaudière.

Calcul d’un vase d’expansion à pression variable

Calcul d'un vase d'expansion à pression variable

Nous reprenons ici la méthode de dimensionnement des vases d’expansion fermé à pression variable. Pour les vases d’expansion à pression constante que l’on peut retrouver dans les très grosses installations, nous renvoyons le lecteur intéressé au rapport technique du CSTC (n°1 – 1992) ou au document « Méthode de calcul pour vases d’expansion dans des installations de chauffage et de refroidissement central » du SAPC de la régie des bâtiments.


Etape 1 : déterminer le volume de l’installation Vinst

Pour une nouvelle installation

La contenance en eau totale d’une nouvelle installation peut être calculée en sommant :

  • La contenance des conduits. Le calcul du réseau révèle la longueur totale des tubes par diamètre de conduite. Il faut donc multiplier cette longueur par la contenance en eau de chaque tronçon, en fonction des tableaux suivants :

Tuyaux en acier

Diamètre

Contenance en eau [l/m]

DN10 3/8″ 0,1227
DN15 1/2″ 0,2011
DN20 3/4″ 0,3664
DN25 1″ 0,5811
DN32 5/4″ 1,0122
DN40 6/4″ 1,3723
DN50 2″ 2,3328
DN65 2 1/2″ 3,8815
DN80 3″ 5,3456
DN100 4″ 9,0088
DN125 5″ 13,6226
DN150 6″ 19,9306

Tuyaux en cuivre

Diamètre

Contenance en eau [l/m]

de x s [mm]

di [m]

12 x 1 0,010 0,079
14 x 1 0,012 0,113
15 x 1 0,013 0,133
16 x 1 0,014 0,154
18 x 1 0,016 0,201
20 x 1 0,018 0,254
22 x 1 0,020 0,314
28 x 1,5 0,025 0,491
34 x 1,5 0,031 0,755
42 x 1,5 0,039 1,195

Tuyaux synthétiques

Diamètre

Contenance en eau [l/m]

de x s [mm]

di [m]

12 x 2 0,008 0,050
14 x 2 0,010 0,079
16 x 2 0,012 0,113
17 x 2 0,013 0,133
18 x 2 0,014 0,154
20 x 2 0,016 0,201
  • La contenance en eau des appareils : radiateurs, convecteurs, chaudières, aérothermes, … spécifiée dans la documentation technique des fabricants.

Pour une installation existante

Pour les installations existantes dont le réseau de conduites est inconnu, la contenance en eau totale peut être estimée sur base des ratios suivants :

Composants de l’installation

Contenance en eau [l/kW]

Chaudière en fonte 0,2 .. 1,5
Chaudière en acier 0,7 .. 4,5
Radiateurs à panneaux 2,5 .. 7
Radiateurs à éléments (acier) 8 .. 16
Radiateurs en fonte 5 .. 10
Radiateurs en aluminium 1 .. 6
Convecteurs 0,3 .. 2,5
Conduites (raccordement bitube) 1,5 .. 4
Conduites (raccordement monotube) 1 .. 2

Installation complète avec :

Radiateurs à panneaux
(dim. en régime 90/70)
10
Radiateurs à éléments (acier)
(dim. en régime 90/70)
14
Radiateurs en fonte
(dim. en régime 90/70)
12,5
Convecteurs
(dim. en régime 90/70)
6
Chauffage par le sol
(pour T eau moyenne 40°C)
17
Exemple.

Une ancienne installation est équipée de radiateurs à panneaux et d’une chaudière en fonte de 400 kW. Sa contenance en eau est estimée à :

Suivant l’estimation par composants

Contenance en eau de la chaudière :

400 [kW] x (0,2 .. 1,5) [l/kW] = 80 .. 600 [l]

Contenance en eau des radiateurs :

400 [kW] x (2,5 .. 7) [l/kW] = 1 000 .. 2 800 [l]

Contenance en eau des conduites :

400 [kW] x (1,5 .. 4) [l/kW] = 600 .. 1 600 [l]

Contenance en eau totale de l’installation :

de 80 [l] + 1 000 [l] + 600 [l] = 1 680 [l] à 600 [l] + 2 800 [l] + 1 600 [l] = 5 000 [l]

Suivant l’estimation globale

Contenance en eau totale de l’installation :

10 [l/kW] x 400 [kW] = 4 000 [l]


Etape 2 : calculer le volume d’expansion de l’eau Vexp

Le volume d’expansion est l’augmentation de volume de l’eau dû à son réchauffement. Pour calculer le vase d’expansion, on considère que l’eau est réchauffée de 10°C à 90°C.

Vexp = Vinst x Cexp

où,

  • Vexp = le volume d’expansion de l’eau [l]
  • Cexp = coefficient d’expansion

Température de l’eau [°C]

Cexp

10 0
20 0,0014
30 0,0040
40 0,0075
50 0,0117
60 0,0167
70 0,0224
80 0,0286
90 0,0355
Exemple.

Une ancienne installation est équipée de radiateurs à panneaux et d’une chaudière en fonte de 400 kW. Sa contenance en eau est estimée à 4 000 [l].

Le volume d’expansion de l’eau en passant de 10°C (eau de ville) à 90°C est de :

4 000 [l] x 0,0355 = 142 [l]


Etape 3 : calculer le volume d’eau net Vnet

Le volume d’eau net est le volume d’eau dans le vase d’expansion en fonctionnement normal.

Vnet = Vinst x 0,01 + Vexp

où,

  • Vinst x 0,01 est un volume de réserve qui a pour but de maintenir une quantité minimale d’eau dans le vase d’expansion lorsque l’installation est complètement refroidie (réserve de 1 %). Si cette réserve n’était pas prise en compte, l’installation risque d’entrer en dépression par rapport à son environnement chaque fois qu’elle se refroidit, ce qui favorise la pénétration d’air et la corrosion.
Exemple.

Une ancienne installation est équipée de radiateurs à panneaux et d’une chaudière en fonte de 400 kW. Sa contenance en eau est estimée à 4 000 [l] et son volume d’expansion de l’eau est 142 [l].

Le volume d’eau net du vase d’expansion est de :

Vnet = 4 000 [l] x 0,01 + 142 [l] = 182 [l]


Etape 4 : calculer la pression de gonflage du vase Pgon

La pression de gonflage est la pression régnant dans le vase d’expansion qui ne contient pas encore d’eau, par exemple, avant qu’il ne soit raccordé à l’installation.

Règle générale

Elle doit être choisie pour que lorsque l’installation est entièrement refroidie, il règne encore une surpression de 0,5 bar au point le plus haut de l’installation. Pour une installation dont la température de l’eau ne dépasse pas 100°C, on prend donc comme pression de gonflage la pression qu’engendre la hauteur de l’installation à laquelle on rajoute 0,3 bar.

Pgon [bar] = (h [m] / 10) + 0,3 [bar],

avec un minimum à respecter de 0,5 bar.

Où,

  • h est la différence de hauteur [m] entre le vase d’expansion considéré comme étant au point le plus bas de l’installation et le point le plus haut de l’installation.

Exemple.

La distance h qui sépare le vase d’expansion du radiateur le plus haut est de 12 m.

Pression de gonflage du vase d’expansion :

Pgon [bar] = (12 [m] / 10) + 0,3 [bar] = 1,5 [bar]

Conditions particulières à vérifier

Les deux conditions qui suivent doivent en plus être vérifiées si :

  • dans une construction basse (la hauteur entre les points extrêmes de l’installation est réduite),
  • lorsque la hauteur et/ou la distance entre le vase d’expansion et le circulateur et/ou la chaudière sont grandes.

Pour éviter la cavitation des circulateurs

La cavitation est la formation de bulles de vapeur qui éclatent dans certaines zones de la roue d’un circulateur. Ce phénomène est source de bruit, réduit la hauteur manométrique du circulateur et l’endommage.

Il apparaît lorsqu’une dépression est entretenue à l’aspiration du circulateur.

Le facteur NPSH est spécifié par les fabricants de pompe, dans leur catalogue. C’est la pression minimale qu’il faut respecter à l’entrée de leur pompe pour éviter la cavitation.

La pression minimale au niveau du vase d’expansion ne peut descendre en dessous de :

Pgon [bar] > NPSH [bar] + (hXP [m] / 10) + ΔpXP [bar]

où,

  • NPSH = pression d’aspiration nette du circulateur précisée par le fabricant [bar] (1 bar = 10 mCE = 100 kPa)
  • hXP = hauteur entre le point de raccordement du vase d’expansion et la pompe [m]

  • ΔpXP = perte de charge du tronçon de conduite reliant le circulateur au vase d’expansion, y compris la perte de charge de la chaudière si elle se trouve entre le circulateur et le vase d’expansion [bar]
Exemple.

Reprenons l’exemple précédent. La distance qui sépare le vase d’expansion du radiateur le plus haut est de 12 m. La hauteur qui sépare la pompe du vase d’expansion est de 1 m. La perte de charge de la conduite qui sépare le vase d’expansion du circulateur est de 0,4 kPa (100 Pa/m pour 4 m) ou 0,004 bar. Celle de la chaudière est de 0,002 bar.

Le fabricant de la pompe annonce un NPSH de 2 m de CE (ou 0,2 bar).

Pression de gonflage du vase d’expansion :

Pgon [bar] = 0,2 + (1 / 10) + 0,006 = 0,306 [bar]

C’est la valeur de 1,5 bar calculée dans l’exemple précédent qui sera choisie.

Pour éviter l’ébullition dans la chaudière

Une situation analogue se présente lorsque le fabricant d’une chaudière impose une pression minimale dans la chaudière pour éviter l’ébullition de l’eau qui sera source de bruit et de dégâts.

Pgon [bar] > Pchau [bar] + (hXC [m] / 10) + ΔpXC [bar]

où,

  • Pchau = pression minimale dans la chaudière imposée par le fabricant [bar] (1 bar = 10 mCE = 100 kPa)
  • hXC = hauteur entre le point de raccordement du vase d’expansion et le point le plus haut de la chaudière [m] (cette pression est positive si le point de raccordement du vase est plus bas que le point haut de la chaudière et négative dans le cas inverse)
  • ΔpXC = perte de charge du tronçon le point de raccordement du vase d’expansion et le point haut de la chaudière (chaudière comprise) [bar]

Étape 5 : calculer la pression maximale admissible Pmax

La pression maximale admissible « Pmax » est la pression que l’on ne peut dépasser au niveau du vase d’expansion lorsque l’installation est réchauffée. Elle est atteinte à la pression d’ouverture de la soupape de sécurité de la chaudière « Ps« .
Si le vase d’expansion est proche de la chaudière « Pmax » est presqu’égal à « Ps« .
L’écart est important si :

  • la différence de hauteur entre le vase d’expansion et la soupape de sécurité est grande,
  • la pompe est placée entre le vase d’expansion et la chaudière (la pression effective de la pompe doit être prise en compte).

Pmax [bar] = Ps + (hXS / 10) – PP

  • Pp = pression de la pompe (n’est prise en compte que si la pompe est entre le vase et la chaudière [bar]) (1 bar = 10 mCE = 100 kPa)
  • hXS = hauteur entre le point de raccordement du vase d’expansion et la soupape de sécurité [m] (cette pression est positive si le point de raccordement du vase est plus bas que le point haut de la chaudière et négative dans le cas inverse).

Etape 6 : calculer la pression finale Pfin

C’est la pression que l’on ne peut dépasser dans l’installation en fonctionnement.

Pfin [bar] = Pmax – 0,5

Exemple.

Si la soupape de sécurité est réglée à 3 bar et que le vase d’expansion est proche de la chaudière :

Pfin [bar] = 3 [bar] – 0,5 [bar] = 2,5 [bar]


Etape 7 : choisir le volume réel du vase d’expansion Vr

Le volume du vase d’expansion choisi doit être supérieur à :

V[l] > Vnet [l] / Fp

où,

  • Fp est appelé facteur de pression. F= (Pfin [bar] – Pgon [bar]) / (Pfin [bar] + 1)
Exemple :

Une ancienne installation est équipée de radiateurs à panneaux et d’une chaudière en fonte de 400 kW. Sa contenance en eau est estimée à 4 000 [l] et son volume d’expansion de l’eau est 142 [l].

Le volume d’eau net du vase d’expansion est de :

Vnet = 4 000 [l] x 0,01 + 142 [l] = 182 [l]

Si la soupape de sécurité est réglée à 3 bar et que le vase d’expansion est proche de la chaudière :

Pfin [bar] = 3 [bar] – 0,5 [bar] = 2,5 [bar]

La distance qui sépare le vase d’expansion du radiateur le plus haut est de 12 m :

Pgon [bar] = (12 [m] / 10) + 0,3 [bar] = 1,5 [bar]

V[l] > 182 [l] x (2,5 [bar] + 1) / (2,5 [bar] – 1,5 [bar])

V[l] > 637 [l]

On choisira un ou plusieurs vases d’expansion pour un volume total de 650 litres.


Etape 8 : Calculer la pression initiale Pini

C’est la pression initiale à régler au manomètre, lorsque l’installation est froide.
Elle dépend du volume d’eau de réserve « Vres » réellement obtenu avec la vase d’expansion choisie :

Vres [l] = Fx V[l] – Vexp [l]

= (Pfin [bar] – Pgon [bar]) / (Pfin [bar] + 1) x V[l] – Vexp [l]

Pini [bar] = (V[l] x (Pgon [bar] + 1) / (V[l] – Vres [l])) – 1

Exemple.

Une ancienne installation est équipée de radiateurs à panneaux et d’une chaudière en fonte de 400 kW. Sa contenance en eau est estimée à 4 000 [l] et son volume d’expansion de l’eau est 142 [l], la pression finale maximale est de 2,5 [bar] et la pression de gonflage est de 1,5 [bar] et le volume du vase choisi est de 650 [l].

Le volume de réserve réellement obtenu avec ce vase est de :

Vres [l] = ((2,5 [bar] – 1,5 [bar]) x 650 [l] / (2,5 [bar] + 1)) – 142 [l] = 43,7 [l]

La pression initiale à régler au manomètre de l’installation (c’est-à-dire la pression relative) est donc de :

Pini [bar] = (650 [l] x (1,5 [bar] + 1) / (650 [l] – 43,7 [l])) – 1 = 1,7 [bar]

Plan d’action [Chauffage – nouvelle chaudière]

Plan d'action [Chauffage - nouvelle chaudière]

… ou vaut-il mieux investir dans le remplacement des chaudières ou dans une nouvelle régulation ?


Les améliorations obligatoires

 Certaines situations peuvent être qualifiées d’inadmissibles : soit l’investissement à consentir est faible, et directement remboursé par les économies, soit les équipements sont performants mais leurs qualités ne sont pas exploitées correctement (mauvais réglage ou d’un défaut de raccordement).

Améliorer

Dans la première catégorie, on peut classer :

On retrouve dans la seconde catégorie :

Évaluer


Si on ne peut tout faire … choisir l’amélioration adéquate

Ensuite, si le budget d’investissement est limité, se pose l’alternative suivante : vaut-il mieux investir dans l’amélioration, voire le remplacement des chaudières ou dans l’amélioration de la régulation ?

Un essai de réponse peut être donné au départ d’un exemple :

Exemple.

Une école est chauffée par une chaudière de 500 kW. Sa consommation est de l’ordre de 58 000 litres de fuel par an.

Le rendement saisonnier des chaudières est estimé à 76 % (situation des plus mauvaises).

La régulation globale de l’installation est défaillante, de sorte qu’en moyenne une surchauffe de 2°C est souvent constatée dans de nombreuses zones du bâtiment et aucune intermittence n’est appliquée au chauffage en période d’inoccupation (situation la plus mauvaise : chauffage durant les nuits et les week-ends) .

Comparons le gain réalisable grâce à chacune des améliorations prises séparément. Évidemment ces économies ne sont pas cumulables puisque si on améliore les chaudières, l’amélioration de la régulation aura moins d’impact.

Action

Gain Investissement Temps de retour
[%] [Litres fuel/an] [€/an] (à 0,2116 [€/l]) [€] [ans]
Remplacement du brûleur par un brûleur 2 allures avec clapet d’air fermant à l’arrêt et permettant un rendement de combustion de 89 % (au lieu de 84 %) (faisable uniquement si l’état mécanique de la chaudière le permet). 12 7 000 1 500 4 500 3
Remplacement de la chaudière par une chaudière traditionnelle haut rendement redimensionnée de 350 kW. 17 10 000 2 100 11 000 5,2
Remplacement de la régulation (remplacement de 4 vannes mélangeuses, placement d’un régulateur climatique gérant ces 4 circuits et intermittence par optimisation et placement de vannes thermostatiques sur 80 radiateurs) 30 17 000 3 600 8 000 2,2

En fait, le choix ne se limite pas à l’installation de chauffage. L’isolation de l’enveloppe entre également en balance. Celle-ci doit être pratiquée avant le remplacement de la chaudière. Il est en effet logique de diminuer les besoins énergétiques avant d’améliorer la façon dont on les satisfait. Cette opération est aussi plus rentable et permet de diminuer la puissance de la nouvelle chaudière.

On peut également dire que l’impact de la régulation peut être différent en fonction du type de bâtiment. Ainsi, pratiquer une coupure du chauffage dans un bâtiment à fort degré d’isolation et grande inertie n’apporte guère d’économie, ce ne sera pas le cas dans un bâtiment sans isolation et peu inerte.

Concevoir

Isoler une toiture plate.

Concevoir

Isoler une toiture inclinée.

Améliorer

Améliorer les chaudières.

Améliorer

Remplacer la ou les chaudières.

Améliorer

Améliorer la distribution.

Améliorer

Améliorer les corps de chauffe.

Améliorer

Améliorer la régulation.

Améliorer

Améliorer la maintenance.